
�
�
�
��
��

��
� �
��	
���� �

�
���

�
��
	
�����������

��

��
��
� �

���������
�

�
�
�
�
��
�

��
������ �

�
�
�

i3QL: Language-Integrated Live Data Views

Ralf Mitschke1 Sebastian Erdweg1 Mirko Köhler1 Mira Mezini1,2 Guido Salvaneschi1
1Technische Universität Darmstadt, Germany

2Lancaster University, UK
< lastname >@cs.tu-darmstadt.de

Abstract
An incremental computation updates its result based on a
change to its input, which is often an order of magnitude
faster than a recomputation from scratch. In particular, in-
crementalization can make expensive computations feasible
for settings that require short feedback cycles, such as inter-
active systems, IDEs, or (soft) real-time systems.

This paper presents i3QL, a general-purpose program-
ming language for specifying incremental computations.
i3QL provides a declarative SQL-like syntax and is based
on incremental versions of operators from relational algebra,
enriched with support for general recursion. We integrated
i3QL into Scala as a library, which enables programmers to
use regular Scala code for non-incremental subcomputations
of an i3QL query and to easily integrate incremental com-
putations into larger software projects. To improve perfor-
mance, i3QL optimizes user-defined queries by applying al-
gebraic laws and partial evaluation. We describe the design
and implementation of i3QL and its optimizations, demon-
strate its applicability, and evaluate its performance.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features

Keywords Incremental Computation, Scala, Reactive Pro-
gramming

1. Introduction
Incremental computation is a technique that updates an algo-
rithm’s results in the event of changes to the respective inputs
and is often faster than a re-computation from scratch (i.e.,
over the full input). The fundamental concept that makes in-
cremental computations appealing is the principle of inertia

[Copyright notice will appear here once ’preprint’ option is removed.]

[16], which means that small changes in the input have only
small impacts on the output.

Computations in many domains are embarrassingly in-
crementalizable, i.e., conceptually the potential for speed-up
is immediately obvious. As a result, incrementalization has
been researched and successfully applied in a broad vari-
ety of systems, e.g., parsing, compilation, truth maintenance
or constraint solving (cf. [36] for a survey) and applica-
tions continue to emerge, e.g., machine learning [47], static
program analysis [10], dynamic program invariant checking
[45] and distributed parallel processing of big-data [2]. Yet,
even today the actual development of an incremental compu-
tation is a complex task that involves tedious manual labor.

To develop incremental computations many of the ear-
lier research works have produced designated incremental
algorithms for specific problems, e.g., parsing or compila-
tion (cf. [36]). These algorithms utilize highly specialized
data structures and update semantics for the problem at hand
to achieve optimal performance. However, this form of in-
crementalization requires manual work to devise and imple-
ment an incremental version of the respective algorithm.

In this paper we present a general-purpose solution —
termed i3QL (incremental integrated in-memory query lan-
guage) — that (i) allows developers to express incremental
computations declaratively inside a programming language
and (ii) has an efficient back-end for executing incremental
computations in-memory. Incremental computations formu-
lated in i3QL are easy to use, without developing and de-
bugging specialized data structures and update semantics.
Developers express the algorithm in a declarative embed-
ded domain-specific language (EDSL) [20] that is inspired
by SQL and features incrementalization and optimizations.
Both the EDSL and the back-end of i3QL are influenced by
research from incrementalization of relational algebra per-
formed in the database community. The latter has produced
efficient techniques for incrementalization under the term in-
cremental view maintenance [16].

Traditionally, relational algebra is restricted to database
systems. Yet, integrating the semantics of relational alge-
bra into a programming language has several advantages for
incremental computations both for the front-end in which
users express computations and the back-end, i.e., the run-

1 2014/10/13

time semantics. From the perspective of the front-end: (i)
the SQL-inspired EDSL is a declarative language and thus
facilitates formulation of incremental computations as a data
transformation rather than a series of imperative statements
that update and retrieve the state of the computation, (ii) SQL
is an industry standard and, thus, we enhance the accessibil-
ity to our solution for end-users with a database background,
and (iii) end-users familiar with SQL can reason about the
runtime semantics since queries have a predictable seman-
tics, which can also be reviewed as an i3QL query plan1

that shows how a query is executed. From the perspective of
the back-end: (i) relational algebra provides a well-defined
and well-understood semantics as the basis for incremental
computations and is also suitable for optimizations, (ii) the
operators of the algebra are compositional and results can
be reused over different incremental computations, (iii) for
each operator we implemented a principal incrementaliza-
tion semantics that provides optimal performance, and, (iv)
new operators can be easily added to extend the back-end.

We have implemented i3QL in the programming language
Scala as an EDSL that can be integrated as a library by end-
users.2 The EDSL is statically typed to help users in defining
their queries in a type-safe manner. In addition, we used
light-weight modular staging (LMS) [37] to conduct query
optimizations based on the reification of first-class functions.

In comparison, previous approaches to incremental com-
putations from the programming-languages community are
confined to certain algorithms and/or data types as well as
specialized optimizations [26, 49, 52]. Other solutions are
generally applicable [1, 45], but are based on generic opti-
mizations like function memoization and dependency track-
ing to selectively trigger recomputations upon change. In
contrast, i3QL is based on relational algebra and provides
a unique combination of features: i3QL is generally applica-
ble to a wide range of incremental computations, easy to use
as an embedded DSL, features relational optimizations and
partial evaluation, has low memory overhead due to event
propagation, and is modularly extensibility with new opera-
tors and optimizations.

The contributions of this paper are as follows:

• We present the design and implementation of i3QL, an
integrated and optimized query language for incremental
computations.

• i3QL is embedded in the Scala programming language
and incremental computations are easy to formulate.

• While i3QL is inspired by SQL and the semantics of re-
lational algebra, it is generally applicable due to support
for general recursion.

• We present incremental operators based on relational al-
gebra that are compositional and reusable.

1 Query plans are often used in database systems to guide engineers towards
a design that has better performance.
2 Source code is available online: http://github.com/seba--/i3QL

1 val students: Table[Student] = new Table[Student]()
2
3 val sallies: View[Student] =
4 (SELECT (⇤) FROM students
5 WHERE (s => s.firstName == ”Sally”)).asMaterialized
6
7 students.add(new Student(”Sally”, ”Fields”))
8 students.add(new Student(”George”, ”Tailor”))
9

10 sallies.foreach(s => println(s.lastName))
11 // prints: ”Fields”
12
13 students.add(new Student(”Sally”, ”Joel”))
14 // incremental update of sallies
15
16 sallies.foreach(s => println(s.lastName))
17 // prints: ”Fields” and ”Joel”

Figure 1: The relation sallies is incrementally maintained.

• We rewrite i3QL queries to optimize performance by
applying algebraic laws and using staging.

• We demonstrate the applicability of i3QL by developing
an incremental parser and evaluate its performance by a
benchmark of 15 FindBugs [19] analyses.

2. i3QL: An Overview
i3QL is an embedded DSL for expressing incremental com-
putations with an SQL-like syntax in Scala. Figure 1 pro-
vides an illustrating example that we use in the following to
introduce the central concepts of i3QL.

A table represents a multiset and provides a standard col-
lections interface permitting addition, removal, and update
of elements. For example, line 1 of Figure 1 declares a table
students containing Student objects. Line 7, 8, and 13 each
add a student to the students table.

i3QL supports SQL-like queries on tables, resulting in
a view of the data. In the example query sallies, we filter
students to select only those students whose first name is
Sally. The result can be traversed by the user or processed
by further queries, since both tables and views are relations.

Tables allow direct manipulation by the user, whereas
views are incrementally maintained: i3QL updates a view
whenever any of the queried relations changes. To this end,
i3QL registers queries with all involved relations to re-
ceive change notifications. For example, sallies receives a
change notification whenever students is changed; its re-
sult is updated incrementally. In particular, the predicated
(s => s.firstName == ”Sally”) is executed exactly once for
each student that is consecutively added in lines 7, 8, and
13. Without support for incremental maintenance, the first
two students would be tested twice, once in line 10 and again
in line 16.

An i3QL relation occurs either as a virtual relation or as
a materialized relation. A virtual relation does not store
any of its elements and is only used to notify dependent

2 2014/10/13

http://github.com/seba--/i3QL

queries about changes. For example, the students relation is
declared as a virtual relation. As a consequence, the Student

object ”George Tailor” is not persisted (in memory) in our
example: When adding ”George Tailor” in line 8, students

does not store the object, but only notifies sallies, whose result
does not contain ”George Tailor” either. Thus, the usage of
a virtual relation has allowed us to forego persistence of
objects that are irrelevant to the user that defined the query. A
materialized relation does store the elements of the relation
for later use. For example, we declared that the query sallies

should produce a materialized relation, because we want to
use the elements of the resulting relation outside of i3QL
queries; namely in the foreach traversal in lines 10 and 16.

i3QL queries can be composed from existing queries,
since tables and views are both relations. For example, the
following query computes the average age of students whose
first name is Sally:

val averageAge = SELECT AVG((:Student).age) FROM sallies
println(averageAge.head)

i3QL incrementally maintains the resulting relation
averageAge by updating the result whenever the relation
sallies changes. Note that changes to the relation students

do not directly affect age; only students that pass the filter
in sallies lead to an update of age. This allows the modular
specification and composition of incrementally maintained
queries in i3QL.

i3QL provides incremental versions of all standard op-
erators from relational algebra. In the above examples we
already saw selection, projection, and average aggregation.
The following example demonstrates joins.

val council: Table[Member] = new Table[Member]()
def councilStudAge(sm: (Student, Member)) = sm. 1.age
val membersAge =
SELECT (councilStudAge) FROM (students, council)
WHERE (firstName === firstName) AND

(lastName === lastName)

The query selects the age of all students that participate in
the university council. The result of the join is a relation
with pairs of Student and Member objects, for which the join
condition holds. Our incremental version of the join operator
exploits the fact that a change in the students relation only
affects membersAge if the student participates in the council.

