
Layout-sensitive Generalized Parsing

Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus Ostermann

University of Marburg, Germany

Abstract. The theory of context-free languages is well-understood and
context-free parsers can be used as off-the-shelf tools in practice. In par-
ticular, to use a context-free parser framework, a user does not need
to understand its internals but can specify a language declaratively as
a grammar. However, many languages in practice are not context-free.
One particularly important class of such languages is layout-sensitive
languages, in which the structure of code depends on indentation and
whitespace. For example, Python, Haskell, F#, and Markdown use in-
dentation instead of curly braces to determine the block structure of code.
Their parsers (and lexers) are not declaratively specified but hand-tuned
to account for layout-sensitivity.
To support declarative specifications of layout-sensitive languages, we
propose a parsing framework in which a user can annotate layout in a
grammar. Annotations take the form of constraints on the relative posi-
tioning of tokens in the parsed subtrees. For example, a user can declare
that a block consists of statements that all start on the same column. We
have integrated layout constraints into SDF and implemented a layout-
sensitive generalized parser as an extension of generalized LR parsing.
We evaluate the correctness and performance of our parser by parsing
33 290 open-source Haskell files. Layout-sensitive generalized parsing is
easy to use, and its performance overhead compared to layout-insensitive
parsing is small enough for practical application.

1 Introduction

Most computer languages prescribe a textual syntax. A parser translates from
such textual representation into a structured one and constitutes the first step
in processing a document. Due to the development of parser frameworks such
as lex/yacc [14], ANTLR [17,16], PEGs [5,6], parsec [12], or SDF [7], parsers
can be considered off-the-shelf tools nowadays: Non-experts can use parsers, be-
cause language specifications are declarative. Although many parser frameworks
support some form of context-sensitive parsing (such as via semantic predicates
in ANTLR [17]), one particularly relevant class of languages is not supported
declaratively by any existing parser framework: layout-sensitive languages.

Layout-sensitive languages were first proposed by Landin in 1966 [11]. In
layout-sensitive languages, the translation from a textual representation to a
structural one depends on the code’s layout and its indentation. Most promi-
nently, the offside rule prescribes that all non-whitespace tokens of a structure
must be further to the right than the token that starts the structure. In other

if x != y:
if x > 0:

y = x
else:

y = -x

(a) Python: Indentation resolves
the dangling else problem.

do input <- readInput
case input of

Just txt -> do putStrLn ”thank you”
sendToServer txt
return True

Nothing -> fail ”no input”

(b) Haskell: Nested block structure.

Fig. 1. Layout-sensitive languages use indentation instead of curly braces.

words, a token is offside if it occurs further to the left than the starting token
of a structure; an offside token denotes the start of the next structure. In lan-
guages that employ the offside rule, the block structure of code is determined
by indentation and layout alone, whose use is considered good style anyway.

The offside rule has been applied in a number of computer languages includ-
ing Python, Haskell, F#, and Markdown. The Wikipedia page for the off-side
rule1 lists 20 different languages that apply the offside rule. For illustration,
Figure 1 shows a Python and a Haskell program that use layout to declare the
code’s block structure. The layout of the Python program specifies that the else

branch belongs to the outer if statement. Similarly, the layout of the Haskell pro-
gram specifies to which do-block each statement belongs. Unfortunately, current
declarative parser frameworks do not support layout-sensitive languages such as
Python or Haskell, which means that often the manually crafted parsers in com-
pilers are the only working parsers. This makes it unnecessarily hard to create
tools for these language, such as refactoring tools or IDEs.

Our core idea is to declare layout as constraints on the shape and relative
positioning of syntax trees. These layout constraints occur as annotations of pro-
ductions in the grammar and restrict the applicability of annotated productions
to valid layout. For example, for conditional expressions in Python, we annotate
(among other things) that the if keyword must start on the same column as the
else keyword and that all statements of a then or else branch must be further
indented than the if keyword. These latter requirements are context-sensitive,
because statements are rejected based on their appearance within a conditional
statement. Thus, layout constraints cannot be fully enforced during the execu-
tion of a context-free parser.

We developed an extension of SDF [7] that supports layout constraints. The
standard parsing algorithm for SDF is scannerless generalized LR parsing [20].
In a generalized parsing algorithm, all possible parse trees for an input string
are processed in parallel. One approach to supporting layout would be to parse
the input irrespective of layout in a first step (generating every possible parse
tree), and then in a second step discard all syntax trees that violate layout

1 http://en.wikipedia.org/w/index.php?title=Off-side_rule&oldid=496815186

http://en.wikipedia.org/w/index.php?title=Off-side_rule&oldid=496815186

constraints. However, we found that this approach is not efficient enough for
practical applications: For many programs, the parser fails to terminate within
30 seconds. To improve performance, we identified a subset of layout constraints
that in fact does not rely on context-sensitive information and therefore can be
enforced at parse time. We found that enforcing these constraints at parse time
and the remaining constraints at disambiguation time is sufficiently efficient.

To validate the correctness and to evaluate the performance of our layout-
sensitive parser, we have build layout-sensitive SDF grammars for Python and
Haskell. In particular, we applied our Haskell parser to all 33 290 Haskell files
in the open-source repository Hackage. We compare the result of applying our
parser to applying a traditional generalized parser to the same Haskell files
where block structure has been made explicit through curly braces. Our estudy
empirically validates the correctness of our parser and shows that our layout-
sensitive parser can compete with parsers that requires explicit block structure.

We make the following contributions:

– We identify common idioms in existing layout-sensitive languages. Based on
these idioms, we design a constraint language for specifying layout-sensitive
languages declaratively.

– We identify context-free layout constraints that can be enforced at parse
time to avoid excessive ambiguities.

– We implement a parser for layout-sensitive languages based on an existing
scannerless generalized LR parser implementation in Java.

– We extended existing layout-insensitive SDF grammars for Python and Haskell
with layout constraints.

– We evaluate the correctness and performance of our parser by parsing 33 290
open-source Haskell files and comparing the results against parse trees pro-
duced for Haskell files with explicit block structure. Our evaluation suggests
that our parser is correct and fast enough for practical applications.

