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Abstract

The application of program transformations and refactorings
involves the risk of capturing variables, which may break
the intended semantics of the transformed code. One way
to resolve variable capture is by renaming of the involved
identifiers. However, in a modular context, the renaming of
exported declarations is undesirable (affecting a module’s
clients), and the renaming of imported declarations is impos-
sible (requiring changes to third-party modules).

We present an algorithm name-fiz that detects and elimi-
nates variable capture modularly. We extend a previous non-
modular version of name-fiz in order to (i) minimize re-
namings of exported declarations, (ii) propagate necessary
renamings of exported declarations to clients, and (iii) avoid
renamings of imported declarations altogether. Together with
support for transitive name bindings and conflicting declara-
tions, our extensions to name-fix enable the application to
real-world languages that feature separate compilation. To
demonstrate the applicability of name-fix, we use it to mod-
ularly resolve variable capture for optimizations, refactorings,
and desugarings of Lightweight Java.

Categories and Subject Descriptors D.3.4 [Processors]:
Code generation; D.2.2 [Design Tools and Techniques]:
Modules and interfaces

Keywords variable capture; program transformation; refac-
torings; modules; hygienic macros

1.

Program transformations and generative programming find
wide applications in software development. Application sce-
narios include the compilation of domain-specific languages
(DSLs) [[11]], language extensions [[7]], macros [2} [12]], refac-
torings [13], and automated code migration [8]. In many
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scenarios, program transformations are explicitly triggered
by users but only change part of the user-provided source
code. A major challenge for the developer of a program trans-
formation is to make sure that the transformed code and the
code that is left unchanged (including used libraries) continue
to interact correctly.

Specifically, this paper addresses the problem of avoid-
ing variable capture when transforming programs. When a
transformation moves, adds, or alters named references or
declarations in a program, there is always the possibility of a
modified declaration to unintentionally capture an unchanged
reference, or a modified reference to be unintentionally cap-
tured by an unchanged declaration. Such variable capture
can confuse programmers, break the intention of the code
or the transformation, and lead to bugs that are hard to de-
tect and eliminate. A previous study [10] revealed that 9 out
of 10 language workbenches (tools for DSL compilation)
are prone to variable capture: It was possible to construct
DSL programs that, when compiled, yielded ill-behaved code
due to variable capture. The other language workbench used
conventions across all transformation code to avoid variable
capture. We seek a solution to variable capture that does not
rely on conventions but provides guarantees instead.

As example for a transformation that can capture variables,
consider a refactoring that rewrites public fields into private
fields with getter and setter methods. The refactoring also
changes all references to the public field to use the getter
and setter methods instead. Figure shows a simple
Java program with two classes used to represent points.
The second class MirroredPoint inherits from class Point
and provides a method getY that yields the mirrored y-
coordinate. Figure[I(b)| shows the program after applying the
refactoring: Fields x and y in class Point have become private,
getter methods have been added, and the reference to y in
MirroredPoint has been rewritten to a call to getY. However,
the last rewriting causes name capture because getY is bound
by the method in MirroredPoint rather than the one in Point.

While this unintended result may be attributed to the
naive implementation of the used program transformation,
ensuring capture avoidance during transformation is difficult
and may require systematic renaming of some variables. In
our example, we need to rename one of the declarations
of getY. However, since getY is externally accessible, a



1 | class Point {

2 public int x, y;

3}

4

5 class MirroredPoint extends Point {
6 public int getY() { return -y; }
7}

(a) Example program before transformation.

class Point {

private int x, y;

public int getX() { return x; }
public int getY() { return y; }

class MirroredPoint extends Point {

1

2

3

4
5}
6

7

8 public int getY() { return —getY(); }
9

}

(b) Example program after making fields private and adding getters.

Figure 1. Refactoring that introduces name capture.

renaming needs to involve the method’s callers, some of
which may not be known yet because they reside in user
code.

In this paper, we present an algorithm that automatically
ensures capture avoidance while supporting modular trans-
formations in the sense of Java-style separate compilation.
We build on previous work for automated capture avoidance
that used a global post-processing to restore proper scop-
ing [[10]. We significantly extend this work by adding support
for processing modules individually, where the renaming of
a declaration in one module entails a deferred renaming of
corresponding references in other modules that may become
known later on. To this end, we accommodate modules with
renaming interfaces that keep track of renamings and allow
us to adopt client modules accordingly. Moreover, we add
support for transitive name bindings (for example, transitive
method overriding) and for repairing declaration conflicts
(such as illegal overloading) that result from a transformation.
These extensions are necessary to support automated capture
avoidance for real-world programming languages.

Importantly, our algorithm for modular capture avoidance
retains the following benefits of the previous global post-
processing [10]:

¢ Noninvasive: To preserve code readability, our algorithm
renames as few variables as possible. In particular, a pro-
gram is left unchanged if it does not contain any captured
variables. This is particularly important for refactorings
and in the modular case, where exported names are visible
to clients.

e Language-parametric: Our algorithm operates on name-
binding graphs and can handle variable capture for all
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source and target languages that support modular static
name resolution.

e Transformation-parametric: Our algorithm compares the
name bindings of a program before and after transfor-
mation to detect and fix captured variables. We support
any transformation engine that provides origin track-
ing [21, 22] for variable names, such that we can dis-
tinguish source names from synthesized names.