In addition to the standard operators, i3QL also features
general recursion, which makes it a Turing-complete lan-
guage for incremental computations. For illustration, con-
sider a relation tutors between a tutor and her students. We
want to transitively compute all students tutored by a tutor’s
students:
1 val tutors = Table[(Tutor, Student)]
2 def tutorId(ts: (Tutor, Student)) = ts. 1.id
3 def studentId(ts: (Tutor, Student)) = ts. 2.id
4 def indirectTutor(ttss: ((Tutor, Student), (Tutor, Student))) =
5 (ttss. 1. 1, ttss. 2. 2)
6 val indirectStudents =
7 SELECT (indirectTutor) FROM (tutors, tutors)
8 WHERE (studentId === tutorId)

9 val transitiveStudents = WITH RECURSIVE(
10 tutors UNION ALL (indirectStudents))

Query indirectStudents performs a join to find all students of
a tutor that are tutors themselves. The results are new tuples
of the original tutor and her students’ students (generated by
the function indirectTutor). However, this query can only find
one level of indirection between a tutor and her students.
To find all transitive students of a tutor a recursive query is
necessary that feeds back results of indirectStudents into the
join, as if they were part of the original tutors relation. The
WITH RECURSIVE operator implements this behavior.

This concludes the overview of i3QL from a user’s per-
spective. In the following section, we present the technical
realization of i3QL.

3. Technical Realization
In this section, we present the run-time system of i3QL
and, in particular, how incremental changes are propagated
through algebraic operators. For space reasons, we explain
only a representative subset of the operators we imple-
mented. A list with the most relevant operators appears in
Table 1.

3.1 Change Propagation
A change always originates in a Table, which allows users to
add, update, and remove elements. i3QL transitively propa-
gates changes from tables to operators that (transitively) de-
pendent on the table. To this end, we compile a query into
an operator graph where nodes represent tables and opera-
tors involved in the query. We propagate changes along the
edges of operator graphs.

For illustration, consider the initial example of filter-
ing students for the name Sally from Sec. 2. Figure 2 de-
picts the operator graph of this example. The figure shows
the propagation of adding a single student (named “Sally
Joel”) and starts at the table, which pushes changes to
the selection operator �. Since the condition of the filter
s.firstName == ‘‘Sally’’ evaluates to true for the added element,
the change is further propagated to the resulting view sallies.
If the condition evaluated to false, the change would not have
been further propagated.

students

�s)s.firstName==”Sally”

sallies

add(Student(”Sally”, ”Joel”))

added(Student(”Sally”, ”Joel”))

added(Student(”Sally”, ”Joel”))

Figure 2: Filtering a table of students

3 2014/10/13

Operator Use

Selection SELECT ... FROM t1 WHERE pred(t1.f1)

Projection SELECT f1 FROM t1

Unnesting SELECT ... FROM UNNEST (t1, .f1)

Aggregation SELECT ... FROM t1 GROUP BY t1.f1

Dupl. elimination SELECT DISTINCT f1 FROM t1

Recursion WITH RECURSIVE(...)

Cartesian product SELECT ... FROM (t1, t2)

Join SELECT ... FROM (t1, t2)
WHERE t1.f1 === t2.f2

Semi-join SELECT ... FROM t1 WHERE EXISTS
(SELECT ... FROM t2
WHERE t1.f1 === t2.f2)

Anti semi-join SELECT ... FROM t1 WHERE
NOT EXISTS
(SELECT ... FROM t2
WHERE t1.f1 === t2.f2)

Difference SELECT ... FROM t1
EXCEPT SELECT ... FROM t2

Union SELECT ... FROM t1
UNION SELECT ... FROM t2

Union all SELECT ... FROM t1
UNION ALL SELECT ... FROM t2

Intersection SELECT ... FROM t1
INTERSECT SELECT ... FROM t2

Table 1: i3QL operators.

The basis of the change propagation is the Observer inter-
face depicted in Figure 3. The interface declares three atomic
change events for addition, removal and update.

1 trait Observer[V] {
2 def added(v: V)
3 def removed(v: V)
4 def updated(oldV: V, newV: V)
5 }

Figure 3: The observer interface for change propagation.

Every i3QL operator implements the Observer trait and a
corresponding Observable trait. The implementation of the
Observer defines incremental semantics of an operator. An
operator registers itself as an observer of its predecessors in
the graph and receives atomic change events through any of
the three methods of Observer.

Selection Operator To illustrate the implementation of op-
erators, we show the implementation of the selection oper-
ator in Figure 4. The selection operator observes an under-
lying relation containing elements of type V and filters the
elements using a predicate function. Each operator has a type

for resulting elements, defined by the type argument passed
to Observable. In case of selections,V is the input and output
type of the operator. The change propagation of selection is
comparatively simple: Selection only propagates a change
to its observers if the involved value satisfies the predicate.
Finally, selection registers itself as an observer of the under-
lying relation.

1 class Selection[V](rel: Relation[V], predicate: V => Boolean)
2 extends Observer[V] with Observable[V] {
3 def added(v: V) { if(predicate(v)) notify added(v) }
4 def removed(v: V) { if(predicate(v)) notify removed(v) }
5 def updated(oldV: V, newV: V) {
6 if(predicate(oldV)) {
7 if(predicate(newV)) notify updated(oldV, newV)
8 else notify removed(oldV) }
9 else if(predicate(newV)) notify added(newV) }

10 rel addObserver this
11 }

Figure 4: The incremental selection operator.

Join Operator The join operator is a binary operator that
correlates elements of a left-hand and right-hand side rela-
tion. The results are pairs of elements from the two rela-
tions. Instead of a binary predicate expressing the join con-
dition, our join operator uses two functions that map ele-
ments to key values; the operator joins two elements if they
are mapped to the same key. For example, in the join exam-
ple shown in Sec. 2, we compared the properties firstName

and lastName of elements from two relations. i3QL automat-
ically translates this condition into two key functions of the
form (s:Student) => (s.firstName, s.lastName), where the key is
a tuple of all values that have to be equal.

1 class Join[V1, V2, Key](
2 left: Relation[V1], right: Relation[V2],
3 leftKeyFun: V1 => Key, rightKeyFun: V2 => Key)
4 extends Observable[(V1,V2)] {
5 val leftIndex : Map[Key, List[V1]] = ...
6 val rightIndex : Map[Key, List[V2]] = ...
7 object LeftObserver extends Observer[V1] {
8 def added(v: V1) {
9 val key = leftKeyFun(v)

10 rightIndex.get(key) match {
11 case Some(list) =>
12 list.foreach(u => notify added ((u,v)))
13 case => // no changes propagated
14 }}...}
15 object RightObserver extends Observer[V2] { ... }
16 }

Figure 5: Excerpt of the incremental join operator.

Figure 5 shows an excerpt of the implementation of the in-
cremental join operator. The join—and any binary operator
in general—observes the input relations via two differently
typed observers (line 7 and 15). To correlate elements, a join

4 2014/10/13

takes two functions leftKeyFun and rightKeyFun that map ele-
ments of the two relations to keys. To quickly access all ele-
ments that are mapped to the same key value, a join indexes
both input relations (line 5 and 6). Upon adding a new ele-
ment to either underlying relation, we use the corresponding
key function to obtain a key of the added element. Next, we
use the index to look up all elements from the other relation
that have a matching key (line 10). For each of the elements
found in the other relation a new result pair is propagated
(line 12). Thus, a join can propagate multiple changes due to
the addition of a single element.

Aggregation Operator The aggregation operator in i3QL
works like its counterpart in SQL: It can be used to aggre-
gate elements of a relation into a single value and to group a
relation into smaller subrelations. Either feature is optional.
For example, in Sec. 2 we used AVG((:Student).age) to aggre-
gate values without grouping.