Our parser, grammars, and raw evaluation data are open-source and available
online at http://github.com/seba--/layout-parsing. While our parser im-
plementation is based on a scannerless parser, the ideas presented in this paper
are applicable to parsers with separate lexers as well.

2 Layout in the wild

Many syntactic constructs in the programming language Haskell use layout to
encode program structure. For example, the do-Block in the simple Haskell pro-
gram in Figure 2(a) contains three statements which are vertically aligned at
the same column in the source code. We visualize the alignment by enclosing
the tokens that belong to a statement in a box. More generally, a box encloses
code corresponding to a subtree of the parse tree. The exact meaning of these
boxes will become clear in the next section, where they form the basis of our
constraint language.

A Haskell parser needs to check the alignment of statements to produce cor-
rect parse trees. For example, Figure 2(b) visualizes an incorrect parse tree that

http://github.com/seba--/layout-parsing

main = do print 16

print (11 + 12)

print 42

(a) Three statements with
correct vertical alignment.

main = do print 16

print (11 + 12)

print 42

(b) Wrong parse: State-
ments have to begin in
the same column, hence
print 42 cannot be a state-
ment.

main = do print 16

print (11 + 12)

print 42

(c) Correct parse: Only
two statements, where the
second print is applied to
three arguments.

Fig. 2. Simple Haskell programs.

wrongly identifies print 42 as a separate statement, even though it is further in-
dented than the other statements. Figure 2(c) visualizes the correct parse tree
for this example: A do-Block with two statements. The second statement spans
two lines and is parsed as an application of the function print to three arguments.
In order to recognize program structure correctly, a parser for a layout-sensitive
language like Haskell needs to distinguish programs as in Figure 2(a) from pro-
grams as in Figure 2(c).

It is not possible to encode this difference in a context-free grammar, be-
cause that would require counting the number of whitespace characters in ad-
dition to keeping track of nesting. Instead, many parsers for layout-sensitive
languages contain a handwritten component that keeps track of layout and in-
forms a standard parser for context-free languages about relevant aspects of
layout, for instance by inserting special tokens into the token stream. For exam-
ple, the Python language specification2 describes an algorithm that preprocesses
the token stream to delete some newline tokens and insert indent and dedent
tokens when the indentation level changes. Python’s context-free grammar as-
sumes that this preprocessing step has already been performed, and uses the
additional tokens to recognize layout-sensitive program structure.

This approach has the advantage that a standard parser for context-free
languages can be used to parse the preprocessed token stream, but it has the
disadvantage that the overall syntax of the programming language is not defined
in a declarative, human-readable way. Instead, the syntax is only defined in terms
of a somewhat obscure algorithm that explicitly manipulates token streams.
This is in contrast to the success story of declarative grammar and parsing
technology [10].

Furthermore, a simple algorithm for layout-handling that informs a standard
parser for context-free languages is not even enough to parse Haskell. The Haskell
language specification describes that a statement ends earlier than visible from
the layout if this is the only way to continue parsing [13]. For example, the
Haskell program in Figure 3(a) is valid, and the statement print (11 + 12) only
includes one closing parenthesis, because the second closing parenthesis could
not be consumed inside the statement. An algorithm for layout handling could

2 http://docs.python.org/py3k/reference/

http://docs.python.org/py3k/reference/

catch (do print 16

print(11 +

12))

(\e -> do putStr "error: "

print e)

(a) Exception handler.

catch (do print 16

print (11 +

12)) (\e -> do

putStr ”error:”

print e)

(b) Means the same as (a).

Fig. 3. Both variants of this more complicated Haskell program have valid layout.

not decide where to end the statement by counting whitespace characters only.
Instead, additional information from the context-free parser is needed to decide
that the statement needs to end because the next token cannot be consumed.
As a second and more extreme example, consider the program in Figure 3(b)
that has the same parse tree as the program in Figure 3(a). In particular, the
statements belong to different do-blocks even though they line up vertically.
These two programs can only be parsed correctly by close cooperation between
the context-free part of the parser and the layout-sensitive part of the parser,
which therefore have to be tightly integrated. This need for tight integration
further complicates the picture with the low-level, algorithmic specifications of
layout rules prevalent in existing language specifications and implementations.

We have focused our investigation of layout-sensitive languages on Haskell
and Python, but we believe our box model is general enough to explain layout
in other languages as well.

3 Declaring layout with constraints

Our goal is to provide a high-level, declarative language for specifying and im-
plementing layout-sensitive parsers. In the previous section, we have discussed
layout informally. We have visualized layout by boxes around the tokens that
belong to a subtree in Figures 2 and 3. We propose (i) to express layout rules
formally as constraints on the shape and relative positioning of boxes and (ii) to
annotate productions in a grammar with these constraints. The idea of layout
constraints is that a production is only applicable if the parsed text adheres to
the annotated constraint.

For example, Figure 4 displays an excerpt from our grammar for Haskell
that specifies the layout of Haskell do-blocks with implicit (layout-based) as well
as explicit block structure. This is a standard SDF grammar except that some
productions are annotated with layout constraints. For example, the nonterminal
Impl stands for implicit-layout statements, that is, statements of the form
(but not or). The layout constraint layout(”1.first.col < 1.left.col”) formally
expresses the required shape for subtree number 1.

We provide the full grammar of layout constraints in Figure 5. Layout con-
straints can refer to direct subtrees (including terminals) of the annotated pro-
duction through numerical indexes.

context-free syntax
Stm -> Impl {layout(”1.first.col < 1.left.col”)}
Impl -> Impls

Impl Impls -> Impls {cons(”StmSeq”), layout(”1.first.col == 2.first.col”)}
Stm -> Expls

Stm ”;” Expls -> Expls {cons(”StmSeq”)}
Impls -> Stms {cons(”Stms”)}

”{” Expls ”}” -> Stms {cons(”Stms”), ignore-layout}
”do” Stms -> Exp {cons(”Do”), longest-match}

Fig. 4. Excerpt of our layout-sensitive Haskell grammar. Statements with implicit lay-
out (Impl) have to follow the offside rule. Multiple statements have to align vertically.
Statements with explicit layout (Expl) are not layout-sensitive.

tree ::= number
tok ::= tree.first | tree.left | tree.right | tree.last
ne ::= tok.line | tok.col | ne +ne | ne -ne
be ::= ne ==ne | ne <ne | ne >ne | be && be | be || be | !be
c ::= layout(be) | ignore-layout

Fig. 5. Syntax of layout constraints c that can annotate SDF productions.