After revisiting the previous non-modular solution in
Section[2] we make the following contributions.

e We present modular name graphs, a generic represen-
tation for name bindings that models externally visible
names through interfaces and distinguishes the bindings
of individual modules.

e We describe a post-processing algorithm that operates on
modular name graphs and modularly eliminates variable
capture by propagating externally visible renamings to
client modules.

e To minimize renaming of externally visible names, we
developed a renaming optimization that, given a modular
name graph and a renaming, tries to identify an equivalent
renaming that is local to the module.

e We present an implementation of our algorithm in Scala
and demonstrate its applicability to refactorings of pro-
grams written in Lightweight Java [20]].

2. Non-modular Capture Avoidance

Our algorithm for modularly avoiding variable capture builds
on previous work [10]] for automatically avoiding variable
capture through a global post-processing. In this section,
we introduce the global algorithm as basis for our modular
variant presented in the subsequent sections. We refer to the
global algorithm as name-fiz-global and call our modular
variant name-fix.

The first step to avoiding variable capture is to detect un-
intended capture. To this end, name-fiz-global compares the
binding structure of the user program before and after trans-
formation. That is, name-fiz-global requires name analyses
of the original, non-transformed program as well as analysis
of the transformed code.

In order to be language-parametric, name-fix-global uses
its own simple representation of variable bindings, called
name graph. For example, Figure 2(a)] shows the name graph
for the original program from Figure Each node of a
name graph corresponds to an occurrence of an identifier in
the source code. In the graphs shown in this paper, we indicate
the represented identifier through its name and line number
in the source code. For example, Figure [2(a)| shows that
identifier y from Line 6 is a reference bound by identifier y
from Line 2. For brevity, our example does not show nodes for
class names. Technically, name-fiz-global assigns a unique
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(a) Name graph for original program from Figure|l(a
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)| with capture.

(c) Name graph for Figure after application of name-fiz-global.

Boxes represent references/declarations; arrows represent bindings.
Numbers indicate line in source code where name occurs/originates.
Dashed boxes represent names synthesized by a transformation.

Figure 2. Name graphs for Figures and with fixing.

ID to each identifier in the source code; we refer the interested
reader to the original publication for details [10].

To be independent of the transformation engine, name-fiz-
global neither inspects nor instruments transformations. How-
ever, name-fix-global requires a transformation engine to
support origin tracking [21}[22]] for variable names such that it
is possible to distinguish original identifiers from synthesized
identifiers in generated code. For example, Figure 2(b)| shows
the name graph of the transformed program from Figure [T(b)|
We designate identifiers from the original program using
solid boxes and their original line number whereas dashed
boxes designate identifiers synthesized by a transformation.
For synthesized identifiers, we use the line number in the
generated program, with an additional tick mark ’ for better
readability. For example, the identifiers x and y originate from
Line 2 in the original program, whereas the identifiers getX
and getY in Line ’3 and Line ’4 of the generated code have
been synthesized by the transformation. Note that the nodes
for x and y represent both the field declarations in Line *2 of
the generated code as well as the field accesses in Line 3 and
Line ’4 of the generated code, hence the self-reference in the
name graph.

The name graph in Figure shows the capture we
discussed in the previous section clearly: The synthesized
name getY (’8) accidentally references the original name
getY (6) from class MirroredPoint instead of the synthesized
definition getY (’4) from class Point. The problem is that
the definition of getY (6) in class MirroredPoint shadows
the definition in class Point. To fix this capture, one of the
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conflicting definitions has to be renamed. However, care
needs to be taken to also rename all of the valid, non-captured
references to the definition. In our example, we can either
rename getY (’4) together with getY (°8) to a fresh name
getY_0 as shown in Figure 2(c)] or rename getY (6) to a fresh
name (not shown).

Since name-fix-global needs to change all valid, non-
captured references of a definition to soundly introduce fresh
names, name-fix-global requires a global processing where
it can manipulate the source code of all involved classes.
This approach may be viable for small examples like the
one above, but it does not scale to real software systems that
involve many source files as well as libraries written by third
parties. In particular, when developing an API used by others,
some references to definitions reside with the clients of the
API and are not available for a global processing. For real
software systems, a modular solution for avoiding variable
capture is needed.

3. Modular Name Graphs and
the Problem of Modular Capture
Avoidance

The concept of name graphs as introduced in the previous
section is based on the assumption of a global, fully accessible
name space. This assumption is at odds with good software-
engineering principles, in particular with the principle of
separating concerns into reusable components. Indeed, most
real-world programs have external dependencies on libraries
provided by others.

The problem of name-fiz-global is that it disrespects
module boundaries. As a first step toward modular name-fiz,
we define modular name graphs, which integrates modules
boundaries into name graphs. Where a global name graph
G = (V, p) consists of a set of identifier occurrences V' C ID
and a set of edges p C V x V that represent the binding
structure of an entire program, a modular name graph only
represents the binding structure of a single module. That is,
the binding structure of a program with multiple modules is
represented by a set of modular name graphs, one modular
name graph for each module.

A module can export declarations to other modules and
a module can refer to declarations defined in other modules.
To allow for encapsulation and information hiding, we equip
modular name graphs with interfaces that expose externally
visible declarations. A module may only refer to those
declarations of another module that are part of the interface.

Definition 1. A name-graph interface I defines a set of
externally referable identifier occurrences I1°Y C ID. For
a sequence of name-graph interfaces o = (I, ...,1,), we
define o = I7"P U ... U I,

Later, we will extend the definition of name-graph interfaces
to additionally propagate externally visible renamings to
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(a) Modular name graph for Figure Exported: x(2), y(2), and getY(6).
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(b) Modular name graph for Figure Synthesized exports: getX, getY('4).
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(c) Modular name graph for Figure after application of name-fiz.