1 class Aggregation[V, Key, Out](
2 rel: Relation[V],
3 groupingFun: V => Key,
4 aggregateFun: (Out, Out) => Out,
5 inverseAggregateFun: (Out, Out) => Out,
6 conversionFun: V => Out)
7 extends Observer[V] with Observable[(Key, Out)] {
8 val groups = Map[Key, Out]()
9 def added(v: V) {

10 val key = groupingFun(v)
11 if (!groups.contains(key)) {
12 val out = conversionFun(v)
13 groups.put(key, out)
14 notify added((key, out))
15 }
16 else {
17 val oldOut = groups(key)
18 val newOut = aggregateFun(oldOut, conversionFun(v))
19 if (newOut != oldOut) {
20 groups.put(key, newOut)
21 notify updated((key, oldOut), (key, newOut))
22 }
23 }
24 }
25
26 def removed(v: V) {
27 ...
28 val newOut = inverseAggregateFun(oldOut, conversionFun(v))
29 ...
30 }

Figure 6: Excerpt of the incremental aggregation operator.

Figure 6 shows an excerpt of the implementation of the
aggregation operator and, specifically, of its most general
case aggregation with grouping.3 The operator takes four
functions as parameters. The grouping function maps input
elements of type V to the type of the grouping attribute Key.
The aggregate function is used for adding new elements
to the previous result by taking two values and computing

3 The other cases use specialized classes based on which clauses, e.g.,
GROUP BY, are present in a query.

a single aggregated value. The operator also requires an
inverse aggregation function, which we use to incrementally
remove values from the aggregated result.

Typical aggregation functions work over integers, e.g.,
COUNT, SUM, MIN, MAX. i3QL’s aggregation operator works
with aggregation functions over any type by using a con-
version function from elements of the underlying relation
to the type of result values Out. The results of the operator
are tuples of type (Key, Out), i.e., for each group we obtain
the grouping attribute and the value aggregated from all ele-
ments in the group.

To enable incrementalization, we store the previously
computed values for each group (line 8). When a new el-
ement is added to the underlying relation, we compute the
key of the added element (line 10). If no value was previ-
ously computed for the group, we obtain the initial value
by applying the conversion function to the added element
(line 12) and notify observers that a new key value pair was
added (line 14). If a previously computed value exists, we
apply the aggregation function to the old value and the con-
verted new element (line 18). We notify observers only if the
aggregation yields a new result newOut that is different from
the old result oldOut.

Users of i3QL do not define aggregate functions directly
when implementing a query. Instead, they use factory ob-
jects, such as AVG, that serve a dual purpose: First, the fac-
tory encapsulates both the aggregation function and its in-
verse, so that users of i3QL do not need to supply two func-
tion in a query. Second, they distinguish distributive from
non-distributive aggregate functions [33]. This is important
for the correct incrementalization of the aggregation oper-
ator, because only distributive aggregate functions such as
AVG can be updated based on the old and new value alone.
Non-distributive functions such as MIN require more data.
For example, MIN requires the entire relation to compute the
new minimum when the current minimum is removed. The
implementation of the aggregate operator in Figure 6 is only
correct for distributive aggregate functions; we have a sepa-
rate implementation for non-distributive functions. The fac-
tory objects used by users of i3QL must select the appropri-
ate implementation.

Recursion Operator Recursion introduces a loop into the
operator graph that allows to receive change propagations
from operators that depend on the output of the recursion
(directly or transitively). i3QL provides a fixpoint recursion
operator REC that eliminates duplicate derivations.

For illustration, consider the recursive query that transi-
tively finds all students of a tutor, shown in Sec. 2. Figure 7a
depicts the operators graph for the non-recursive query
indirectStudents that computes the students of a tutor’s stu-
dents. Figure 7b shows the recursive query transitiveStudents.
The declaration WITH RECURSIVE substitutes tutors in the
non-recursive query by the recursion operator REC, which

5 2014/10/13

./

⇧indirectTutor

tutors

(a) Non-Recursive query
indirectStudentsOfTutors.

./

⇧indirectTutor

REC

tutors

(b) Recursive query
transitiveStudentsOfTutors.

Figure 7: Substitution performed by WITH RECURSIVE.

observers tutors as well as the result of the non-recursive
query.

The REC operator implements a standard counting delete
and re-derive algorithm [18]. Each element that is added to
REC increases a counter for this element. The counter repre-
sents how many times an element was (recursively) added.
If an element is encountered the first time it is propagated to
the operator graph, otherwise only the counter is increased.

Deletions are performed in a two-step algorithm delete
and re-derive. The deletion step propagates each deletion
once and internally decreases the counter for every recur-
sive deletion encountered. All elements with a count of zero
are removed from the operator. The re-derivation step prop-
agates additions for all elements that still have a positive
count. This step is necessary because the deletion phase is
an over-approximation. This treatment of recursion is gen-
erally applicable regardless of the underlying elements of a
relation.

3.2 Materialization and Self-Maintainability
Materialization refers to data that is permanently required in
memory for correct incremental computations. The amount
of data that must be stored depends on the operator. For
example, the join operator (cf. Figure 5) requires two data
structures leftIndex and rightIndex that are used during the
propagation of element additions and removals. These data
structures are indispensable to the correctness of the propa-
gation semantics of joins and are permanently kept in mem-
ory, since i3QL assumes that a new addition or removal can
happen at any time.

Self-Maintainability refers to operators that require no
materialization at all. For these operators the result of a
change propagation can be determined solely based on the
data associated to the change. For example, selections are
self-maintainable, since the change propagation only has
to test the element via the predicate function and notify
observers if the predicate evaluates to true.

The concepts of materialization and self-maintainability
stem from traditional view maintenance approaches in
databases where materialization is linked to persisting the
data on a hard-disk. For live data views, like in the case

of i3QL, materialization is important for efficiently process-
ing large quantities of input with a limited amount of main
memory. Relational algebra allows reasoning over memory
consumption of a query on a per-operator basis. To give an
intuition of the amount of materialization that i3QL opera-
tors require, we categorize operators in increasing order of
memory usage:

• Selection, projection, union all, and unnesting are self-
maintainable.

• The materialization of aggregation varies depending on
the provided functions (distributive/non-distributive) and
whether grouping is present. For example, for distributive
non-grouped aggregations only a single value needs to be
materialized.

• Duplicate elimination and recursion need to materialize a
single map (dictionary) with a size corresponding to the
number of added elements.

• Difference, union, and intersection require to retrieve any
element from each operand during addition and retrieval.
In practice they can perform better than materializing all
elements, since their change propagation can be reduced
to omit elements present in both operands. Thus, they
perform well for inputs with a large overlap.

• Cartesian product and join must materialize two maps
(dictionaries) with a size corresponding to the number of
added elements of both operands.

Finally, interaction among operators influences material-
ization. For example, many queries contain operators with
materialization, but filter out a large number of elements
via selections before materialization is needed. Such queries
consume minimal amount of memory because only elements
in input relations relevant to the computation are materi-
alized. Since, early filtering is a deciding factor for these
queries, algebraic optimizations (next section) play a major
role for materialization, since they can move the selections
to the earliest possible stage in the operator graph.

4. Query Optimizations
i3QL uses algebraic optimizations and partial evaluation
to improve the performance of queries. The algebraic op-
timizations we implemented are mostly standard database
optimizations that reorder the application of relational op-
erators (cf. [48]). For example, we want to apply selections
as soon as possible, so that less changes are propagated to
the rest of the operator graph. Due to i3QL’s integration into
a programming language, and more specifically due to its
use of higher-order abstract syntax [34], these optimizations
frequently require analysis (and/or transformation) of Scala
functions that users supply to the algebraic operators.

For example, a selection on top of a join of students
and council members uses a predicate function of type
(Student, Member) => Boolean. To apply the selection be-

6 2014/10/13

fore the join we need to analyze the predicate and split
it into two predicates applying to students and members.
The pushed-down selections then have predicates of type
Student => Boolean and Member => Boolean, respectively.

To implement these kind of optimizations, we use light-
weight modular staging (LMS) [38], a Scala framework
that supports the inspection and transformation of functions.
LMS provides a reified expression tree for Scala functions.
LMS users write their programs almost as if using plain
Scala. The only difference is that types must be wrapped in
the special type constructor Rep (short for representation).
For example, with LMS, the query for filtering students with
the name “Sally” looks as follows:

SELECT (⇤) FROM students
WHERE ((s: Rep[Student]) => s.firstName == ”Sally”)

By using the Rep type the body (s.firstName == ”Sally”) is
compiled into a function that returns the expression tree
of its own body, instead of performing the actual computa-
tion. We use these expression trees to analyze and optimize
i3QL queries. i3QL applies algebraic optimizations and par-
tial evaluation bottom-up in the operator graph until no more
optimizations are applicable. After optimization, the opti-
mized predicates are compiled to perform the actual com-
putation.

In the following, we summarize the optimizations
supported by i3QL. All optimizations preserve semantics
given that all functions used in the query are pure. For
impure functions, algebraic optimizations would be invalid
since they change the order of side-effects when reordering
operators. Since i3QL adopts the modular approach of LMS,
it is easily extensible with new optimizations.

i3QL supports the following algebraic optimizations:
Pushing down selections in the operator graph allows

early filtering of elements not needed in the computation.
Operator fusion of multiple operators of the same type,

e.g., the fusion of two selections over students. Operator
fusion reduces the size of the operator graph.