Each subtree exposes its shape via the source location of four tokens in
the subtree, which describe the relevant positions in the token stream. Lay-
out constraints use token selectors to access these tokens: first selects the first
non-whitespace token, last selects the last non-whitespace token, left selects the
leftmost non-whitespace token that is not on the same line as the first token, and
right selects the rightmost non-whitespace token that is not on the same line as
the last token. Figure 6(a) shows how the positions of these tokens describe the
shape of a subtree. It is essential in our design that layout rules can be described
in terms of the locations of these four tokens, because this provides a declarative
abstraction over the exact shape of the source code. As is apparent from their
definition, the token selectors left and right fail if all tokens occur in a single line.
Since a single line of input satisfies any box shape, we do not consider this a
constraint violation.

For each selected token, the position selectors line and col yield the token’s
line and column offset, respectively. Hence the constraint 1.first.col < 1.left.col

specifies that the left border of the shape of subtree 1 must look like . In other
words, the constraint 1.first.col < 1.left.col corresponds to Landin’s offside rule.
Consider the following example:

print (11 + 12)

* 13

Here, 1.first selects the first token of the function name print, yielding the char-
acter p for scannerless parsers, or the token print otherwise. 1.left selects the
left-most symbol not on the same line than print, that is, the operator symbol *.

catch (do print 16

print (11 +

12))

first

left

right

last
whitespace

(a) The source locations of four tokens
induce (an abstraction of) the shape of
a subtree.

1
.l

as
t.
c
o
l

<
1

.r
ig

h
t.
c
o
l

1
.l

as
t.
c
o
l

=
=

1
.r

ig
h

t.
c
o
l

1
.l

as
t.
c
o
l

>
1

.r
ig

h
t.
c
o
l

1.first.col
< 1.left.col

1.first.col
== 1.left.col

1.first.col
> 1.left.col

(b) Layout constraints to restrict the
shape of a box.

Fig. 6. Example layout constraints and the corresponding boxes.

This statement is valid according to the Impl production because the layout con-
straint is satisfied: The column in which print appears is to the left of the column
in which * appears. Conversely, the following statement does not adhere to the
shape requirement of Impl because the layout constraint fails:

print (11 + 12)

* 13

Consequently, the Impl production is not applicable to this statement.

The layout constraint 1.first.col < 1.left.col mentions only a single subtree of
the annotated production and therefore restricts the shape of that subtree. Fig-
ure 6(b) shows other examples for layout constraints that restrict the shape of
a subtree. In addition to these shapes, layout constraints can also prescribe the
vertical structure of a subtree. For example, the constraint 1.first.line == 1.last.line

prohibits line breaks within the subtree 1 and 1.first.line + num(2) == 1.last.line re-
quires exactly two line breaks.

If a layout constraint mentions multiple subtrees of the annotated production,
it specifies the relative positioning of these subtrees. For example, the nontermi-
nal Impls in Figure 4 stands for a list of statements that can be used with implicit
layout. In such lists, all statements must start on the same column. This ver-
tical alignment is specified by the layout constraint 1.first.col == 2.first.col. This
constraint naturally composes with the constraint in the Impl production: A suc-
cessful parse includes applications of both productions and hence checks both
layout constraints.

The anti-constraint ignore-layout can be used to deactivate layout validation
locally. In some languages such as Haskell and Python, this is necessary to sup-
port explicit-layout structures within implicit-layout structures. For example,
the Haskell grammar in Figure 4 declares explicit-layout statement lists. Since

these lists use explicit layout {stmt;...;stmt}, no additional constraints are needed.
However, Haskell allows code within an explicit-layout list to violate layout
constraints imposed by surrounding constructs. Correspondingly, we annotate
explicit-layout lists with ignore-layout, which enables us to parse the following
valid Haskell program:

do print (11 + 12)

print 13

do { print 14;

print 15 }
print 16

Our Haskell parser successfully parses this program even though the second
statement seemingly violates the shape requirement on Impl. However, since the
nested explicit statement list uses ignore-layout, we ignore all its tokens when
applying the left or right token selector. Therefore, the left selector in the con-
straint of Impl fails to find a leftmost token that is not on the first line, and the
constraint succeeds by default.

We deliberately kept the design of our layout-constraint language simple to
avoid distraction. For example, we left out language support for abstracting over
repeating patterns in layout constraints. However, such facilities can easily be
added on top of our core language. Instead, we focus on the integration of layout
constraints into generalized parsing.

4 Layout-sensitive parsing with SGLR

We implemented a layout-sensitive parser based on our extension of SDF [7] with
layout constraints. Our parser implementation builds on an existing Java imple-
mentation [9] of scannerless generalized LR (SGLR) parsing [18,20]. A SGLR
parser processes all possible interpretations of the input stream in parallel and
produces multiple potential parse results. Invalid parse results can be filtered
out in an additional disambiguation phase.

We have modified the SGLR parser to take layout constraints into account.3

As a first naive but correct strategy, we defer all validation of layout constraints
until disambiguation time. As an optimization of this strategy, we then identify
layout constraints that can be safely checked at parse time.

4.1 Disambiguation-time rejection of invalid layout

SDF distinguishes two execution phases: parse time and disambiguation time.
At parse time, the SGLR parser processes the input stream to construct a parse
forest of multiple potential parser results. This parse forest is input to the dis-
ambiguation phase, where additional information (e.g., precedence information)
specified together with the context-free grammar is used to discard as many of

3 We can reuse the parse-table generator without modifications, because it automat-
ically forwards layout constraints from the grammar to the corresponding reduce-
actions in the parse table.

the trees in the parse forest as possible. Ideally, only a single tree remains, which
means that the given SDF grammar is unambiguous for the given input.

