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Abstract
Distributed incremental processing is an e�ective solution
for processing large amounts of data in an e�cient way. In
this se�ing, algorithms for operator placement automatically
distribute data queries the the available processing units.
However, current algorithms for operator placement focus
on performance and ignore privacy concerns that arise when
handling sensitive data. We present ongoing research on a
newmethodology for privacy-aware operator placement that
both prevents leakage of sensitive information and improves
performance. We implement a working prototype based on
previous work on (local) incremental computation.
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1 Introduction
One of the major challenges for achieving high performance
in a distributed system is utilizing all available processing
units to their full extent, taking load balancing, latency, and
bandwidth into account. In particular, systems that solve
the operator placement problem translate high-level descrip-
tions of sequential computations into e�cient distributed
computations. �ese systems provide a high-level language-
based interface to distributed systems. In this work, we
consider the problem of placement from the perspective of
data privacy in a distributed system for incremental compu-
tation where intermediate operators propagate incremental
changes that contribute to the �nal result of a query.

While it is relatively easy to secure communication chan-
nels, it is virtually impossible to protect sensitive data unless
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one controls the machine and can prevent a concurrent pro-
cess, the OS, or the hardware from leaking information. We
tackle this problem by introducing a privacy-aware place-
ment strategy that does not distribute sensitive data to ma-
chines that are deemed to be insecure.

We proposes a two-phase algorithm for automated privacy-
aware operator placement of SQL-like, – incremental and
distributed – queries over relational data. �e �rst phase
generates a set of deployment candidates that do not violate
privacy constraints. �e second phase �nds the best place-
ment based on a cost model. Our prototype, SecQL , is an
extension to i3QL [2], an existing framework for incremental
computation.

2 Overview
� running example of a Hospital information system in-
troduces our approach. �e hospital’s clinical database Pa-
tientDB stores information about the current patients. �e
KnowledgeDB database contains data of case reports (symp-
toms and corresponding diagnosis etc). �e PersonDB data-
base provides general information about citizens. �eir infor-
mation can be combined to �nd diagnoses and suggestions
for the current patients, e.g., a user can request the name of
all patients that have symptoms that could point to allergy.

1 val result = SELECT (∗)
2 FROM (personDB, patientDB, knowledgeDB)
3 WHERE ( (person, patient, knowledge) =>
4 person.id == patient.id AND patient.symps == knowledge.symps
5 AND knowledge.diagnosis == ”Allergy” )

For simplicity, we assume that each database contains a
single table (e.g., the PersonDB contains a PersonDB table).
�e query can be represented as a tree of operators, shown
in �gure 1. In the tree, the condition from the WHERE-
clause has been split into three operators: �e selection
know.diagnosis == ”Allergy” (close to the Knowledge source), the
join pers.id == pati.id, and the join pati.symps == know.symps.
When a new element is added to one of the databases,

the change is propagated through each operator in the tree.
Finally the result of the query is incrementally updated.
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Figure 1. Local query.
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Figure 2. Overview of SecQL .
Distribution and Privacy Using the tree representation,
SecQL automatically �nds optimal deployments in a dis-
tributed system which satisfy user-de�ned privacy require-
ments. An overview of the approach is in �gure 2. �e input
is, additionally to a query tree, the system speci�cation about
the distributed environment, i.e. available hosts and access
control speci�cations. �e query is processed in two phases.
�e �rst phase, deployment space reduction, generates all

possible deployments that do not violate privacy constraints.
�e constraints are derived from (1) the sensitivity of the
source relations, where we allow each column to declare a
di�erent sensitivity, for example, to di�erentiate between a
person’s name, home address, and diagnosis; (2) the privi-
lege of the hosts involved, which determines what data may
be forwarded where; and (3) the information �ow of the
query, because privacy concerns only arise where sensitive
data can �ow to a non-privileged processing unit. An infor-
mation �ow type system (not discussed here, for brevity),
provides a static taint analysis that tracks the taint of each
column individually. A placement algorithm for the incre-
mental operators is expressed as a code transformation
that introduces remote connections into the queries. �e
transformation can be proven correct with respect to the
type system to ensure that all operators are deployed on
hosts with su�cient permissions.
�e second phase, cost model optimization, computes the

optimal deployment based on performance metrics among
all candidates. For the cost of a deployment, we consider
bandwidth and CPU load, but the approach can be easily
extended to other metrics such as latency. �e goal of this
phase is to �nd the deployment with the minimal cost to
achieve the best performance for the distributed incremental
computation.

Our approach derives an operator placement that is prov-
ably correct: It preserves the sequential behavior and never
leaks sensitive data.
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Figure 3. Distribution of the query.

Example Figure 3 shows a possible distribution for the
query above. We assume that all databases run on di�er-
ent hosts – the colored background circles. �e following
privacy constraints hold. �e information in PatientDB is
private: Only the client and the host of PatientDB can ac-
cess the data. PersonDB can also be accessed by the host of
PatientDB. �e KnowledgeDB database, on the other hand,
contains public data. Data is sent to the host of PatientDB,
it is aggregated there, and the result is sent to the client.
�is is correct, because the host of PatientDB has permission
to access all data. �e knowledge database performs the
selection before sending the data to minimize the network
load. In summary, this placement reduces the amount of
computation performed on the client and the amount of data
transferred over the network.

3 Implementation
We implemented SecQL as a Scala DSL extending i3QL [2],
which provides SQL-like queries, local incremental data pro-
cessing and relational algebra optimizations. We use light
weight modular staging (LMS) [3] to inspect and edit func-
tions as well as performing common subexpression elimina-
tion. We use the relational algebra trees generated by i3QL
and distribute the operators, thus gaining bene�ts from all
optimizations.
For the distribution, we compile SecQL queries to Akka

actors [1]. Each operator in the tree is executed inside an
actor and deltas among operators are transmi�ed as asyn-
chronous actor messages. Also, we extended i3QL to support
the additional syntax for privacy.
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