
Modular and Automated Type-Soundness
Verification for Language Extensions

Sebastian Erdweg1 and Florian Lorenzen2

1 TU Darmstadt 2 TU Berlin

Whenever code generation is used to abstract from low-level details or to provide
high-level interfaces to software developers, type errors in generated code jeopar-
dize the abstraction barrier: First, error messages are in terms of generated code
and thus expose programmers to low-level details that should be hidden. Second,
manual inspection of generated code may be necessary to identify the cause of the
type error. Third, since a type error in generated code may be caused by either
a defective generator or by invalid generator input, manual inspection of the
generator may be necessary to identify the generator’s contract and whether the
input adheres to that contract. Type errors in generated code present a serious
usability threat for abstractions implemented via code generation.

We address this problem in the context of code generators that extend a base
language with new language constructs by translation into other constructs of
the base language. Such code generators are sometimes referred to as desugarings.
Many compilers employ desugarings to transform programs of the input language
into a core language, so that subsequent compiler phases can focus on fewer
language constructs. Moreover, macro systems empower regular programmers
to introduce new language constructs via desugaring transformations. Despite
wide-spread application of desugarings, few existing compilers and no existing
macro system can guarantee the absence of type errors in desugared code.

To this end, we present SoundExt, a formalism for soundly extending a base
language with new language constructs. SoundExt statically and modularly
validates a language extension and guarantees that desugared code does not
contain type errors. More specifically, for each a language extension, SoundExt
requires the definition of (i) an extended syntax, (ii) type rules for checking
programs that use the extended syntax, and (iii) a desugaring transformation
that translates a program of the extended syntax into a base-language program.
SoundExt then derives proof obligations for each user-defined type rule: For all
programs permitted by the type rule, the desugared version of these programs
must have the same type. SoundExt synthesizes the corresponding proof for
each type rule by instrumenting the inference engine with additional axioms that
correspond to the assumptions of the user-supplied type rules. We exemplify
our methodology in following Section. We have verified that the validity of each
derived proof obligation entails the following high-level property:

Γ `ext e : T ∧ e ∗ e′ ∧ e′ ∈ Base ⇒ Γ `base e
′ : T

That is, given a program e that is well-typed in the extended type system, if
this program desugars into a base-language program e′, then the desugared

T-Var
x :T ∈ Γ
Γ ` x : T

T-Abs
Γ, x :T1 ` e : T2

Γ ` λx :T1.e : T1 → T2

T-App
Γ ` e1 : T1 → T2 Γ ` e2 : T1

Γ ` e1 e2 : T2

Fig. 1. Type rules of the simply-typed lambda calculus.

program is well-typed in the base type system. In other words, type checking
the user-supplied program is sufficient to ensure the absence of type errors in
desugared code.

To demonstrate the expressiveness of SoundExt, we instantiated the formal-
ism for SugarFomega, a syntactically extensible variant of System Fω. Besides
standard lambda and type abstraction, SugarFomega features variants, records,
and higher-order iso-recursive types as well as SugarJ-like macros with flexible
syntax [1,3,4]. Using this macro system, SugarFomega programmers can introduce
new language constructs at the level of expressions, types, and kinds. Accord-
ingly, programmers define additional “type” rules using type and kind judgments.
We have implemented language extensions of SugarFomega for let expressions,
monadic do blocks (no implicit dictionary passing), and even algebraic data types.
SoundExt modularly validated each of these extensions and guarantees that
they are sound with respect to the type system of System Fω.

Illustrating example

Figure 1 shows the standard type rules of the simply-typed lambda calculus as
they, for example, appear in Pierce’s Types and Programming Languages [5].
The soundness of the corresponding type system is an established fact in the
programming-language community. However, when extending such a base lan-
guage, one has to manually reestablish the soundness theorem for the extended
language [6]. As we demonstrate with SoundExt, we can automatically verify
the soundness of the extended type system for language extensions that are
defined through translation into the base language.

For example, consider the extension of the simply-typed lambda calculus with
let expressions:

e ::= . . . | let x :T = e in e

We can rewrite let expressions to the simply-typed lambda calculus using the
following desugaring:

desugar-let : (let x :T = e1 in e2) (λx :T.e2) e1

Since we want to avoid type errors in generated code, we extend the type system
of the simply-typed lambda calculus with a type rule for let expressions:

T-Let
Γ ` e1 : T1 Γ, x :T1 ` e2 : T2
Γ ` let x :T1 = e1 in e2 : T2

In the hope of preventing type errors in generated code, we use the extended
type system to validate a user program prior to any desugaring. This way, the
rewrite rule desugar-let will only be applied to a let expression that has been
checked by T-Let. For example, the expression

let n : Nat = 17 inn+n

is well-typed since 17 has type Nat and the judgment n : Nat ` n+n : Nat holds.
Therefore, it is safe to apply the rewrite rule, that is, the rewriting generates a
well-typed expression:

(λn : Nat.n+n) 17

Conceptually, there are two sources of possible errors. First, the rewrite rule
may be defective and produce ill-typed or wrongly typed code, even though the
input let expression was well-typed according to T-Let. Second, the type rule
may be defective and admit let expressions that are not well-typed. For example,
a defective rewrite rule (let x :T = e1 in e2) (e2 e1) would translate above
let expression into the ill-typed expression (n+n) 17. Conversely, suppose we
forgot the first premise in the definition of the type rule T-Let. This defective
type rule would admit the expression (let f : Nat → Nat = 17 in f 0), which the
(correct) rewrite rule desugar-let translates into the ill-typed program (λf : Nat →
Nat.f 0) 17. Technically, these two sources of errors are two sides of the same
coin: To guarantee the absence of type errors in generated code, we must ensure
that the rewrite rule and the type rule are correct with respect to each other.

To this end, we can read the type rule T-Let as a contract for the rewrite
rule desugar-let: The rewrite rule may assume all input adheres to the type rule
T-Let, and the rewrite rule must produce an expression of the type declared in
the type rule. In essence, the rewrite rule must be type-preserving with respect
to the type rules. If this holds, we can type check the user program once before
desugaring and know that the desugared program has the same type.

To verify that user-defined rewrite rules preserve types according to the user-
defined type rules, we proceed as follows. We symbolically apply the rewrite rule
to the subject of the corresponding type rule. For example, for the let extension
we obtain the type rule T-Let’:

T-Let’
Γ ` e1 : T1 Γ, x :T1 ` e2 : T2

Γ ` (λx :T1.e2) e1 : T2

We could use this type rule to validate the code generated by desugar-let. Instead,
we want to show that this type rule is admissible, that is, for all expressions
typeable through applications of T-Let’, there is a derivation in the type system
without T-Let’ given the same context yielding the same type. Accordingly, we
do not need T-Let’ to type check the generated code, because the other type
rules already are expressive enough.

SoundExt automatically infers proof obligations for the admissibility of
derived type rules. But, SoundExt also automatically verifies these proof obli-
gations. In fact we can reuse the type system for checking the admissibility of

a derived type rule if (i) we interpret all metavariables in the assumptions and
conclusion as constants that only unify with themselves and (ii) we temporarily
add the assumptions of the derived type rule as axioms to the system. A type
rule then is admissible if we can find a derivation of the modified conclusion
given the additional axioms.

For example, for T-Let’ we try to find a derivation for Γ ` (λx :T1.e2) e1 : T2
given the axioms (Ax1) Γ ` e1 : T1 and (Ax2) Γ, x :T1 ` e2 : T2. Indeed, we
can infer the following derivation, where all occurring metavariables in fact are
constants. For instance, it is not possible to derive Γ ` 0 : T1 using Ax1.

T-App

T-Abs

Ax2
Γ, x :T1 ` e2 : T2

Γ ` λx :T1.e2 : T1 → T2
Ax1

Γ ` e1 : T1
Γ ` (λx :T1.e2) e1 : T2

This derivation shows that the type rule T-Let’ is admissible. As consequence,
given an expression that is well-typed according to the user-defined type rule
T-Let, we know that the expression generated by desugar-let has the same type
as the original let expression. Accordingly, no type errors can emerge from the
code generated by the desugaring rule.

Outlook

SoundExt modularly checks language extensions to ensure desugared code is
well-typed. As long as extensions are not syntactically overlapping, SoundExt
supports incremental extension [2] (one extension desugars into code of another
extension) and extension unification [2] (independent extensions can be unified
into a single extension). We have formally verified the soundness of SoundExt
and the composability of SoundExt extensions.

References

1. S. Erdweg. Extensible Languages for Flexible and Principled Domain Abstraction.
PhD thesis, Philipps-Universiät Marburg, 2013.

2. S. Erdweg, P. G. Giarrusso, and T. Rendel. Language composition untangled. In
Proceedings of Workshop on Language Descriptions, Tools and Applications (LDTA),
pages 7:1–7:8. ACM, 2012.

3. S. Erdweg, T. Rendel, C. Kästner, and K. Ostermann. SugarJ: Library-based
syntactic language extensibility. In Proceedings of Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pages 391–406.
ACM, 2011.

4. S. Erdweg, F. Rieger, T. Rendel, and K. Ostermann. Layout-sensitive language
extensibility with SugarHaskell. In Proceedings of Haskell Symposium, pages 149–160.
ACM, 2012.

5. B. C. Pierce. Types and programming languages. MIT press, 2002.
6. A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Information

and Computation, 115(1):38–94, 1994.

	Modular and Automated Type-Soundness Verification for Language Extensions