Nested sub-query elimination derives a single operator
tree in the presence of sub-queries nested in a WHERE clause.
For example, consider the query below that selects students
such that no student council member with the same name
exists.

1 SELECT (⇤) FROM students WHERE (
2 (s: Rep[Student]) => NOT EXISTS (
3 SELECT (⇤) FROM council WHERE
4 ((m: Rep[Member]) => m.name == s.name)
5))

The existential quantification (line 2) contains an inner sub
query (line 3) that depends on the elements obtained in the
outer query m.name == s.name (line 4). Without this opti-
mization we must instantiate a new operator tree for the inner
query, whenever an element s is added to the outer query in
order to bind the expression s.name to a concrete value.

Sub-query sharing compiles equivalent parts of the
query to the same operator graph. The compiled operator
graph serves as input to multiple observers, thus removing
redundant computations and reducing the overall query exe-
cution time.

Various simplifications that (i) remove superfluous op-
erators or (ii) replace costly operators with cheaper alterna-
tives. For example, (i) if the expression of a selection predi-
cate has reduced to true after some other optimization, the se-
lection is superfluous, or (ii) we can replace the intersection
over two selections on the same relation by �1(a)\�2(a) =
�1(�2(a)).

Automated Indexing is performed for join operators as
late as possible. Indexing is a memory intensive operation.
In relational algebra, indices are defined over entire input
tables. Yet, the design goal of i3QL is to materialize as
little as possible, i.e., not to materialize indices for all input
elements. Thus, indexing is performed only after filtering.
Such indices are referred to as filtered indices in the database
context, where they are specified by the database designer.
In i3QL the filtered indices are created automatically for all
contained joins based on the optimization of a query.

i3QL supports the following optimizations known from par-
tial evaluation.

Function inlining replaces calls to a function by an ex-
pression tree corresponding to the function’s body. This en-
ables further algebraic optimizations and partial evaluation.

Constant propagation specializes computations based
on constants occurring in the computation. Constant prop-
agation is particularly useful after inlining of user functions.

Common subexpression elimination performs compu-
tations for equivalent subexpression only once; equivalent
subexpressions share their result. For example, multiple calls
to a method firstName within a selection predicate only lead
to a single execution of the method. Common subexpression
elimination is built into LMS.

5. Case study: An Incrementalized Parser
To demonstrate the broad applicability of i3QL and to illus-
trate how to model an algorithm using relational algebra, we
developed an incremental parser as a case study of i3QL.
Based on a context-free grammar, the parser incrementally
adapts to changes in the input sentence. Moreover, our parser
also incrementally adapts to changes of the grammar, such as
the introduction of new terminal symbols or the modification
of a production.

We selected incremental parsing as a case-study because
it is a non trivial application. Existing incremental parsers
use highly specialized incrementalization engines. For ex-
ample, a common approach is to incrementalize the push-
down automata of the parser (cf. [50] for an overview). In
contrast, i3QL uses a general-purpose incrementalization en-
gine. Clearly, our goal is not to compete with state-of-the art

7 2014/10/13

algorithms for incremental parsing, but to demonstrate that
our approach is general enough to be applicable to such spe-
cialized domains. In particular, a performance comparison of
our incremental parser with existing parsers is not in scope
of this paper.

Context-Free Grammars. We use a standard notion of a
context-free grammar G = hN,T, P, si, where N is the set
of nonterminals and T is the set of terminals. N and T must
be disjunct and together form the set V = N [T of symbols.
P is the set of productions of the form head �! body, where
head 2 V and body 2 V ⇤ is a sequence of symbols. s 2 N
is the start symbol.

Figure 8 shows an example grammar for English sen-
tences that we use as a running example throughout this sec-
tion. The nonterminals are S (sentence), NP (noun phrase),
VP (verb phrase), AdjP (adjective phrase), Noun, Verb, Adj
(adjective) and Adv (adverb). Nonterminal S is the start sym-
bol. As terminals we use the words that occur in the sentence
borrowed from Chomsky [7] and depicted in Figure 9.

S �! NP VP (1)

NP �! Noun | AdjP Noun (2)

VP �! Verb | Verb Adv (3)

AdjP �! Adj | Adj AdjP (4)

Noun �! green | ideas | sleep (5)

Verb �! green | sleep (6)

Adj �! colorless | green (7)

Adv �! furiously (8)

Figure 8: Grammar for simple English sentences.

colorless

Adj

green

Adj

ideas

Noun

sleep

Verb

furiously

Adv

Figure 9: A grammatically correct sentence.

We implement a bottom-up parser that starts at the sequence
of terminals and tries to find nonterminals that can derive
subsequences of the input sentence. The parser accepts an
input sentence if the start symbol can derive it. For example,
for the sentence in Figure 9, the parser determines that the
sentence starts with an adjective phrase (AdjP) followed by
a noun yielding a noun phrase (NP). The last two terminals
can be derived as a verb phrase (VP). Together, the noun
phrase and verb phrase can be derived as a sentence (S) that
covers the full input. The parsing process is complicated by
ambiguities in the language, e.g., the word “green” can also
be used as a noun or a verb, and the word “sleep” can also
be used as a noun. To this end, our parser derives all possible

parse trees. We elaborate more on the parsing process in
Section 5.2.

5.1 Data Definitions for an Incrementalized Parser
The incrementalized parser uses three data types:

case class Token(word: String, position: Int)
case class Terminal(word: String, nonterminal: String)
case class Rule(head: String, body: Seq[String])

A Token denotes one word in the input sentence together
with its (zero-based) position, e.g., Token(”colorless”, 0) rep-
resents the first word in the sentence in Figure 9. To sim-
plify our parser, we split productions into those exclusively
dealing with terminals (productions (5)–(8) in Figure 8) and
those exclusively dealing with nonterminals (productions
(1)–(4)). For each nonterminal a terminal belongs to, there
is one Terminal production such as Terminal(”sleep”, ”Noun”)

and Terminal(”sleep”, ”Verb”) for the word sleep. For the other
productions, we get one Rule for each alternative, where the
body represents a sequence of nonterminals. For example,
Rule(”S”, Seq(”NP”, ”VP”)) represents the first production in
Figure 8.

We represent the input sentence and productions as tables
in i3QL:

val sentence : Table[Token]
val terminals : Table[Terminal]
val rules : Table[Rule]

Users can add, remove, and update any of the three tables. In
particular, they can trigger updates for changes to the input
sentence:

sentence += Token(”ideas”, 5)
sentence.update(Token(”sleep”, 3), Token(”green”, 3))
sentence �= Token(”colorless”, 0)

5.2 Chart Parsing
Before we define the incremental parser, we briefly describe
chart parsing [21], which is the underlying approach our
parser uses. A chart parser infers a set of edges—organized
in a matrix called chart—from the input, where edges de-
note what nonterminal a certain subsequence of the input
sentence can be. The parser uses several inference rules to
combine existing edges into new ones, until the whole sen-
tence is covered. Several variations of chart parsing exist
(cf. [21]); the concepts presented here serve to illustrate the
general principles.

The key idea is to organize the sentence in a graph with
nodes denoting the position of words and edges denoting the
nonterminals found for the word(s) between the nodes. For
example, Figure 10 shows one possible derivation of edges
for the sentence in Figure 9. A sentence is correct according
to the grammar, if there exists an edge spanning from the
first node to the last node and the nonterminal on the edge is
the start symbol, e.g., the edge S spanning from node 0 to 5.
The chart parser distinguishes passive and active edges. Pas-
sive edges denote the full application of a production rule.

8 2014/10/13

0 1 2 3 4 5colorless

Adj

green

Adj

ideas

Noun

sleep

Verb

furiously

Adv

AdjP

NP
VP

S

Figure 10: Parsed nonterminals as edges in a graph.

For example, all edges shown in Figure 10 are passive. In
contrast, active edges denote intermediate steps that arise af-
ter parsing parts of the body of a production rule. Figure 11
depicts an active edge for the rule S �! NP VP after parsing
the noun phrase (NP) in the sentence. The dots (. . .) indicate
that we have already parsed part of the body. VP is the next
nonterminal that needs to be parsed in the rule.

0 1 2 3 4 5colorless green ideas sleep furiously

S �! . . .VP

Figure 11: An active edge after parsing the noun phrase.

To continue on an active edge, we need to find a passive edge
that starts at the target node of the active edge and derives the
required nonterminal. For example, in Figure 11, we need
a passive edge starting at node 3 for nonterminal VP. The
combined edge then spans from the start node of the active
edge to the target node of the passive edge. If there are no
more nonterminals in the body of the rule, the combined
edge becomes passive itself, otherwise it remains active.

5.3 Incrementalized Chart Parser
The parser defined in this section infers edges (passive and
active) and combines active edges with passive edges until
a fixpoint is reached, i.e., no new edges can be inferred. We
define a class Edge as follows:

case class Edge(start: Int,
end: Int,
nonterminal: String,
body: List[String]) {

def isActive = body != Nil
}

All edges have indices for start/end nodes and the name of
the nonterminal they derive. The body of an edge represents
those nonterminals that still have to be parsed. Thus, an edge
is passive if the body is empty.