While conceptually layout constraints restrict the applicability of annotated
productions, we can nevertheless defer the validation of layout constraints to
disambiguation time. Accordingly, we first parse the input ignoring layout con-
straints and produce all possible trees. However, to enable later checking of token
positions, during parsing we store line and column offsets in parse trees.

After parsing, we disambiguate the resulting parse forest by traversing it.
Whenever we encounter the application of a layout-constrained production, we
check that the layout constraint is satisfied. For violated constraints, we reject
the corresponding subtree that used the production. If a layout violation occurs
within an ambiguity node, we select the alternative result (if it is layout-correct).

The approach described so far is a generic technique that can be used to in-
tegrate any context-sensitive validation into context-free parsing. For instance,
Bravenboer et al. [1] integrate type checking into generalized parsing to dis-
ambiguate metaprograms. However, layout-sensitive parsing is particularly hard
because of the large number of ambiguities even in small programs.

For example, in the following Haskell programs, the number of ambiguities
grows exponentially with the number of statements:

foo = do print 1
foo = do print 1

print 2

foo = do print 1
print 2
print 3

For the first program, the context-free parser results in a parse forest with one
ambiguity node that distinguishes whether the number 1 is a separate statement
or an argument to print. The second example already results in a parse forest
with 7 ambiguity nodes; the third example has 31 ambiguity nodes. The number
of ambiguities roughly quadruples with each additional statement.

Despite sharing between ambiguous parse trees, disambiguation-time layout
validation can handle programs of limited size only. For example, consider the
Haskell program that contains 30 repetitions of the statement print 1 2 3 4 5 6 7 8 9.
After parsing, the number of layout-related ambiguities in this program is so big
that it takes more than 20 seconds to disambiguate it. A more scalable solution
to layout-sensitive parsing is necessary.

4.2 Parse-time rejection of invalid layout

The main scalability problem in layout validation is that ambiguities are not
local. Without explicit block structure, it is not clear how to confine layout-based
ambiguities to a single statement, a single function declaration, or a single class
declaration. For example, in the print examples from the previous subsection, the
numbers on the last line can be arguments to the print function on the first line.
Similarly, when using indentation to define the span of if-then-else branches as
in Python, every statement following the if-then-else can be either within the
else branch or not. It would be good to restrict the extent of ambiguities to more
fine-grained regions at parse time to avoid excessive ambiguities.

Internally, SGLR represents intermediate parser results as states in a graph-
structured stack [18]. Each state describes (i) a region in the input stream, (ii)
a nonterminal that can generate this input, and (iii) a list of links to the states
of subtrees. When parsing can continue in different ways from a single state, the
parser splits the state and follows all alternatives. For efficiency, SGLR uses local
ambiguity packing [18] to later join such states if they describe the same region
of the input and the same nonterminal (the links to subtrees may differ). For
instance, in the ambiguous input print (1 + 2 + 3), the arithmetic expression is
described by a single state that corresponds to both (1+2)+3 and 1+(2+3). Thus,
the parser can ignore the local ambiguity while parsing the remainder of the
input.

Due to this sharing, we cannot check context-sensitive constraints at parse
time. Such checks would require us to analyze and possibly resplit parse states
that were joined before: Two parse states that can be treated equally from
a context-free perspective may behave differently with respect to a context-
sensitive property. For example, the context-free parser joins the states of the
following two parse trees representing different Haskell statement lists:

print (11 + 12)

print 42

print (11 + 12)

print 42

The left-hand parse tree represents a statement list with two statements. The
right-hand parse tree represents a statement list with a single statement that
spans two lines. This statement violates the layout constraint from the Haskell
grammar in Figure 4 because it does not adhere to the offside rule (shape).
Since the context-free parser disregards layout constraints, it produces both
statement lists nonetheless.

The two statement lists describe the same region in the input: They start
and end at the same position. Moreover, both parse trees can be generated by
the Impls nonterminal (Figure 4). Therefore, SGLR joins the parse states that
correspond to the shown parse trees. This is a concrete example of two parse
trees that differ with respect to a context-sensitive property, but are treated
identically by SGLR.

Technically, context-sensitive properties require us to analyze and possibly
split parse states that are not root in the graph-structured stack. Such a split
deep in the stack would force us to duplicate all paths from root states to the split
state. This not only entails a serious technical undertaking but likely degrades
the parser’s runtime and memory performance significantly.

To avoid these technical difficulties, we would like to enforce only those layout
constraints at parse time that do not interact with sharing. Such constraints
must satisfy the following invariant: If a constraint rejects a parse tree, it must
also reject all parse trees that the parser might represent through the same
parse state. For constraints that satisfy this invariant, it cannot happen that
we prematurely reject a parse state that should have been split instead: All
trees represented by that state would be rejected by the constraint. One class of
layout constraints that adheres to this invariant is only using information that is
encoded in the parse state itself, namely the input region and the nonterminal.

This information is the same for all represented trees and we can use it at parse
time to reject states without influencing splitting or joining.

In our constraint language, the input region of a tree is described by the
token selectors first and last. Since the input region is the same for all trees that
share a parse state, constraints that only use the first and last token selectors
(but not left or right) can be enforced at parse time without influencing sharing:
If such a constraint rejects any random tree of a parse state, the constraint also
rejects all other trees because they describe the same input region.

One particularly useful constraint that only requires the token selectors first

and last is 1.first.col == 2.first.col, which denotes that trees 1 and 2 need to be
vertically aligned. Such constraint is needed for statement lists of both Haskell
and Python. Effectively, the constraint reduces the number of potential state-
ments to those that start on the same column. This confines many ambiguities to
a single statement. For example, the constraint allows us to reject the program
shown in Figure 2(b) because the statements are not aligned. However, it does
not allow us to reject or distinguish the programs shown in Figure 2(a) and 2(c);
we retain an ambiguity that we resolve at disambiguation time.