Boxes represent references/declarations; arrows represent bindings.
Dashed boxes represent names synthesized by a transformation.
Shaded boxes represent declarations exported by a module.

Figure 3. Modular name graphs for Figure and

client modules. The definition of modular name graphs is
unaffected by this extension.

Definition 2. A modular name graph is a tuple G
(V,o,p,I) where

V clID

is the set of locally occurring
identifiers,

is the sequence of interfaces the
name graph is linked against,

is the set of edges that bind locally
occurring references to local or ex-
ternal declarations, and

ocCIx---x1

pCVx(VUusc™)

1 is the interface of the name graph.

For example, consider again the original program from
Figure [I(a)| and the transformed program from Figure [I(b)|
Whereas Figure [2] shows the global name graph for both
modules, we can use modular name graphs to inspect the
binding structure of each module individually, making cross-
module dependencies explicit. We show the modular name
graphs of the original and transformed program in Figure 3]

Figure [3(a)| shows the modular name graphs of Point and
MirroredPoint as defined in the original program. We draw
each modular name graph as a box containing the locally
occurring identifiers and their bindings. We mark exported
declarations of a module as name nodes with a colored back-
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class PointUtil {
public int compareY (MirroredPoint a, MirroredPoint b) {
return a.getY() - b.getY();

Figure 4. Client of MirroredPoint’s method getY.

ground. Bindings to the interface of another module appear
as edges between modular name graphs. Figure [3(b)|shows
the modular name graphs after transformation. As before, we
mark names that are synthesized by a transformation using
dashed boxes. A synthesized name that is exported accord-
ingly shows up in a dashed box with colored background.

Since modular name graphs contain the same edges as
global name graphs, the variable capture of getY('8) is still
easy to detect. But, in contrast to global name graphs, modular
name graphs allow us to distinguish local declarations from
exported ones as well as local references from references
to declarations in other modules. This is important in our
example. Given the capture in class MirroredPoint, name-fiz-
global renamed getY/('4) in class Point to getY_0('4) as shown
in Figure of the previous section. That is, an exported
declaration was renamed due a conflict in a client module.
However, renaming declarations in modules provided by
others is not possible in general and needs to be avoided
by name-fix.

Fortunately, an alternative renaming is possible: We can
rename getY(6) in class MirroredPoint to getY_0(6) as shown
in Figure This renaming fixes the variable capture
without imposing changes to class Point. However, this
renaming may in turn affect clients of MirroredPoint because
MirroredPoint exports the renamed declaration getY_0(6). Of
course, it would have been preferable to select a renaming
that does not change any exported declaration. But, in general
and in our example, such renaming does not exist and we
have to rename exported declarations.

Consider class PointUtil in Figure [ that contains calls to
MirroredPoint’s method getY. When renaming the declaration
of getY, these references will fail to resolve. Note that the
renaming in MirroredPoint was performed modularly, that is,
without knowledge of the client class PointUtil. Therefore,
we need to propagate renamings of exported declarations to a
module’s clients and clients must adopt interface renamings
in their own code.

In the following section, we present an algorithm name-fix
that modularly eliminates variable capture while retaining
the interoperability of clients. Specifically, name-fix solves
the following problem of modular capture avoidance:

¢ Eliminate variable capture between original names and
names synthesized by a transformation.



e Support separate compilation such that variable capture
in one module does not necessitate change of unrelated
modules or of modules imported by the module.

¢ Avoid renaming exported declarations when possible.

e Preserve capture-free cross-module bindings when the
renaming of exported declarations is unavoidable.

4. Modular Name-Fix

In the previous section, we defined the problem of modular
capture avoidance. In this section, we present our solution
name-fiz. Our solution takes a possibly transformed module,
its original modular name graph, and list of possibly trans-
formed interfaces the module is linked against. Our solution
operates in two phases. First, we eliminate any local and
intermodular variable capture of the module assuming the
interfaces of imported modules were not transformed and
assuming we can apply renamings to those interfaces. This
phase yields a modular name graph that is structurally correct
but possibly uses incorrect interfaces for imported modules.
In the second phase, name-fiz uses the possibly transformed
interfaces and applies interface-preserving renamings to the
module in order to establish the binding structure discovered
in the first phase.

4.1 Detecting and Eliminating Capture within
Modules

Before we can eliminate variable capture, we must first detect
it. Like name-fiz-global (Section [2), we identify captured
identifiers by inspection of the name graph. There are three
kinds of bindings that represent variable capture in the
transformed program [10]:

¢ Bindings from original to synthesized identifiers.

¢ Bindings from original identifiers to other original identi-
fiers not targeted before the transformation.

¢ Bindings from synthesized to original identifiers.

The previous algorithm name-fix-global requires name
graphs to be bipartite and non-ambiguous, that is, each iden-
tifier is either a reference or a declaration but not both and
each reference uniquely refers to a declaration. This rules
out transitive, cyclic, and ambiguous bindings and prevents
support for language constructs such as overloading (multi-
ple targets for a single reference) and overriding (transitive
reference to a virtual method). In fact, our running exam-
ple from Figure [T(b)] contains a transitive binding because
method getY in MirroredPoint overrides getY in Point. We
ignored this dependency in our discussion above; Figure ]
shows the actual name graph for Figure[I(b)] Note that in this
example the overriding is also a variable capture because it is
a reference from an original to a synthesized identifier.