We divide the parsing algorithm into three steps.

1. We construct passive edges for tokens from the input
sentence by matching tokens with terminal productions
defined in the grammar.

2. We construct new edges by applying rules to existing
passive edges if the first nonterminal in the rule’s body
matches the passive edge.

3. We combine edges (an active with a passive edge) as
explained in Section 5.2 above.

We perform the latter two steps repeatedly until no new
edges can be derived either via construction or combination.

Deriving Terminal Edges. Query terminalEdges below en-
codes the first step by correlating elements from the tables
sentence and terminals. The correlation is a join on the attribute
word of the input token and the terminal, e.g., the elements
Token(”green”, 1) and Terminal(”green”, ”Verb”) have matching
words and, thus, contribute to the result of the join. The re-
sults of the query are projected using function terminalEdge,
which constructs a passive edge for each token and termi-
nal. The edges start at the node with index of the token
(in.position) and end at the next node. Their nonterminal is
that of the matched terminal production and they are pas-
sive, i.e., have an empty body.

val terminalEdges: Relation[Edge] =
SELECT (terminalEdge) FROM (sentence, terminals)
WHERE ((in: Rep[Token], t: Rep[Terminal]) =>

in.word == t.word)

def terminalEdge(in: Rep[Token], t: Rep[Terminal]) =
Edge (in.position, in.position+1, t.nonterminal, Nil)

Constructing and Combining Edges. Since step two and
three are mutually recursive, we encode them in a sin-
gle recursive query derivedEdges shown at the end of this
subsection. The encoding uses the two helper functions
constructedEdge and combinedEdge:

def constructedEdge(r: Rep[Rule], e: Rep[Edge]) =
Edge (e.start, e.end, r.head, r.body.tail)

def combinedEdge(act: Rep[Edge], pas: Rep[Edge]) =
Edge (act.start, pas.end, act.nonterminal, act.body.tail)

Function constructedEdge constructs a new edge by apply-
ing a production rule from the grammar to a passive edge
that derives the first nonterminal required in the body of the
production. The applicability of the rule is not checked in
constructedEdge but in the query. The constructed edge spans
the same indices as the passive edge from which it is con-
structed and has the nonterminal of the grammar rule, i.e.,
the part of speech that is parsed once all nonterminals in the
body of the rule have been derived. The body of the new
edge initially contains all nonterminals of the body, except
the first one, since this was the nonterminal derived by the
passive edge.

Function combinedEdge constructs a new combined edge
from an active and a passive edge, where the passive edge
starts at the end of the active edge and derives the next non-
terminal required by the body of the active edge. Again, the
applicability is not checked in combinedEdge but in the query.
The constructed edge spans the indices from the start of the

9 2014/10/13

active edge to the end of the passive edge. The resulting non-
terminal is that of the active edge and the remaining nonter-
minal are all those of the active edge except the first nonter-
minal, which was derived by the passive edge.

1 val derivedEdges: Relation[Edge] =
2 WITH RECURSIVE (
3 (edges: Relation[Edge]) =>
4 terminalEdges
5 UNION ALL (
6 SELECT (constructedEdge)
7 FROM (rules, edges)
8 WHERE ((r: Rep[Rule], e: Rep[Edge]) =>
9 NOT(e.isActive) AND r.body.first == e.nonterminal)

10 UNION ALL (
11 SELECT (combinedEdge)
12 FROM (edges, edges)
13 WHERE ((l: Rep[Edge], r: Rep[Edge]) =>
14 l.isActive AND NOT(r.isActive)
15 AND l.end == r.start
16 AND l.body.first == r.nonterminal))))

Figure 12: The query for incremental parsing.

A Query for Incremental Parsing. The query in Figure 12
combines all three steps described above to implement the
incremental parser. The query recursively derives new edges
until a fixed point is reached. All derived edges are added as
results to a temporary result relation named edges (line 3).
The terminal edges (line 4) serve as the starting input of
the recursion. They are combined via UNION ALL with newly
constructed edges and newly combined edges, defined in the
respective sub-queries. Newly constructed edges are derived
via a join of the rules relation with all recursively derived
edges, where the edge e must be passive and derive the non-
terminal expected first in the body of the rule. Similarly, we
combine edges, checking that the first edge is active, the sec-
ond edge is passive, they end respectively start at the same
index, and the second edge derives the nonterminal next re-
quired by the first edge.

We can use query derivedEdges to determine whether an
input is accepted by the grammar, which is the case if an
edge exists that spans the whole input, is not active, and
derives the start symbol. We can also easily extend our parser
to compute parse trees by additionally storing (i) which
rule lead to the creation of a new edge in constructedEdge

and (ii) which passive edges have been combined with an
edge in combinedEdge. This extension does not influence the
incrementalization or the main query derivedEdges.

Discussion. We have shown how to incrementalize the
non-trivial problem of parsing with i3QL. The incremental
parser adapts to changes of the input sentence as well as
to changes of the grammar. In contrast to most previous
work on incremental parsing, we used our general-purpose
incrementalization engine. This case study demonstrates the
broad applicability of i3QL.

i3QL computations are inherently bottom-up because an
i3QL query inductively derives new facts from ground facts
and already derived facts. For example, our parser incremen-
tally derives facts about which substring can be generated
from which nonterminal. Such bottom-up computations are
natural in many contexts and fit well to the relational pro-
gramming style of i3QL.

Nevertheless, many computations are more naturally ex-
pressed as top-down computations traditional to functional
programming. For example, it is not obvious how to rep-
resent a recursive descent parser or a syntax-directed inter-
preter function as an equivalent i3QL computation. In ongo-
ing work, we are investigating how to automatically trans-
late top-down computations and the used data types to i3QL
queries and relations.

6. Performance Evaluation
This section presents the results of our empirical evaluation
that was designed to answer the following questions:

1. Does i3QL make the execution time needed to update the
result of a computation to an input change increase in a
piecemeal way with the size of the changes?

2. Do computations encoded with i3QL execute signifi-
cantly faster than non-incremental executions of the same
computations in the presence of input data changes?

3. Is the memory price to pay for enabling incrementaliza-
tion of computations reasonable?

4. What is the effect of the optimizations on performance?

Evaluation Setup. The evaluation benchmark consists of
15 static analyses from FindBugs [19] implemented as i3QL
queries (a list of the 15 analyses appears in Table 2). The
analyses take Java bytecode as input and produce a list of
identified bugs. It is desirable to continuously update the list
of bugs as the code base changes to make FindBug analyses
behave like analyses built into the compiler and scale with
the size of analyzed projects.

As test data for the analyses we used the revision his-
tory of Vespucci4, a project for modeling and continuously
checking a program’s structural dependencies [29]. The ini-
tial revision of Vespucci consists of 381 class files, followed
by a total of 242 changes (additions, removals, updates),
each affecting between 1 and 312 class files. We bench-
marked each analysis by running it on the initial 381 class
files, and then replaying the 242 changes in order. We ran the
benchmarks on a 64-bit Windows 8.1 machine with an In-
tel Core i7 3.4GHz processor and 8GB memory, using JVM
version 1.7 and Scala 2.10.2.

Overall performance. For each optimized analysis, we
measured the run time and variation in memory consumption
for each change. We discuss the mean time and mean mem-

4 http://www.opal-project.de/vespucci project

10 2014/10/13

http://www.opal-project.de/vespucci_project

0 50 100 150 200 250 300

0
50

10
0

15
0

20
0

25
0

Change size (in number of affected classes)

Ti
m

e
(m

s)

(a) Update time per change.

0 50 100 150 200 250 300

−1
00

−5
0

0
50

10
0

Change size (in number of affected classes)

M
em

or
y

ch
an

ge
 (K

iB
)

(b) Variation in memory consumption per change.

Figure 13: Mean time and memory consumption per change
for all 15 Findbugs analyses implemented with i3QL.

ory consumption averaged over all 15 analyses (the standard
deviation was low). The benchmarks have been performed 5
times for each analysis with an additional 4 warmup itera-
tions. The end result for each analysis is the average of those
5 measurements.

Figure 13a shows the time it takes to update the analysis
result for each change, that is all classes that are changed si-
multaneously. The x-axis shows the size of a change and the
y-axis shows the time that is needed to update the analysis
result. We ordered data points according to the change size.
The plot shows that the time it takes to update the overall
analysis result is roughly linear in the change size; it does
not seem to depend on the history of changes already pro-
cessed or on the size of the initial revision.

A comparison with the non-incremental analyses im-
plemented in FindBugs unsurprisingly shows an order-of-
magnitude improvement in run-time performance. Running
an analysis in FindBugs for the initial revision takes 534 ms
on average, whereas i3QL only takes 129 ms on average.
Since the FindBugs implementation will take roughly the

same time for each revision, checking all revisions amounts
to about 130 seconds, whereas i3QL only requires little more
than 2 seconds. This means that on our test data i3QL pro-
vides a speedup of 65x compared to the non-incremental
FindBugs analyses.