Technically, we enforce constraints at parse time when executing reduce ac-
tions. Specifically, in the function DO-REDUCTIONS [20], for each list of subtrees,
we validate that the applied production permits the layout of the subtrees. If
the production does not specify a layout constraint, the constraint is satisfied,
or the constraint cannot be checked at parse time, the regular reduce action is
performed. If a layout constraint is violated, the reduce action is skipped.

The remaining challenge is to validate that we in fact reduce ambiguity to a
level that allows acceptable performance in practice.

5 Evaluation

We evaluate correctness and performance of our layout-sensitive generalized
parsing approach with an implementation of a Haskell parser. Correctness is in-
teresting because we reject potential parser results based on layout constraints;
we expect that layout should not affect correctness. Performance is critical be-
cause our approach relies on storing additional position information and creating
additional ambiguity nodes that are later resolved, which we expect to have a
negative influence on performance. We want to assess whether the performance
penalty of our approach is acceptable for practical use (e.g., in an IDE). Specif-
ically, we evaluate the following research questions:

RQ1: Can a layout-sensitive generalized Haskell parser parse the same files and
produce equivalent parse trees as a layout-insensitive Haskell parser that
requires explicit layout?

RQ2: What is the performance penalty of the layout-sensitive Haskell parser
compared to a layout-insensitive Haskell parser that requires explicit layout?

5.1 Research method

In a controlled setting, we quantitatively compare the results and performance
of different Haskell parsers on a large set of representative Haskell files.

Parsers and parse results. We have implemented the layout-sensitive parser as
discussed above by modifying the original SGLR parser written in Java.4 We
have extended an existing SDF grammar for Haskell that required explicit lay-
out5 with layout constraints. We want to compare our parser to a reimplemen-
tation of GHC’s hand-tuned LALR(1) parser that has been developed by others
and is deployed as part of the haskell-src-exts package.6 Here, we refer to it sim-
ply as GHC parser. However, comparing the performance of our layout-sensitive
SGLR parser to the hand-optimized GHC parser would be unfair since com-
pletely different parsing technologies are used. Also comparing the produced
abstract syntax trees of both parsers is not trivial, because differently struc-
tured abstract syntax trees are generated. Therefore, we primarily compare our
layout-sensitive parser to the original SGLR parser that did not support layout.

However, the original SGLR parser is layout-insensitive and therefore not
able to parse Haskell files that use implicit layout (which almost all Haskell files
do). Therefore, we also used the pretty printer of the haskell-src-exts package
to translate Haskell files with arbitrary combinations of explicit and implicit
layout into a representation with only explicit layout. Since the pretty printer
also removes comments, the files may be smaller and hence faster to parse.
Therefore, we use the same pretty printer to create a file that uses only implicit
layout and contains no comments either.

Overall, we have three parsers (GHC, the original SGLR parser, and our
layout-sensitive SGLR parser) which we can use to parse three different files
(original layout, explicit-only layout, implicit-only layout). We are interested in
the parser result and parse time of four combinations:

GHC. Parsing the file with original layout using the GHC parser.
SGLR-Orig. Parsing the file with original layout (possible mixture of explicit

and implicit layout) with our layout-sensitive SGLR parser.
SGLR-Expl. Parsing the file after pretty printing with explicit layout only and

without comments with the original SGLR parser.
SGLR-Impl. Parsing the file after pretty printing with implicit layout only and

without comments with our layout-sensitive SGLR parser.

We illustrate the process, the parsers, and the results in Figure 7. All SGLR-
based parsers use the same Haskell grammar of which the original SGLR parser
ignores the layout constraints. Our Haskell grammar implements the Haskell
2010 language report [13], but additionally supports the following extensions to

4 Actually, we improved the original implementation by eliminating recursion to avoid
stack overflows when parsing files with long comments or long literal strings.

5 http://strategoxt.org/Stratego/HSX
6 http://hackage.haskell.org/package/haskell-src-exts

http://strategoxt.org/Stratego/HSX
http://hackage.haskell.org/package/haskell-src-exts

cpp

pretty printer

GHC

SDF-Orig

SDF-Impl

SDF-Expl

Original file
(original layout)

Preprocessed file
(original layout)

implict layout only

explicit layout only

AST

AST

AST

OK/
Fail

Legend

GHC Tool

Layout-sensitive SDF parser

Original SDF parser

Fig. 7. Evaluation setup

increase coverage of supported files: HierarchicalModules, MagicHash, FlexibleIn-
stances, FlexibleContexts, GeneralizedNewtypeDeriving. We configured the GHC
parser accordingly and, in addition, deactivated its precedence resolution of infix
operators, which is a context-sensitive mechanism that can be implemented as
a post-processing step. Running the C preprocessor is necessary in many files
and performed in all cases. Note that SGLR-Orig and SGLR-Impl use the same
parser, but execute it on different files.

Subjects. To evaluate performance and correctness on realistic files, we selected
a large representative collection of Haskell files. We attempt to parse all Haskell
files collected in the open-source Haskell repository Hackage.7 We extracted
the latest version of all 3081 packages that contain Haskell source code on
May 15, 2012. In total, these packages contain 33 290 Haskell files that amount to
258 megabytes and 5 773 273 lines of Haskell code (original layout after running
cpp).

Data collection. We perform measurements by repeating the following for each
file in Hackage: We run the C preprocessor and the pretty printer to create
the files with original, explicit-only, and implicit-only layout. We measure the
wall-clock time of executing the GHC parser and the SGLR-based parsers on
the prepared files as illustrated in Figure 7. We stop parsers after a timeout of
30 seconds and interpret longer parsing runs as failure. We parse all files in a
single invocation of the Java virtual machine and invoke the garbage collector
between each parser execution. After starting the virtual machine, we first parse
20 packages (215 files) and discard the results to account for warmup time of
Java’s JIT compiler. A whole run takes about 6 hours. We repeat the entire
process with all measurements three times after system reboots and use the
arithmetic mean of each file and parser over all runs.