To support arbitrarily complex transitive and ambiguous
binding structure, we define a generalized notion of variable
capture based on the connectivity of identifiers.
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Point MirroredPoint
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Figure 5. Graph for Figure with transitive reference.

Definition 3. Given a modular name graph G = (V,0,p,I),
two identifiers v, and vy are connected vi~g vy if V1 = Vs,
(v1,v2) € p, (vg,v1) € p, or there is a vy such that v{~¢g v
and v3~¢g V.

Connectivity is an equivalence relation as it is reflexive,
symmetric, and transitive. We write [v]4 for the equivalence
class of v under ~. Using the connectivity of identifiers, we
can detect all kinds of variable capture from above as follows.

Definition 4. Let s be a source program that was transformed
into a target program t, and let G, and G be their respective
modular name graphs. An identifier v € G induces capture

inGyif[vlg, € [vla,-

That is, an identifier v from the source program may only
be connected to those identifiers in the target program it was
connected to in the source program already. Since connec-
tivity treats declarations and references alike, this definition
covers all kinds of variable capture listed above, while addi-
tionally supporting transitive and ambiguous bindings. Func-
tion find-capture in Figure [6limplements this definition and
yields the set of identifiers involved in variable capture. For
example, the modular name graphs of Point from Figure [3]
contains four equivalence classes with a single element each;
the modular name graph of MirroredPoint contains a single
equivalence class [getY (6)]G,, that contains all three identi-
fiers named getY. In contrast, [getY (6)] ¢ is a singleton set
in the source graph for MirroredPoint of Figure B(a)l Accord-
ingly, because [getY (6)]c, € [getY (6)]¢ ., find-capture
finds as variable capture the identifier getY (6).

After detecting all captured identifiers in a module, the
next step is to eliminate the capture through systematic re-
naming. To this end, function comp-renaming in Figure 6]
produces a renaming function 7. For each captured identifier
v in capturedVars, comp-renaming generates a fresh name
and renames all identifiers connected to v in the source name
graph GG, from before the transformation. This way the re-
naming produced by comp-renaming renames the captured
identifier and all identifiers that are intended to be connected
according to the source program. Since the new name of v and
its connections is fresh, the renaming eliminates the capture:
After the renaming of m, to m; we have [U]Gt, C [v]g, be-
cause only identifiers in [v];_carry the fresh name. For exam-
ple, for MirroredPoint in Figure[5] comp-renaming produces
arenaming ™ = {getY (6) — "getY_0"}. If getY (6) was re-



Syntactic conventions for all pseudo-code figures:
Qv . . .
m name 7 of identifier v in module m
G, modular name graph G,

=N
= (Vzr Oz Pxs Iz)

Required functions

resolve : m, X o, — G,  name resolution of module m,,
against interfaces o,
gensym : Name X 2 — Name generate fresh name
rename : m X (ID — Name) — m rename module

rename : o X (ID — Name) — o rename interfaces

Name

find-capture(G,, G;) ={
return {v | v € (V, U 0.™), [vlg, € [l }:

}

comp-renaming(G,, G;, m;, captureVars) = {

w =0

usedNames = {m¢’| v € V, U 07"},

capturedClasses = {[vg]¢, | vy € captureVars};

foreach [v]_in capturedClasses {
fresh = gensym(m;", usedNames);
m=mU{(vo — fresh) | vy € [v]g }
usedNames = usedNames U {fresh}

}

return ;

}

name-fiz-virtual(Gg, my, o) = {
G, = resolve(m,, o;);
captureVars = find-capture(G,, G;);

if (captureVars = () return G;

m = comp-renaming(G,, G;, m;, captureVars);
m; = rename(m,, )

o, = rename(a,, )

return name-fiz-virtual(G,, my, o1);

Figure 6. Capture detection and elimination (first phase).

lated to other identifiers in the source graph, comp-renaming
would rename those identifiers as well.

While the renaming produced by comp-renaming cor-
rectly eliminates variable capture, it ignores the existence of
modules and interfaces. In particular, the renaming produced
by comp-renaming may require the renaming of externally
declared identifiers. Thus, comp-renaming allows us to con-
struct a name graph that is capture-free but possibly uses
renamed interfaces.

To this end, we define an algorithm that only simulates
renamings of externally declared identifiers. While these
renamings cannot actually be applied to imported modules,
the simulated renaming of interfaces enables the generation
of a virtual name graph where the module is linked against
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the virtually renamed interfaces. Since the binding structure
in the virtual name graph is correct, the virtual name graph
serves as an oracle in the second phase of name-fix, where
we try to achieve a structurally equivalent graph by only
applying renamings to local names.

Function name-fiz-virtual in Figure [6] implements the
extraction of virtual name graphs and takes as input a mod-
ular source graph G, a transformed module m;, and the
interfaces of linked transformed modules o,. The algorithm
uses the language-specific function resolve to retrieve a mod-
ular name graph for m; given the interfaces o,. Note that
name-fixz-virtual requires the interfaces o, exactly as they
were generated by the transformation, that is, without re-
namings that name-fiz may apply in these modules. Oth-
erwise, name resolution fails to resolve references from
m, to externally declared identifiers. After name resolution,
name-fiz-virtual applies the previously defined functions
find-capture and comp-renaming to detect captures and to
compute renamings for fixing them. Then, name-fiz-virtual
applies the renaming to module m, and to the interfaces o,
thus simulating the renaming of externally declared identi-
fiers. Since the elimination of some captured references can
cause other, previously hidden variable capture to appear, it
is necessary to detected and eliminate variable capture recur-
sively; the termination proof of name-fiz-global [10] carries
over to name-fix-virtual.