Figure 13b shows the variation in memory for each
change. Like in the graphic above, the x-axis displays the
size of one change. The y-axis shows how much more (or
less) memory is needed after the change has been processed.
We run the garbage collector after the replay and propaga-
tion of each change to get accurate measurements. The plot
shows that the memory impact of a change is moderate (at
most 120 KiB for a change affecting more than 250 classes),
which means that auxiliary data stored to enable incremen-
talization does not have a significant effect. For comparison,
the class files of the initial revision account for 1.39 MiB.

Effect of Optimizations. To measure the effect of opti-
mizations in our implementation, we run the analyses in two
configurations of i3QL: with and without the optimizations
presented in Section 4. The results are shown in Table 2. The
rows of the table are indexed by the analyses (A through O).
The execution times of the analyses with i3QL optimizations
turned off respectively on are shown in the first respectively
the second column of the table. The last column shows the
speedup achieved by turning optimization on.

By comparing the results, we observe that in 6 analy-
ses, the optimizations improved performance significantly
(> 20%), most prominently for analyses A, C, D, and E.
In the other analyses, the effect of optimization is less sig-
nificant. In case of analysis B, the optimizations even had
a small negative effect. The reason for such a difference is
twofold.

First, analyses A, C, D, E, F, G, K, N contain queries over
the byte-code instruction of the codebase—a much larger
table than the table of method declarations, for example.
Thus, the optimizations have a greater effect. Second, A,
C and D use equi-joins, which further amplifies this effect.
Equi-joins are only created with optimizations; without op-
timizations those relations are simply cross products and se-
lections. Equi-joins are very benefiting for large relations
(e.g. instructions), since the join operator hashes its values—
opposed to cross product and selection, which have to iter-
ate over all elements in order to find equal elements. The
difference between analysis A and C, D is that analysis A
joins two large instruction relations while C and D join an
instruction relation with other relations that are not as large.

Summary. Our performance evaluation shows that i3QL
queries run an order of magnitude faster than their non-
incremental counterparts, without requiring much memory.
The run time for a change is linear in the change size and
independent of size of the initial revision of the input. The
evaluation clearly shows that optimizations bring significant
performance improvements; especially, they ensure that the
analyses execution time scales well for big sets of input data.

11 2014/10/13

Time (no opt.) Time (with opt.) Speedup

A 1329.936 2.312 575.22
B 2.084 2.162 0.96
C 10.889 2.299 4.74
D 39.452 2.254 17.50
E 4.842 2.491 1.94
F 2.464 2.152 1.15
G 2.345 2.083 1.13
H 2.257 2.121 1.06
I 2.198 2.096 1.05
J 2.109 2.055 1.03

K 3.244 2.345 1.38
L 2.264 2.100 1.08

M 2.185 2.109 1.04
N 3.785 2.317 1.63
O 2.532 2.140 1.18

FindBugs patterns from http://findbugs.sourceforge.net/bugDescriptions.html:
A=BX BOXING IMMEDIATELY UNBOXED TO PERFORM
COERCION, B=CI CONFUSED INHERITANCE, C=CN IDIOM,
D=CN IDIOM NO SUPER CALL, E=DM GC, F=DM RUN
FINALIZERS ON EXIT, G=DP DO INSIDE DO PRIVILEGED,
H=EQ ABSTRACT SELF, I=FI PUBLIC SHOULD BE PROTECTED,
J=IMSE DONT CATCH IMSE, K=MS PKGPROTECT, L=MS
SHOULD BE FINAL, M=SE BAD FIELD INNER CLASS, N=SW
SWING METHODS INVOKED IN SWING THREAD, O=UG SYNC
SET UNSYNC GET

Table 2: Total time in seconds and optimization speedup for
analyzing the initial revision and replaying all 242 changes.

7. Related Work
Related work spans over different fields such as language in-
tegration of queries, in-memory collection, incrementaliza-
tion, automatic recomputation of query results and combi-
nations thereof.

Embedding of SQL-like Queries In recent years an in-
creasing amount of works have provided integrations of
database queries into programming languages. Existing
language-integrated query systems include LINQ [27], Ferry
[15], and ScalaQL [12]. These systems have deep roots
in functional programming and are influenced by earlier
works on functional query languages, e.g., HaskellDB [22]
or Kleisli [53]. The goal of these solutions is to integrate
standard database technologies with general purpose pro-
gramming languages to provide a better handling of per-
sistence related code. The main issues addressed are (i) the
type-correctness for database queries w.r.t. schemas in per-
sistent databases and (ii) query optimization in the program-
ming language (i.e., on the client side) to reduce the amount
of persistent data moved between client and database.

In general, these language integrations are based on
(monad) comprehensions (cf. Gray et al. [14]), which can
be understood as succinct notation for collection operations.
The simplicity of the notation lies in the fact that many SQL-

operators, such as selections and projections have immediate
translations to comprehension operations, such as filter and
map.

In-memory Collections A major motivation for the suc-
cess of LINQ is that the same SQL-like query lan-
guage applies to heterogeneous data sources. These include
databases, as already discussed, but also in-memory collec-
tions, which exploit syntax tree rewriting to introduce op-
timizations. The Java Query Language (JQL) [51] provides
declarative queries over Java collections. Yet, JQL is very
specialized w.r.t. the supported relational operators – mainly
joins. The approach uses standard optimization techniques,
primarily join ordering, to improve runtime performance.
Giarrusso et al. [13] describe SQuOpt, an optimized imple-
mentation of Scala collections that, similar to LINQ, reifies
the query syntax tree for optimization. Differently from i3QL
these solutions are not incremental.

To speed up queries that are repeatedly run on the same
dataset with minor modifications, in-memory collections
have been extended with incrementalization techniques. The
commercial library LiveLINQ [25] provides caching of re-
sult collections and indexing to optimize joins. All cached
results, and indices, as well as the underlying base relations,
are then fully materialized in main-memory. The range of in-
crementalized operations provided by LiveLINQ is not well
documented. However, the basic and set-theoretic operators
are declared in the standard LINQ API. Nevertheless, there
is no concrete documentation on how exactly individual op-
erators are incrementally maintained. Similar to LiveLINQ,
the work in [52] extends JQL with caching and incremen-
tal maintenance of query results. The approach integrates
with Object-oriented programming in that query results are
cached and incrementally maintained whenever the collec-
tions and the (mutable) objects involved in the query are up-
dated. Nerella et al. [31] extended JQL to use information
from earlier executions to optimize the construction of the
query plans. Scala.react’s incremental collections [26] are
designed to speed up reactive computations that involve data
structures.

All these solutions feature completely materialized col-
lections and caching (i.e., materialization) of results. This
approach is conceptually equivalent to materialized views in
databases: In-memory collections for base relations and for
results are materialized alongside any auxiliary data struc-
tures required for view maintenance. i3QL, instead, materi-
alizes as little data as possible to allow scalability to large(r)
amounts of data. In i3QL, the base relations and the view re-
sults are transient data and only the auxiliary data structures
for incremental view maintenance are materialized.

Liu et al. [24] propose a systematic method to analyze
a program and generate code for caching and incremental-
ize set comprehensions. The approach is further automated
in a follow-up work by Rothamel and Liu [39]. Compared
to JQL, the solution proposed by Rothamel and Liu better

12 2014/10/13

http://findbugs.sourceforge.net/bugDescriptions.html

integrates in the Object-oriented model, and supports alias-
ing (e.g., updates to fields referred to by other object fields),
which results in a broader set of queries that can be ex-
pressed. A major difference with our work is that, in con-
trast to these works, which statically generate more efficient
code, i3QL works at runtime and, thanks to LMS, can per-
form optimizations leveraging dynamic information.

Constraints and Functional Dependencies Maintenance
of query results in i3QL can be seen as providing support
for constraints. A number of approaches share the concept
of specifying a functional dependency that is automatically
enforced by the runtime.

Constraint-based languages, like Kaleidoscope [11] in-
tegrate constraints into OO languages. Constraints are en-
forced according to a priority ranking. The Garnet and
Amulet [30] graphical toolkits support automatic constraint
resolution to relieve the programmer from manual updates
of graphical interfaces. Demetrescu et al. [9] implemented
dataflow constraints based on a runtime environment which
natively supports reactive memory.

Reactive programming supports dedicated abstractions
for functional dependencies – referred to as signals or behav-
iors. Researcher proposed extensions to existing languages
that support these features, such as Flapjax [28] (Javascript),
FrTime [8] (Scheme), REScala [44] and Scala.react [26]
(Scala). Similar to i3QL’s operator graph, these solutions
maintain in memory a tree of dependent values. When leaves
are updated, the change is propagated thorough the tree. A
major limitation of these approaches is to recompute de-
pendent values from scratch every time an input (partially)
changes, which severely limits performances.