We run all performance measurements on the same 3 GHz, dual-core ma-
chine with 4GB memory and Java Hotspot VM version 1.7.0 04. We specified a
maximum heap size of 512MB and a maximum stack size of 16MB.

7 http://hackage.haskell.org

http://hackage.haskell.org

SGLR−Expl SGLR−Orig

SGLR−Impl 1694

0

4

15

17

280

3

22812

(a) Number of files each parser pro-
duces the correct AST for.

SGLR−Expl SGLR−Orig

SGLR−Impl 1651

0

0

0

5

274

0

22812

(b) Ignoring files that timeout with at
least one parser.

Fig. 8. Correctness of layout-sensitive parsing.

Analysis procedure. We discard all files that cannot be parsed by the GHC
parser configured as described above. On the remaining files, for research ques-
tion RQ1 (correctness), we evaluate that the three abstract syntax trees produced
by SGLR parsers are the same (that is, we perform a form of differential testing).

For research question RQ2 (performance penalty), we determine the relative
slow down between SGLR-Expl and SGLR-Impl (and briefly compare also the
performance of the other parsers). We calculate the relative performance penalty
between parsers separately for each file that can be parsed by all three parsers.
We report the geometric mean and the distribution of the relative performance
of all these files.

5.2 Results

Correctness. Of all 33 290 files, 9071 files (27 percent) could not be parsed by
the GHC parser (we suspect the high failure rate is due to the small number of
activated language extensions). Of the remaining 24 219 files, 22 812 files (94 per-
cent) files could be parsed correctly with all three SGLR-based parsers (resulting
in the same abstract syntax tree). We show the remaining numbers in the Venn
diagram in Figure 8(a). Some differences are due to timeouts; the diagram in
Figure 8(b) shows those results that do not time out in any parser.

Performance. The median parse times per file of all parsers are given in Fig-
ure 9(b). Note that the results for GHC are not directly comparable, since they
include a process invocation, which corresponds to an almost constant overhead
of 15 ms. On average SGLR-Impl is 1.8 times slower than SGLR-Expl. We show
the distribution of performance penalties as box plot in Figure 9(a) (without out-
liers). The difference between SGLR-Orig and SGLR-Impl is negligible; SGLR-Impl
is slightly faster on average because pretty printing removes comments.

In Figure 9(c), we show the parse times for all four parsers (the graph
shows how many percent of all files can be parsed within a given time). We see
that, as to be expected, SGLR-Expl is slower than the hand-optimized GHC, and
SGLR-Impl is slower than SGLR-Expl. The parsers SGLR-Impl and SGLR-Orig

perform similarly and are essentially not distinguishable in this figure.

0 1 2 3 4

(a) Distribution of rela-
tive performance penalty
(SGLR-Impl/SGLR-Expl).

median time/file

GHC (<)19 ms
SGLR-Expl 8 ms
SGLR-Orig 18 ms
SGLR-Impl 17 ms

(b) Median parse times.

0 100 200 300 400 500

0
2

0
4

0
6

0
8

0
1

0
0

Time (in ms)
F

ile
s
 p

a
rs

e
d

 i
n

 g
iv

e
n

 t
im

e
 (

in
 p

e
rc

e
n

t)

GHC
SDF−Expl
SDF−Orig
SDF−Impl

(c) Distribution of parsing times.

Fig. 9. Performance of layout-sensitive parsing.

5.3 Interpretation and discussion

As shown in Figure 8(a), SGLR-Orig and SGLR-Impl do not always produce the
same result as SGLR-Expl. Of these differences, 40 can be ascribed to timeouts,
which occur in SGLR-Expl as well as in SGLR-Orig and SGLR-Impl. The re-
maining differences are shown in Figure 8(b). We investigated these differences
and found that the five files that only SGLR-Expl can parse are due to Haskell
statements that start with a pragma comment, for example:

{-# SCC ”Channel Write” #-} liftIO . atomically $ writeTChan pmc m

Since our SGLR-based parsers ignore such pragma comments, the statement
appears to be indented too far. We did not further investigate due to the low
number of occurrences of this pattern.

For the 274 files that only SGLR-Expl and SGLR-Impl can parse, we took
samples and found that SGLR-Orig failed because of code that uses a GHC
extension called NondecreasingIndentation, which is not part of the Haskell
2010 language report but cannot be deactivated in the GHC parser. The ex-
tension allows programs to violate the offside rule for nested layout blocks:

foo = do
print 16
do
print 17
print 18

pretty-prints to

foo = do
print 16
do

print 17
print 18

None of the SGLR-based parsers can handle such programs. However, the GHC
pretty printer always produces code that does not require NondecreasingIn-
dentation. Thus, SGLR-Expl and SGLR-Impl can parse the pretty-printed code,
whereas SGLR-Orig fails on the original code. We consider this a bug of the

reimplementation of the GHC parser, which does not implement the Haskell
2010 language report even when configured accordingly.

Finally, GHC accepts 1651 files that none of the SGLR-based parsers accepts.
Since not even the layout-insensitive parser SGLR-Expl accepts these files, we
suspect inaccuracies in the original Haskell grammar that are independent of
layout.

Regarding performance, layout-sensitive parsing with SGLR-Impl entails an
average slowdown of 1.8 compared to layout-insensitive parsing with SGLR-Expl.
Given the median parse times per file (Figure 9(b)), this slowdown is still in the
realm of a few milliseconds and suggests that layout-sensitive parsing can be
applied in practice. In particular, this slowdown seems acceptable given the ben-
efits of declarative specifications of layout as in our approach, as opposed to
low-level implementation of layout within a lexer or the parser itself. Further-
more, we expect room for improving the performance of our implementation of
layout-sensitive parsing, as we discuss in Section 6.

Overall, regarding correctness (RQ1), we have shown that layout-sensitive
parsing can parse almost all files that the layout-insensitive SGLR-Expl can
parse. In fact, we did not find a single actual difference that would indicate
an incorrect parse. Regarding performance penalty (RQ2), we believe that the
given slowdown does not inhibit practical application of our parser.