4.2 Eliminating Capture across Modules

Function name-fiz-virtual detects and eliminates variable
capture, but it has two limitations. First, it renames external
declarations that are exported by other modules. Second, it
does not handle renamings that occur in imported modules
and instead assumes the linked interfaces to be unchanged.
For this reason, we only use the fixed name graph provided
by name-fiz-virtual as an oracle for eliminating capture
from the transformed module in a way that retains imported
variable declarations and propagates any renaming applied to
them.

As shown in Figure(7| our algorithm name-fiz first com-
putes a module’s virtual name graph. Since name- fix-virtual
cannot handle interface renamings, we call it with the original
interfaces o;"" that are extracted and stored after transfor-
mation but before name-fixing. Our algorithm name-fiz now
modifies a transformed module in two steps. First, name-fiz
computes and applies renamings that ensure correct bind-
ings from local references to interface declarations (function
restore-interface-bindings). In particular, this step takes
care that local references are correctly adapted to interface
renamings. Second, we compute and apply renamings that
eliminate unintended bindings (function remove-capture).
Both steps use the virtual name graph as an oracle for deter-
mining intended and unintended bindings.

Function restore-interface-bindings iterates over the
classes of names connected in the virtual name graph. For



name-fiz(G,, my, o,) = {
Gyire = name-fiz-virtual(G,, my, o.™);
m'; = restore-interface-bindings(my, os, Guirt);
return remove-capture(m'y, o;, Guirt);

}

restore-interface-bindings(my, o, Guire) = {
G, = resolve(my, o,);
w =0
virtClasses = {[v]a,,, | v € Viin}
foreach [v]¢,  , in virtClasses {
lost = {vy | vy € o[, vy € [V]g
if (lost # 0) {
extNames = {m{""° | vy € o, vy € e, .}
if (lextNames| = 1) { :

m=mU{(v = n) | v € v]g,,

[v] Gint Z [vo] G, +

virt '

, n € extNames};

else fail('Inconsistent renaming of interface names.");

¥
}

return rename(m,, 7);

}

remove-capture(my, oy, Guirg) = {
G, = resolve(my, o;);
w =0
usedNames = {m{"| v € V; U 0f"};
virtClasses = {[v]g,,, | v € Viir}
foreach [v]g, , in virtClasses {
capture = {v; | vy € [v]g
if (capture # 0) {
fresh = gensym(my"”, usedNames);
7 =1 U select-renaming([v]e,, ,, capture, fresh, G,);
usedNames = usedNames U {fresh}

}

if (m = 0) return my;
my = rename(m,, 7);
return remove-capture(my, oy, Goie);

}

vy € [UO}G,J U1 Q [vO]Gmrt};

wvirt '

select-renaming(Vy, Va, fresh, G;) = {
if (Vi Nno/™ =0)
return {(v > fresh) | v € V1 };
else if (V, N o/ =)
return {(v — fresh) | v € V,};
else fail("Unable to find fix without renaming interfaces.");

}

Figure 7. Eliminate capture across modules (second phase).

each class, it checks if there is an external name from an
interface vy € o, with references in the virtual name graph
vy € [v]¢,,, that are missing in the name graph of the trans-
formed program [v]g & [vo]e,. If an external identifier
with lost references exists, we compute the set names of all
external declarations referred to by [v]¢ . Name fixing fails
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if there is more than one name, which means that two or more
external declarations originally shared the same name but
were renamed inconsistently to different names, even though
there is a shared reference according to G,;,;. If instead there
is a unique new name for all external declarations, we rename
all intended local references to use that name.

Let us exemplify how restore-interface-bindings propa-
gates interface renamings. As discussed in the previous sub-
section, name-fix renames the method declaration getY (6)
in class MirroredPoint to getY_0. When applying name-fiz
to a client of MirroredPoint such as class PointUtil in Fig-
ure[d] name-fiz-virtual will determine that PointUtil refers
to getY (6) in MirroredPoint. However, when resolving the
name binding of PointUtil in the transformed interface of
MirroredPoint, the method references end up being unbound,
because the method declaration was renamed. Therefore, we
get lost = {getY_0 (6)} in restore-interface-bindings, be-
cause the intended bindings from G;,; are missing in G;.
Function restore-interface-bindings finds the unique exter-
nal name getY_0 to rename the references in PointUtil. This
way, the interface renaming of class MirroredPoint is propa-
gated to its clients.

After restoring interface bindings, we remove variable
capture as determined by the virtual name graph. To this end,
function remove-capture iterates over the classes of names
connected in the virtual name graph. We eliminate the binding
of any identifier v; that is connected to an identifier v in the
transformed module v; € [vg]¢, but is not connected to that
identifier in the virtual name graph vy & [vg]g, .

Apart from how capture is determined, remove-capture is
similar to comp-renaming. One additional significant differ-
ence is that comp-renaming is allowed to rename externally
declared identifiers because it is only used to construct a
virtual name graph. In contrast, remove-capture may only
rename identifiers that are local to the current module m;.
Here, remowve-capture has two choices: Rename the identi-
fiers [v],  that validly refer to each other, or rename the
identifiers capture that invalidly refer to the ones in [v]g, .
We use function select-renaming to select one of the two
possibilities such that no externally declared identifier gets
renamed, if possible. Name fixing fails in select-renaming if
the renaming of externally declared identifiers is unavoidable.
This only occurs when two or more external declarations
had different names but were renamed to the same name. In
practice, this is easy to avoid by ensuring that fresh names do
not overlap between modules.