Self-adjusting computation [1] is about automatic deriva-
tion of the incremental version of a program from a tradi-
tional one. The language runtime builds a graph of the de-
pendencies among values in the program and incrementally
recomputes only the parts that are affected by a change in the
input. This technique has been recently applied in the con-
text of big data to obtain an incremental version of MapRe-
duce [2]. DITTO [45] is an automatic incrementalizer for
invariants check of datastructures. DITTO combines memo-
ization and dependency tracking to speedup invariants eval-
uation by reusing previous executions. In contrast to DITTO
and Self-adjusting computation, which target generic com-
putations that can be optimized only by generically track-
ing dependencies and recomputing changed values, i3QL is
based on a set of relational operators for which well-known
specific optimizations (e.g., push-down of selections) exists.

View Maintenance in Database Systems Several ap-
proaches have been developed for the incremental mainte-
nance of materialized views.

Counting algorithms keep a multiplicity counter, i.e., the
number of derivations for a tuple, as extra information. Upon
insertion or deletion of a tuple the counter is incremented or
decremented accordingly and tuples are deleted when their

counter reaches zero. Similar variants were introduced by
Shmueli et al. [46] and Blakeley et al. [4]. i3QL employs
counting as a technique for several operators, e.g., duplicate
elimination and recursion. Algebraic query rewriting defines
different change propagation expressions that can be simpli-
fied for insertions and deletions from the base relations in
different ways. The simplified relational expressions com-
pute the change to the view without doing redundant com-
putation. The idea is first introduced in [32] under the term fi-
nite differencing and was used subsequently in [35] for view
maintenance of select-project-join (SPJ) views with set se-
mantics. Logic query rewriting is a similar technique pro-
posed in the area of deductive databases [18]. i3QL’s opti-
mizations also employ a query rewriting technique, however
queries are optimized uniformly without considering inser-
tions and deletions separately. a separate treatment requires
adaptations to the optimizer, which must include a time and
memory trade-off, since many operators, e.g., join, union or
difference, share intermediate results for insertions and dele-
tions. Active rules have been proposed by Ceri and Widom
[5] in the context of extending an existing active database
system with rules to support incremental view maintenance.
They define an algorithm to generate active rules that ma-
nipulate the view by inserting or deleting appropriate tu-
ples, e.g., using SQL insert or delete statements. This work
is complementary to i3QL, which directly translates views
to incrementally maintained relational operators. Memoing
originated from logic programming languages that use the
SLD5, a backtracking search through all rules that make up
a logic program. Memoing stores intermediate results for al-
ready computed procedure calls [41]. The term tabling [42]
is commonly used for memoing in logic languages, as the al-
ready computed results are stored and retrieved from a result
table. Memoing is an indispensable technique for the speed
of top-down evaluation in logic programs, e.g., to store the
results of a filtering predicate and not test the same elements
multiple times. i3QL employs a bottom-up technique and
changes are propagated only once. Intermediate results are
stored also in i3QL, but only if necessary for the incremental
evaluation of the operators.

Optimization Techniques We provide an overview of op-
timization techniques that have been proposed to in the con-
text of materialized view maintenance. Identifying irrele-
vant modifications tests whether a particular modification
affects a given view (i.e., it is relevant). If the test is neg-
ative, no maintenance operations are necessary. In [3] a pro-
posal is made to test SPJ views in relational algebra. This
work was motivated by the fact that maintenance in per-
sistent databases is costly. i3QL propagates data through
the operator graph without prior testing and relies on push-
ing down selections for early filtering. Since computations

5 SLD resolution is termed after the initial letters in “Linear resolution with
Selection function for Definite programs”; cf. [23] for a treatment of the
SLD calculus.

13 2014/10/13

are in-memory, the benefits of additional tests over early
filtering are unclear. Efficient storage of views minimizes
memory requirements for view maintenance. For example,
Roussopoulos [40] proposes view caches, a data structure
that stores only pointers to tuples in the underlying rela-
tions that contribute to a view, instead of storing the con-
crete values of the tuples. Similarly, [43] defines a com-
pression scheme that relies on sharing supporting facts in
logic databases. Since i3QL is embedded into an OO pro-
gramming language we have a pointer semantics and already
benefit from the reduced memory. Further compression tech-
niques are complementary, but have not yet been evaluated
for i3QL. Adapting views after redefinitions maximizes the
reuse of results and auxiliary data when the definition of a
view is redefined with slight changes. The basic technique
is discussed for relational algebra in [17]. i3QL’s sub-query
sharing reuses all operators and results from the bottom up,
until the point where the deviation from the original query
occurred. Results further up in the operator graph are com-
pletely re-computed and i3QL could benefit from such an
optimization in an environment with frequently changing
queries. Optimizing queries using maintained views was pro-
posed to speed up query processing time for arbitrary queries
and not only the queries of the incrementally maintained
views [6]. The technique finds alternative formulations of
queries that incorporate already existing views maintained
by the database system. This technique is not incorporated
into i3QL, which optimizes single queries and shares sub-
queries. Due to i3QL’s optimizations queries are in essence
normalized, hence some alternatives will be reused. Yet,
additional analysis on the expression level is required for
a broader treatment, e.g., filters with selection expressions
i� 1 > 0 and i > 1 are not treated as alternatives in i3QL.

8. Conclusion
We presented i3QL, a general-purpose query language for
incremental computation embedded in Scala. i3QL provides
general recursion for expressiveness and combines opti-
mizations from relational algebra with partial evaluation to
achieve high performance. We have demonstrated the ap-
plicability of i3QL by developing an incremental parser
and 15 FindBugs analyses, and our performance evalua-
tion shows an order-of-magnitude improvement compared
to non-incremental computations.

Acknowledgments
This work has been supported by the German Federal
Ministry of Education and Research (Bundesministerium
für Bildung und Forschung, BMBF) under grant No.
01IC12S01V (SINNODIUM) and by the European Re-
search Council, grant No. 321217.

References
[1] U. A. Acar, G. E. Blelloch, M. Blume, R. Harper, and K. Tang-

wongsan. An experimental analysis of self-adjusting com-
putation. ACM Trans. Program. Lang. Syst., 32(1):3:1–3:53,
Nov. 2009.

[2] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and
R. Pasquin. Incoop: Mapreduce for incremental computations.
In Proceedings of the 2nd ACM Symposium on Cloud Comput-
ing, SOCC ’11, pages 7:1–7:14, New York, NY, USA, 2011.
ACM.

[3] J. A. Blakeley, N. Coburn, and P.-V. Larson. Updating derived
relations: detecting irrelevant and autonomously computable
updates. ACM Trans. Database Syst., 14(3):369–400, Sept.
1989.

[4] J. A. Blakeley, P.-A. Larson, and F. W. Tompa. Efficiently
updating materialized views. SIGMOD Rec., 15(2):61–71,
June 1986.

[5] S. Ceri and J. Widom. Deriving production rules for incre-
mental view maintenance. In Proceedings of the 17th In-
ternational Conference on Very Large Data Bases, VLDB
’91, pages 577–589, San Francisco, CA, USA, 1991. Morgan
Kaufmann Publishers Inc.

[6] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim.
Optimizing queries with materialized views. In Data Engi-
neering, 1995. Proceedings of the Eleventh International Con-
ference on, pages 190 –200, mar 1995.

[7] N. Chomsky. Three models for the description of lan-
guage. Information Theory, IRE Transactions on, 2(3):113–
124, September 1956.

[8] G. Cooper and S. Krishnamurthi. Embedding dynamic
dataflow in a call-by-value language. In P. Sestoft, editor, Pro-
gramming Languages and Systems, volume 3924 of Lecture
Notes in Computer Science, pages 294–308. Springer Berlin
Heidelberg, 2006.

[9] C. Demetrescu, I. Finocchi, and A. Ribichini. Reactive imper-
ative programming with dataflow constraints. In Proceedings
of the 2011 ACM international conference on Object oriented
programming systems languages and applications, OOPSLA
’11, pages 407–426, New York, NY, USA, 2011. ACM.

[10] M. Eichberg, M. Kahl, D. Saha, M. Mezini, and K. Oster-
mann. Automatic incrementalization of prolog based static
analyses. In Proceedings of the 9th International Conference
on Practical Aspects of Declarative Languages, PADL’07,
pages 109–123, Berlin, Heidelberg, 2007. Springer-Verlag.

[11] B. N. Freeman-Benson. Kaleidoscope: Mixing objects, con-
straints, and imperative programming. In Proceedings of the
European Conference on Object-oriented Programming on
Object-oriented Programming Systems, Languages, and Ap-
plications, OOPSLA/ECOOP ’90, pages 77–88, New York,
NY, USA, 1990. ACM.

[12] M. Garcia, A. Izmaylova, and S. Schupp. Extending Scala
with database query capability. Journal of Object Technology,
9(4):45–68, 2010.

[13] P. G. Giarrusso, K. Ostermann, M. Eichberg, R. Mitschke,
T. Rendel, and C. Kästner. Reify your collection queries for
modularity and speed! In Proceedings of the 12th Annual In-
ternational Conference on Aspect-oriented Software Develop-

14 2014/10/13

ment, AOSD ’13, pages 1–12, New York, NY, USA, 2013.
ACM.

[14] P. M. D. Gray, L. Kerschberg, P. J. H. King, and A. Poulovas-
silis. The Functional Approach to Data Management: Model-
ing, Analyzing and Integrating Heterogeneous Data. Springer
Publishing Company, Incorporated, 1st edition, 2010.