5.4 Threats to validity

A key threat to external validity (generalizability of the results) is that we have
analyzed only Haskell files and parse only files from the Hackage repository.
We believe that the layout mechanisms of Haskell are representative for other
languages, but our evaluation cannot generalize beyond Haskell. Furthermore,
files in Hackage have a bias toward open-source libraries. However, we believe
that our sample is large enough and the files in Hackage are diverse enough to
present a general picture.

An important threat to internal validity (factors that allow alternative expla-
nations) is the pretty printing necessary for parser SGLR-Expl. Pretty printing
removes comments but possibly adds whitespace. The pretty-printed files with
explicit layout have a 45 percent larger overall byte size compared to origi-
nal layout, whereas the pretty-printed files with implicit layout have a 15 per-
cent smaller byte size. Unfortunately, we have no direct influence on the pretty
printer. We believe that the influence of pretty printing is largely negligible, be-
cause whitespace and comments should not trigger ambiguities during parsing
(the similarity of the performance of SGLR-Orig and SGLR-Impl can be seen as
support). However, a more configurable pretty printer should improve internal
validity in future work.

It may be surprising that GHC (and also SGLR-Orig) fail to parse over one
quarter of all files. We have sampled some of these files and found that they
require more language extensions than we currently support. For example, the
GADTs and TypeFamilies extensions seem to be popular, but we did not im-
plement their syntax in our grammar and deactivated them in the GHC parser.

In future work, we would like to support Haskell more completely, which should
increase the number of supported Hackage files.

Regarding construct validity (suitability of metrics for evaluation goal), we
measured performance using wall-clock time only. For the SGLR-based parsers,
we control JIT compilation with a warmup phase. By running the garbage collec-
tor between parser runs and monitoring the available memory, we ensured that
all parsers have a similar amount of memory available. However, the layout-aware
parser stores additional information and may perform different in scenarios with
less memory available. Furthermore, we can, of course, not entirely eliminate
background noise. Although we have repeated all measurements only three times,
we believe the measurements are sufficiently clear and we have checked that vari-
ations between the three measurements are comparably minor for all parsers (for
over 95 percent of all files, the standard deviation of these measurements was
less than 10 percent of the mean).

6 Discussion and future work

We modified an SGLR parser to support validation of layout constraints at parse
time and disambiguation time. Here, we summarize some technical implications,
potential improvements, and limitations of our parser.

Technical implications. Layout-sensitive parsing interacts with traditional dis-
ambiguation methods such as priorities or follow restrictions. For example, con-
sider the following Haskell program, which can be parsed into two layout-correct
parse trees (boxes indicate the toplevel structure of the trees):

do return 5

+ 7

do return 5

+ 7

In both parse trees, the do-block consists of a single statement that adheres to
the offside rule. However, the Haskell language report specifies that the left-hand
parse tree is correct: For do-blocks the longest match needs to be selected.

SDF provides a longest-match disambiguation filter for lexical syntax, called
follow restrictions [19]. A typical use of follow restrictions is to ensure that
identifiers are not followed by any letters, which should be part of the identifier
instead. Since, in fact, both of the above parse trees correspond to some valid
Haskell program (dependent on layout), not even context-free follow restrictions
enable us to disambiguate correctly because they ignore layout. Similarly, a
priority filter would reject the same parse tree irrespective of layout.

For this reason, we added a disambiguation filter to SDF called longest-match.
We use it to declare that, in case of ambiguity, a production should extend as far
to the right as possible. We annotated the production for do-blocks in Figure 4
accordingly. Since our parser stores position information in parse trees anyway,
the implementation of the longest-match filtering is simple: For ambiguous appli-
cations of a longest-match production we compare the position of the last tokens
and choose the tree that extends further.

More generally, it should be noted that due to position information in parse
trees, our parser supports less sharing than traditional GLR parsers do. Essen-
tially, our parser can only share parse trees that describe the same region in
the input stream. We have not yet investigated the implications on memory
consumption, but our empirical study indicates that the performance penalty is
acceptable.

Performance improvements. In our implementation of layout-sensitive general-
ized parsing, we mostly focused on correctness and only addressed performance
in so far as it influences the feasibility of our approach. Therefore, in our cur-
rent implementation, we suspect two significant performance improvements are
still possible. First, we interpret layout constraints by recursive-descent with
dynamic type checking. We have profiled the performance of our parser and
found that about 25 percent of parse time and disambiguation time are spent
on interpreting layout constraints. We expect that a significant improvement is
possible by compiling layout constraints when loading the parse table. Second,
our current implementation validates all layout constraints at disambiguation
time. However, we validate many constraints at parse time already (as described
in Section 4.2). We suspect that avoiding the repeated evaluation of those con-
straints represents another significant performance improvement.

Limitations. In general, context-sensitive properties can be validated after pars-
ing at disambiguation time without restriction. However, the expressivity of our
constraint language is limited in multiple ways. First, layout constraints in our
language are compositional, that is, a constraint can only refer to the direct sub-
trees of a production. It might be useful to extend our constraint language with
pattern-matching facilities as known from XPath [21]. However, it is not obvious
how such pattern matching influences the performance of parsing and disam-
biguation; we leave this question open. A second limitation is that we focus on
one-dimensional layout-sensitive languages only. However, a few layout-sensitive
languages employ a two-dimensional syntax, for example, for type rules as in
Epigram [15]. We would like to investigate whether our approach to layout-
sensitivity generalizes to two-dimensional parsers.

7 Related work

We have significantly extended SDF’s frontend [7] and its SGLR backend [18,20]
to support layout-sensitive languages declaratively. We are not aware of any other
parser framework that provides a declarative mechanism for layout-sensitive
languages. Instead, existing implementations of parsers for layout-sensitive lan-
guages are handwritten and require separate layout-sensitive lexing.

For example, the standard Python lexer and parser are handwritten C pro-
grams.8 While parsing, the lexer checks for changes of the indentation level in
the input, and marks them with special indent and dedent tokens. The parser

8 http://svn.python.org/projects/python/trunk/Modules/parsermodule.c

http://svn.python.org/projects/python/trunk/Modules/parsermodule.c

then consumes these tokens to process layout-sensitive program structures. This
implementation is non-declarative.