4.3 Avoiding Interface Renamings

Algorithm name-fiz as presented so far solves most re-
quirements of the problem of modular capture avoidance
(Section[3): name-fiz eliminates capture, supports separate
compilation, and preserves cross-module bindings. However,
name-fix currently ignores which declarations get exported
by the transformed module m,. If possible we want to avoid
renaming exported declarations in order to confine the impact



select-renaming(Vy, Va, fresh, G,) = {
if (ViuW)no™® =10){
if (1Va NI < |V N ISP
return {(v — fresh) | v € V1 };

else
return {(v > fresh) | v € V,};

else if (V; N o;" =)

return {(v — fresh) | v € V1 };
else if (V, N o, = 0)

return {(v — fresh) | v € VL };
else

fail('Unable to find fix without renaming interfaces!’);
}

}

Figure 8. Minimize renamings of exported declarations.

of a transformation and the required propagation of renam-
ings as much as possible. This is also in accordance with
name-fiz’s original design goal of non-invasiveness, that is,
renaming as few identifiers as possible.

As shown in Section[d.2] for each occurrence of variable
capture, there are two possible renamings to choose from.
Function select-renaming selects one of the renamings such
that no externally declared variable gets renamed. This cri-
teria is of highest priority because renaming external decla-
rations is invalid. If, however, both renamings are valid and
only rename local identifiers, we are free to choose the less
invasive renaming.

Figure [§|shows an extended version of select-renaming
which explicitly handles cases where both renamings are
valid. To minimize the impact of name-fix on clients of a
module, we select the renaming that changes fewer declara-
tions exported by the current module. To this end, we look
up the interface I, of the modular name graph G, and extract
the exported identifiers occurrences I,7.

Depending on the used programming language and mod-
ule system, there may be more fine-grained nuances regarding
exported names. For example, in Java it is favorable to re-
name package-internal identifiers rather than publicly visible
ones and maybe even to rename non-final declarations rather
than final ones. Such extensions can be integrated easily into
select-renaming by altering the condition that leads to the
selection of one or the other renaming.

5. Case Studies

To evaluate our approach for modular capture avoidance, we
have implemented modular name-fiz as presented in Sec-
tion [ in Scala and applied it to different types of program
transformations. As target languages, we have used a lan-
guage based on lambda calculus extended with support for
simple Haskell-like modules, and Lightweight Java [20]], a
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type Renaming = Identifier => Identifier
trait Namelnterface {
def export: Set[ldentifier]
def original: Namelnterface
def rename(renaming: Renaming): Namelnterface
¥
trait NominalModular|[l <: Namelnterface] {
def allNames: Set[String]
def rename(renaming: Renaming): NominalModular]l]
def interface: |
def link(dependencies: Set[l]): NominalModular[l]
def resolveNamesModular: NameGraphModular[l]

}

Figure 9. Interfaces for language-specific functionality.

stateful subset of the programming language Java extended
with Java-like access modifiers.

Our implementation is language-parametric. As shown
in Figure 0] we provide interfaces for the definition of
language-specific functionality required by name-fiz. Trait
Namelnterface provides the necessary information for inter-
faces: The exported declarations, the original non-renamed
interface, and a renaming function for simulated interface
renaming as performed by name-fiz-virtual. The instances
of trait NominalModular represent modules of the target lan-
guage. We require methods to retrieve all names that oc-
cur in the module (to generate fresh names), to rename
the identifiers in a module, to extract a module’s interface,
to link a module against a set of interfaces, and to mod-
ularly resolve the bindings of a module against the previ-
ously linked interfaces. Classes that implement Namelnterface
or NominalModular can freely add further language-specific
functionality not directly required by name-fiz. For exam-
ple, it is possible to store types in an interface and to check
well-typedness of a module against them. This enables sup-
port also for those languages where name analysis requires
additional context information such as typing.

Our implementation is transformation-parametric. The
only requirement of name-fix is that the transformation
engine tracks the origin of identifiers from the original to
the transformed program. To simplify identifier tracking
name graph generation, we have implemented a generic
representation of identifiers (class Identifier) that uses the
identity of JVM objects to distinguish identifiers of the same
name. To track the origin of identifiers in our target languages,
we embed Identifier objects directly into syntax trees and
copy references to them into the transformed program, thus
preserving object identity. However, our implementation of
name-fiz is not tight to this form of origin tracking; other
techniques such as string origins [21] can be used just as well.

In our functional target language, we applied name-fix to
repair the result of transformations implementing an optimiza-
tion that partially evaluates programs and a compiler phase



that desugars first-class functions into first-order functions
through lambda lifting. Through conflicting local definitions
as well as the shadowing of imported identifiers, we have en-
countered and successfully fixed both local and inter-modular
variable capture using name-fiz.

For our case studies on Lightweight Java, we considered
each class as a separate module that implicitly imports all
other classes it contains references to. In Lightweight Java,
the required usage of Java’s dot-notation to access object
members prevents some of the most obvious variable-capture
scenarios. However, variable capture still occurs as the result
of inheritance-related shadowing caused by the addition
or modification of class members. To induce and fix such
shadowing, we have applied name-fiz on a refactoring that
adds getter and setter methods as presented in the example
from Figure[I] as well as a language extension that adds local
variable declarations inside methods through a desugaring.

The source code of our implementation and all case studies
is available online:
http://github.com/seba-/hygienic-transformations.