[15] T. Grust, M. Mayr, J. Rittinger, and T. Schreiber. Ferry:
database-supported program execution. In Proceedings of the
2009 ACM SIGMOD International Conference on Manage-
ment of data, SIGMOD ’09, pages 1063–1066, New York,
NY, USA, 2009. ACM.

[16] A. Gupta and I. Mumick. Materialized Views: Techniques,
Implementations, and Applications. MIT Press, 1999.

[17] A. Gupta, I. S. Mumick, and K. A. Ross. Adapting material-
ized views after redefinitions. SIGMOD Rec., 24(2):211–222,
May 1995.

[18] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintain-
ing views incrementally. In Proceedings of the 1993 ACM
SIGMOD international conference on Management of data,
SIGMOD ’93, pages 157–166, New York, NY, USA, 1993.
ACM.

[19] D. Hovemeyer and W. Pugh. Finding bugs is easy. SIGPLAN
Not., 39(12):92–106, Dec. 2004.

[20] P. Hudak. Modular domain specific languages and tools. In
Proceedings of International Conference on Software Reuse
(ICSR), pages 134–142. IEEE, 1998.

[21] M. Kay. Readings in natural language processing. chapter Al-
gorithm schemata and data structures in syntactic processing,
pages 35–70. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1986.

[22] D. Leijen and E. Meijer. Domain specific embedded compil-
ers. In Proceedings of the 2nd conference on Domain-specific
languages, DSL ’99, pages 109–122, New York, NY, USA,
1999. ACM.

[23] V. Lifschitz. Principles of knowledge representation. chapter
Foundations of Logic Programming, pages 69–127. Center for
the Study of Language and Information, Stanford, CA, USA,
1996.

[24] Y. A. Liu, S. D. Stoller, M. Gorbovitski, T. Rothamel, and
Y. E. Liu. Incrementalization across object abstraction. In
Proceedings of the 20th Annual ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and
Applications, OOPSLA ’05, pages 473–486, New York, NY,
USA, 2005. ACM.

[25] LiveLinq Web site. http://www.componentone.com/

SuperProducts/LiveLinq/.
[26] I. Maier and M. Odersky. Higher-order reactive programming

with incremental lists. In Proceedings of the 27th European
conference on Object-Oriented Programming, ECOOP’13,
pages 707–731, Berlin, Heidelberg, 2013. Springer-Verlag.

[27] S. Melnik, A. Adya, and P. A. Bernstein. Compiling mappings
to bridge applications and databases. ACM Trans. Database
Syst., 33(4):22:1–22:50, Dec. 2008.

[28] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper,
M. Greenberg, A. Bromfield, and S. Krishnamurthi. Flapjax:

A programming language for Ajax applications. SIGPLAN
Not., 44(10):1–20, Oct. 2009.

[29] R. Mitschke, M. Eichberg, M. Mezini, A. Garcia, and I. Ma-
cia. Modular specification and checking of structural depen-
dencies. In Proceedings of the 12th Annual International
Conference on Aspect-oriented Software Development, AOSD
’13, pages 85–96, New York, NY, USA, 2013. ACM.

[30] B. A. Myers, R. G. McDaniel, R. C. Miller, A. S. Ferrency,
A. Faulring, B. D. Kyle, A. Mickish, A. Klimovitski, and
P. Doane. The Amulet environment: New models for effective
user interface software development. IEEE Trans. Softw. Eng.,
23(6):347–365, 1997.

[31] V. Nerella, S. Surapaneni, S. Madria, and T. Weigert. Ex-
ploring optimization and caching for efficient collection oper-
ations. Automated Software Engineering, 21(1):3–40, 2014.

[32] R. Paige. Applications of finite differencing to database in-
tegrity control and query/transaction optimization. In Ad-
vances in Data Base Theory, pages 171–209, 1982.

[33] T. Palpanas, R. Sidle, R. Cochrane, and H. Pirahesh. Incre-
mental maintenance for non-distributive aggregate functions.
In Proceedings of the 28th international conference on Very
Large Data Bases, VLDB ’02, pages 802–813. VLDB En-
dowment, 2002.

[34] F. Pfenning and C. Elliot. Higher-order abstract syntax. SIG-
PLAN Not., 23(7):199–208, June 1988.

[35] X. Qian and G. Wiederhold. Incremental recomputation of ac-
tive relational expressions. IEEE Transactions on Knowledge
and Data Engineering, 3(3):337–341, 1991.

[36] G. Ramalingam and T. Reps. A categorized bibliography on
incremental computation. In Proceedings of the 20th ACM
SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’93, pages 502–510, New York, NY, USA,
1993. ACM.

[37] T. Rompf and M. Odersky. Lightweight modular staging: a
pragmatic approach to runtime code generation and compiled
dsls. SIGPLAN Not., 46(2):127–136, Oct. 2010.

[38] T. Rompf and M. Odersky. Lightweight modular staging: a
pragmatic approach to runtime code generation and compiled
dsls. Commun. ACM, 55(6):121–130, 2012.

[39] T. Rothamel and Y. A. Liu. Generating incremental imple-
mentations of object-set queries. In Proceedings of the 7th
International Conference on Generative Programming and
Component Engineering, GPCE ’08, pages 55–66, New York,
NY, USA, 2008. ACM.

[40] N. Roussopoulos. An incremental access method for view-
cache: concept, algorithms, and cost analysis. ACM Trans.
Database Syst., 16(3):535–563, Sept. 1991.

[41] K. Sagonas, T. Swift, and D. S. Warren. Xsb as an efficient
deductive database engine. SIGMOD Rec., 23(2):442–453,
May 1994.

[42] D. Saha and C. Ramakrishnan. Incremental evaluation of
tabled logic programs. In C. Palamidessi, editor, Logic Pro-
gramming, volume 2916 of Lecture Notes in Computer Sci-
ence, pages 392–406. Springer Berlin Heidelberg, 2003.

[43] D. Saha and C. Ramakrishnan. Symbolic support graph: A
space efficient data structure for incremental tabled evalua-

15 2014/10/13

http://www.componentone.com/SuperProducts/LiveLinq/
http://www.componentone.com/SuperProducts/LiveLinq/

tion. In M. Gabbrielli and G. Gupta, editors, Logic Program-
ming, volume 3668 of Lecture Notes in Computer Science,
pages 235–249. Springer Berlin Heidelberg, 2005.

[44] G. Salvaneschi, G. Hintz, and M. Mezini. REScala: Bridging
between object-oriented and functional style in reactive appli-
cations. In Proceedings of the 13th International Conference
on Modularity, MODULARITY ’14, pages 25–36, New York,
NY, USA, 2014. ACM.

[45] A. Shankar and R. Bodı́k. Ditto: automatic incrementalization
of data structure invariant checks (in Java). In Proceedings
of the 2007 ACM SIGPLAN conference on Programming lan-
guage design and implementation, PLDI ’07, pages 310–319,
New York, NY, USA, 2007. ACM.

[46] O. Shmueli and A. Itai. Maintenance of views. In Proceedings
of the 1984 ACM SIGMOD international conference on Man-
agement of data, SIGMOD ’84, pages 240–255, New York,
NY, USA, 1984. ACM.

[47] O. Sumer, U. Acar, A. T. Ihler, and R. R. Mettu. Effi-
cient bayesian inference for dynamically changing graphs. In
J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances
in Neural Information Processing Systems 20, pages 1441–

1448. MIT Press, Cambridge, MA, 2008.
[48] J. D. Ullman, H. Garcia-Molina, and J. Widom. Database

Systems: The Complete Book. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1st edition, 2001.

[49] G. Wachsmuth, G. D. P. Konat, V. A. Vergu, D. M. Groenewe-
gen, and E. Visser. A language independent task engine for
incremental name and type analysis. In SLE, volume 8225 of
Lecture Notes in Computer Science, pages 260–280. Springer,
2013.

[50] T. A. Wagner and S. L. Graham. Efficient and flexible incre-
mental parsing. ACM Trans. Program. Lang. Syst., 20(5):980–
1013, Sept. 1998.

[51] D. Willis, D. J. Pearce, and J. Noble. Efficient object querying
for Java. In Proceedings of the 20th European conference
on Object-Oriented Programming, ECOOP’06, pages 28–49,
Berlin, Heidelberg, 2006. Springer-Verlag.

[52] D. Willis, D. J. Pearce, and J. Noble. Caching and incre-
mentalisation in the Java query language. SIGPLAN Not.,
43(10):1–18, Oct. 2008.

[53] L. Wong. Kleisli, a functional query system. Journal of
Functional Programming, 10:19–56, 0 2000.

16 2014/10/13

	Introduction
	i3QL: An Overview
	Technical Realization
	Change Propagation
	Materialization and Self-Maintainability

	Query Optimizations
	Case study: An Incrementalized Parser
	Data Definitions for an Incrementalized Parser
	Chart Parsing
	Incrementalized Chart Parser

	Performance Evaluation
	Related Work
	Conclusion