As another example, the GHC Haskell compiler employs a layout-sensitive
lexer that uses the Lexer generator Alex9 in combination with manual Haskell
code. The generated layout-sensitive lexer manages a stack of layout contexts
that stores the beginning of each layout block. When the parser queries the lexer
for layout-relevant tokens (such as curly braces), the lexer adapts the layout
context accordingly. These interactions between parser and lexer are non-trivial
and require virtual tokens for implicit layout. Since the layout rules of Haskell
are hard-coded into the lexer, it is also not easy to adapt the parser and lexer
for other languages. The same holds for the Utrecht Haskell Compiler [2].

Data-dependent grammars [8] support the declaration of constraints to re-
strict the applicability of a production. However, constraints in data-dependent
grammars must be context-insensitive [8, Lemma 4], and therefore cannot be
used to describe languages with context-sensitive layout such as Haskell.

8 Conclusion

We have presented a parser framework that allows the declaration of layout
constraints within a context-free grammar. Our generalized parser enforces con-
straints at parse time when possible but fully validates parse trees at disam-
biguation time. We have empirically shown that our parser is correct and the
performance penalty is acceptable compared to layout-insensitive generalized
parsing. We believe that this work will enable language implementors to specify
the grammar of their layout-sensitive languages in a high-level, declarative way.

Our original motivation for this work was to develop a syntactically extensible
variant of Haskell in the style of SugarJ [3], where regular programmers write
syntactic language extensions. This requires a declarative and extensible syntax
formalism as provided by SDF. Based on the work presented here, we have
been able to implement SugarHaskell [4], an extensible preprocessor and IDE
for Haskell.

Acknowledgments. We thank Doaitse Swierstra for discussion and challenging
Haskell examples, and the anonymous reviewers for their feedback. This work is
supported in part by the European Research Council, grant No. 203099.

References

1. M. Bravenboer, R. Vermaas, J. J. Vinju, and E. Visser. Generalized type-based
disambiguation of meta programs with concrete object syntax. In Proceedings
of Conference on Generative Programming and Component Engineering (GPCE),
volume 3676 of LNCS, pages 157–172. Springer, 2005.

2. A. Dijkstra, J. Fokker, and S. D. Swierstra. The architecture of the Utrecht Haskell
compiler. In Proceedings of Haskell Symposium, pages 93–104. ACM, 2009.

9 http://www.haskell.org/alex/

http://www.haskell.org/alex/

3. S. Erdweg, T. Rendel, C. Kästner, and K. Ostermann. SugarJ: Library-based
syntactic language extensibility. In Proceedings of Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pages 391–406.
ACM, 2011.

4. S. Erdweg, F. Rieger, T. Rendel, and K. Ostermann. Layout-sensitive language
extensibility with SugarHaskell. In Proceedings of Haskell Symposium. ACM, 2012.
to appear.

5. B. Ford. Packrat parsing: Simple, powerful, lazy, linear time, functional pearl.
In Proceedings of International Conference on Functional Programming (ICFP),
pages 36–47. ACM, 2002.

6. B. Ford. Parsing expression grammars: A recognition-based syntactic foundation.
In Proceedings of Symposium on Principles of Programming Languages (POPL),
pages 111–122. ACM, 2004.

7. J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The syntax definition
formalism SDF – reference manual. SIGPLAN Notices, 24(11):43–75, 1989.

8. T. Jim, Y. Mandelbaum, and D. Walker. Semantics and algorithms for data-
dependent grammars. In Proceedings of Symposium on Principles of Programming
Languages (POPL), pages 417–430. ACM, 2010.

9. L. C. L. Kats, M. de Jonge, E. Nilsson-Nyman, and E. Visser. Providing rapid feed-
back in generated modular language environments: Adding error recovery to scan-
nerless generalized-LR parsing. In Proceedings of Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pages 445–464.
ACM, 2009.

10. L. C. L. Kats, E. Visser, and G. Wachsmuth. Pure and declarative syntax defini-
tion: Paradise lost and regained. In Proceedings of Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pages 918–932.
ACM, 2010.

11. P. J. Landin. The next 700 programming languages. Communication of the ACM,
9(3):157–166, 1966.

12. D. Leijen and E. Meijer. Parsec: Direct style monadic parser combinators for the
real world. Technical Report UU-CS-2001-27, Universiteit Utrecht, 2001.

13. S. Marlow (editor). Haskell 2010 language report. Available at http://www.

haskell.org/onlinereport/haskell2010, 2010.
14. T. Mason and D. Brown. Lex & yacc. O’Reilly, 1990.
15. C. McBride. Epigram: Practical programming with dependent types. In Advanced

Functional Programming, volume 3622 of LNCS, pages 130–170. Springer, 2004.
16. T. Parr and K. Fisher. LL(*): The foundation of the ANTLR parser generator. In

Proceedings of Conference on Programming Language Design and Implementation
(PLDI), pages 425–436. ACM, 2011.

17. T. Parr and R. W. Quong. ANTLR: A predicated-LL(k) parser generator. Software
Practice and Experience, 25:789–810, 1994.

18. M. Tomita. An efficient augmented-context-free parsing algorithm. Computational
Linguistics, 13(1-2):31–46, 1987.

19. M. van den Brand, J. Scheerder, J. J. Vinju, and E. Visser. Disambiguation filters
for scannerless generalized LR parsers. In Proceedings of Conference on Compiler
Construction (CC), volume 2304 of LNCS, pages 143–158. Springer, 2002.

20. E. Visser. Scannerless generalized-LR parsing. Technical Report P9707, Program-
ming Research Group, University of Amsterdam, 1997.

21. XSL Working Group and XML Linking Working Group. XML Path language
(XPath) 1.0. Available at http://www.w3.org/TR/xpath/, 1999.

http://www.haskell.org/onlinereport/haskell2010
http://www.haskell.org/onlinereport/haskell2010
http://www.w3.org/TR/xpath/

	Layout-sensitive Generalized Parsing