5.1 Modular Lambda

For our case study on a modular lambda language, we have
extended a previously existing, non-modular implementation
of the lambda calculus with a simple Haskell-like module
system. A module has a name, can import the scope of
other modules using their name, and defines a list of top-
level definitions, all of which are exported by default. Local
definitions shadow imported definitions. An import statement
also represents an edge in the name graph: It refers to
the identifier of the imported module. This way, name-fix
eliminates variable capture for modules, definitions, and
variables bound by lambda expressions.

Our definition of modular lambda does not support explicit
qualifiers and having the same name exported by multiple
imported modules leads to ambiguous references. We model
such ambiguous references by making it refer to all potential
definitions. If the ambiguity results from a transformation
because a definition was added or renamed, name-fix will
eliminate the ambiguity. Top-level definitions within a mod-
ule have no precedence and consequently are in conflict if
they share the same name.

We have implemented two transformations with modular
lambda as the target language. First, we developed an opti-
mization that partially evaluates program fragments through
normalization. When the transformation encounters a beta re-
dex (Az.b)e, it replaces all occurrences of x in b by e. However,
the optimization employs a capturing substitution function
that disregards scoping and potentially produces variable cap-
ture involving references to variables and local and external
definitions. A call to name-fiz after the optimization finishes
is sufficient to restore correct scoping. A detailed example of
this transformation its definition was presented in the context
of name-fix-global [10].

1
2
3
4

W W=
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module M {
import Base; // defines "fun"
def calc = 2 + fun ((Ax.x+x) 1)

}

(a) Module with local anonymous function definition.

module M {
import Base // defines "fun"
def fun0(x) = x+x
def calc = 2 + fun (fun0 1)

¥

(b) Module with function lifted and capture fixed by name-fizx.

Figure 10. Lambda lifting and application of name-fiz.

As a second transformation, we implemented lambda lift-
ing. Lambda lifting desugars anonymous first-class functions
into top-level first-order functions by lifting the function def-
inition and by introducing references to the newly created
top-level definitions. Our transformation ensures that each
lifted function is assigned a different name. However, our
transformation does neither consider pre-existing top-level
definitions in the local module nor pre-existing top-level defi-
nitions imported from other modules. Consequently, lambda
lifting can cause local and inter-modular variable capture
between definitions.

We show an example in Figure [T0] where we lift the
anonymous function (Ax.x+x) shown in to a top-level
function definition with the generated name fun. This however
causes the imported function fun to be shadowed and the
local usage of the function to be captured. When name-fix is
applied, it computes the virtual name graph and determines
the necessary renamings. As the import involved in the
conflict is externally bound, it can not be renamed. Instead,
the lifted function is renamed to funO.

5.2 Lightweight Java

Lightweight Java (LJ) is a reduced but stateful subset of the
Java programming language. While a distinct module system
was designed for LJ [20]], it is different from the concepts
used in Java and more similar to the module system we im-
plemented for modular lambda. To evaluate name-fix for a
module system that is closer to actual Java, we assume that
each Lightweight Java class is a module and resolve refer-
ences to external classes on demand. Moreover, the original
definition of Lightweight Java doesn’t provide support for
access modifiers to control the visibility of class members.
Although custom visibility is not essential for modularity, we
have added Java-like public and private modifiers to facili-
tate testing of name-fix’s capabilities for avoiding interface
renamings.

As all references to fields and methods have to be qualified
in LJ, some common variable-capture scenario cannot occur.
In particular, in LJ, fields cannot be hidden by local variables


http://github.com/seba--/hygienic-transformations

1| class Base {

2| public int method(MyObject a) {
3 String b;

4 b = a.toString();

5 b = b.concat(b);

6 return this.methodHelper(b);
7}

8

9| public int methodHelper(String s) {
10 return s.size();

11 3}

12}

(a) Class with local variable declaration.

1| class Base {

2| public int method(MyObject a) {

3 return this.methodHelperO(a, null);
4}

5

6| private int methodHelper0(MyObject a, String b) {
7 b = a.toString();

8 b = b.concat(b);

9 return this.methodHelper(b);
10 3}
11
12| public int methodHelper(String s) {
13 return s.size();
14
15}

(b) Transformed class with added helper method.

Figure 11. Desugaring of local variable declaration.

or method parameters. However, shadowing can occur in the
context of overrides when a class inherits from another class:
The subclass can accidentally override and thus shadow a
method from the superclass. As method overrides can alter
the semantics of a class, they need to be handled like regular
references when in comes to capture avoidance. An example
modular name graph with an override reference was shown
in Figure[5]in Section @1}

We implemented two transformations with LJ as the target
language. First, we implemented the refactoring that we
used as a running example throughout the paper. When
modularly applying name-fiz to classes Point, MirroredPoint,
and PointUtil, name-fixz behaves correctly: Point does not
get changed; the method declaration getY in MirroredPoint
gets renamed to getY_0, and the method references to getY
in PointUtil both get renamed to getY_0.

As second transformation, we implemented a desugaring
that extends LJ with an additional language feature, namely
local variables. In LJ, variables can only be bound as pa-
rameters through method declarations, that is, it is necessary
to provide all used variable values as method arguments.
Our transformation replaces local variable declarations by
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a method call that refers to a newly created helper method.
This helper method uses an additional parameter to bind the
variable value.

For example, consider the LJ program in Figure [[1(a)] that
contains a local variable declaration of name b, initialized to
a.toString(). The method concatenates b with itself and calls
methodHelper to compute its return value. The result of our
desugaring appears in Figure[T1(b)] In place of the local vari-
able declaration, the desugaring inserts a call to a generated
method methodHelper and passes the variable value as argu-
ment. The generated method (Line 6) contains the code that
followed the local variable declaration. However, since there
was already a method named methodHelper in the original
program, a variable capture occurred. We used name-fix to
eliminate that variable capture. To this end, name-fiz had
to rename either of the declarations of methodHelper. As
explained in Section[4.3] name-fiz chose to rename the gen-
erated method because it is private and thus not part of the
interface.

To summarize, we successfully applied name-fiz to elim-
inate variable capture produced by four different transfor-
mations. The transformations implemented optimizations,
language extensions, and refactorings. An evaluation of
name-fiz on an existing code base it outside the scope of
this paper and will be the focus of future work.

6. Related Work

Transforming modular programs. While the application of
modularity on program compilation has been a subject of
previous work [1} 3]], the separate application of program
transformations has not been in the focus of research so
far. Rule-based program transformation systems like Strate-
go/XT [23]] or Rascal [15] implicitly provide basic support
for transforming modular programs as rules or strategies can
be separately applied on subsets of a program’s syntax. How-
ever, this support is not comprehensive enough to allow the
propagation of transformation effects to dependent modules
that are unavailable when the transformation is applied. As
a result, additional work is required by developers to allow
a modular application of cross-module transformations like
the refactoring presented in Figure The usage name-fix
can reduce this amount of work by providing a solution for
modular transformation hygiene that is independent of the
actual transformation logic.

Transformation hygiene. Extensive research on hygiene has
been performed for specific types of program transforma-
tions. Especially the area of hygienic macro expansion has
originated a large number of approaches [4}, |6, 14} [16] and
concepts similar to name-fix were researched in this area [6].
However, a key difference between name-fiz and most hy-
giene approaches for macros is that name-fiz is applied as a
post-processing after the transformation was applied, while
macro-based algorithms are usually applied as part of the
expansion process. This is important to allow name-fiz to



be independent of the transformed language and the trans-
formation engine. Technically, because name-fiz is a post-
processing and not integrated into a language’s compiler,
name-fiz cannot rely on a graph-based program representa-
tion used by the compiler internally [[18]. Instead, name-fiz
needs to perform explicit renamings to make the fixed binding
structure available for subsequent tools.

The name-fix algorithm presented in this paper is based
on a previous version with the same name developed by Erd-
weg et. al. [10]]. Our extended version of name-fiz removes
two key limitations of its predecessor, namely its inability to
handle modular programs and transitive references. If applied
on a program without external references or transitivity, the
results of the previous and the current version of name-fix
are similar, although not necessarily identical. The reason
why the results may differ is that the select-renaming func-
tion we presented may select references to be renamed, while
the original version always renamed definitions. The correct-
ness of the original version of name-fiz is formally proven,
which is an open task for the algorithms presented in this
paper.

An alternative approach to eliminating variable capture
is the addition of qualifiers instead of variable renaming.
Automated approaches for this have been presented for Java
in particular [[19] and for other languages generically [5]].
However, adding qualifiers is limited to refactorings which
do not introduce new identifiers. Moreover, these systems
assume that a transformation always intends to preserve
the original behavior of the target program. Yet, the idea
of combining identifier qualification with renaming seems
promising for future research and will be shortly discussed in
Section[7l
Modelling name bindings. Neron, et. al. [17]] described a
more advanced representation of name graphs that provides
a more expressive, yet still language-independent model of
name relations in a program. The scope graphs they intro-
duce allow an analysis of the consequences of renamings
without re-resolving the underlying program. If combined
with modularity features, scope graphs could support the
incrementalization of name-fiz and even a non-recursive im-
plementation that is able to determine all required renamings
in a single iteration.

7. Conclusion and Future Work

We presented name-fix, a generic, modular solution for elim-
inating variable capture resulting from program transforma-
tions. With name-fiz, the effort of manually ensuring hy-
giene can be lifted from designers of transformations and
replaced by a fully automated post-processing step. With
our case studies on refactoring, optimization, and language
extension for different programming languages, we demon-
strated the versatility of name-fix. In particular, name-fiz
is non-invasive, language-parametric, and transformation-
parametric.

69

An issue of modular capture avoidance compared to global
approaches is the possibility of unsolvable situations. In our
definition of name-fiz, we have identified two problematic
situations that could only be resolvable through renaming of
external declarations. First, if an identifier refers to multiple
external declarations and one of them was renamed, then it is
impossible to rename the reference such that it again refers to
all external declarations. Second, if there is variable capture
between external declarations that are imported into the same
module, then no local renaming can resolve this capture. As
we have illustrated, there is no possible solution to solve these
scenarios by only renaming local variables.

An alternative approach to solve variable capture that
could be integrated as part of name-fiz is the adoption of
qualifiers and other program changes that circumvent the stan-
dard scoping of the underlying language. For example, some
module systems allows import statements to bring only some
definitions into the local, hiding the other definitions. Using
such features, it may be possible to support the problem-
atic situations that currently fail and the elimination may be
even less invasive. On the downside, using advanced module-
system features makes the elimination language-specific as
not all languages provide the same module-system features.

In ongoing work, we explore the application of name-fiz
to existing Java code. We use Oracle’s Java compiler to
compute modular name graphs. We hope that this work
will provide insights into the scalability and applicability of
name-fiz on large-scale code bases and will enable support
for capture avoidance in the Sugar] framework [9].
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