
Finding Bugs in Program Generators by
Dynamic Analysis of Syntactic Language Constraints1

Sebastian Erdweg
TU Darmstadt, Germany

Vlad Vergu
TU Delft, Netherlands

Mira Mezini
TU Darmstadt, Germany

Eelco Visser
TU Delft, Netherlands

Abstract
Program generators and transformations are hard to implement cor-
rectly, because the implementation needs to generically describe
how to construct programs, for example, using templates or rewrite
rules. We apply dynamic analysis to program generators in order
to support developers in finding bugs and identifying the source of
the bug. Our analysis focuses on syntactic language constraints and
checks that generated programs are syntactically well-formed. To
retain a language’s grammar as the unique specification of the lan-
guage’s syntax, we devised mechanisms to derive the analysis from
the grammar. Moreover, we designed a run-time system to support
the modular activation/deactivation of the analysis, so that genera-
tors do not require adaption. We have implemented the analysis for
the Stratego term-rewriting language and applied it in case studies
based on Spoofax and SugarJ.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Programming by contract; I.2.2 [Automatic Pro-
gramming]: Program transformation; D.3.4 [Processors]: Run-
time environments

General Terms Languages, Design

Keywords typesmart constructors; dynamic analysis; program
transformation; generative programming; well-formedness checks;
abstract syntax tree; Spoofax; SugarJ

1. Motivation
The application areas of program generators and program transfor-
mations are versatile and range from the implementation of pro-
gram optimizations to the compilation from one language to an-
other language, the injection of monitoring instructions, and the
weaving of aspects. In our own work, we mostly use program trans-
formations for the implementation of compilers for domain-specific
languages in the context of language workbenches [5].

Unfortunately, it is difficult to implement program transforma-
tions correctly, because the implementation needs to generically

1 This is a demonstration paper accompanying the full article that has been
published at Modularity’14 [6]

[Copyright notice will appear here once ’preprint’ option is removed.]

describe how to construct programs, typically using templates or
rewrite rules. Therefore, a transformation produces similar pro-
grams for related inputs that get answered by the same template
or rewrite rule. Implementing transformations is difficult because
each template or rewrite rule is responsible for a class of inputs and
must translate each of the inputs to a well-behaved program.

Moreover, if a program transformation produces an incorrect
result for some input, it is difficult to discover the origin of the
mistake. Generally, there are two possibilities: Either the input was
incorrect and should not have reached the transformation, or the
transformation is incorrect and produced invalid code. But even if
we know the input is correct and the transformation is to blame,
it is still difficult to find out which part of the transformation
exactly went wrong. To answer this question, we would have to
identify which part of the result is incorrect, which part of the
transformation constructed this part of the result, and what led the
transformation to construct it incorrectly.

For example, consider the program transformations compile1
and compile2 displayed in Figure 1. Both transformations are imple-
mented in the strategic term-rewriting language Stratego [10] and
compile a lambda expression to one and the same anonymous Java
class. The lambda expression binds variable x of type atype and
has body body with result type rtype. From such a lambda expres-
sion, each transformation generates an anonymous class instance
of interface lambda.Function and defines a public method apply that
takes a parameter corresponding to the lambda-bound variable. The
body of the generated method is defined by a recursive call of the
transformation on the body of the lambda expression.

The second transformation compile2 uses untyped abstract syn-
tax (similar to s-expressions) to describe the generated code. As
the abstract syntax of the target language Java is rather compli-
cated, it is very easy to accidentally generate ill-formed code in
compile2. For example, a missing Id tag around a name such as
"lambda" or a forgotten None or Some, which are used to represent
optional nodes. Such little mistakes are hard to trace and can entail
severe problems that may break the rest of the processing pipeline,
such as a static analysis or a pretty printer that expect syntactically
well-formed code as input. The first transformation compile1 avoids
some of these mistakes by using concrete Java syntax in the gen-
eration template, which is parsed with an enriched Java grammar
before the transformation is applied [9]. For example, the parser
will automatically produce a well-formed abstract syntax tree for
the qualified name lambda.Function that contains all necessary Id
tags.

However, despite using concrete syntax and a parser, even
compile1 is not safe at all and can generate ill-formed code: When
splicing external data into a generation template (designated by ∼
in the template of compile1), the injected data must match the ex-
pected syntactic form. For example, both transformations assume
that the types of lambda expressions have a Java encoding, because

1 2014/2/20

compile1 :
Lambda(x, atype, rtype, body)
->
|[new lambda.Function<∼atype, ∼rtype>{

public ∼rtype apply(∼atype ∼x) { ∼cbody; }
}

]|
where cbody := <compile> body

compile2 :
Lambda(x, atype, rtype, body)
->
NewInstance(
None(),
ClassOrInterfaceType(

TypeName(
PackageOrTypeName(Id("lambda")),
Id("Function")),

Some(TypeArgs([atype, rtype]))),
[],
Some(ClassBody(

[MethodDec(
MethodDecHead(

[Public()], None(), rtype, Id("apply"),
[Param([], atype, Id(x))], None()),

cbody)])))
where cbody := <compile> body

Figure 1. Compilation of a lambda expression to Java by transfor-
mation of the syntax tree, with and without using concrete syntax.

atype and rtype are injected unchanged into the generated Java
code. Whether this is true or not cannot be answered by looking
at Figure 1 alone. Instead, a (potentially global) data-flow anal-
ysis is necessary to statically determine the type encoding of the
lambda expressions that are passed to compile as input. Similarly,
compile assumes that the recursive compile call on the lambda-
expression body results in a valid Java method body. Again, a data-
flow analysis is required to ensure this statically. These examples
only consider the syntactic structure of generated code; guaran-
teeing that generated code is well-typed would be even harder. In
particular, due to Stratego’s sophisticated language features (for ex-
ample, rule overloading, generic traversals, or dynamically scoped
rewrite rules), an efficient static analysis would be hard to de-
sign and most likely very specific to the Stratego language and
not reusable for other metaprogramming systems. Stratego is not
the only metaprogramming system that fails to guarantee the well-
formedness of generated code. In particular, metaprograms written
in similarly flexible programming languages such as Python, Ruby,
or JavaScript exhibit the same problem.

2. Dynamically analyzing program generators
We propose to apply dynamic analysis to program generators in or-
der to identify incorrect transformation results and the origin of the
mistake. Specifically, a dynamic analysis monitors the execution of
a program transformation and interrupts the execution as soon as
it identifies an error. The analysis can then report details about the
origin of the error based on the monitored execution state and the
involved input data.

For this work, we designed and implemented a dynamic analysis
that checks if a transformation produces well-formed syntax trees.
That is, whenever the a transformation produces a (fragment of
a) syntax tree, our analysis checks whether the tree adheres to
the context-free syntax of the target language. When the analysis

recognizes an ill-formed tree, it can point out the transformation
that produced the tree.

For example, the analysis checks that the transformation shown
in Figure 1 calls the constructor Param in the generated method
header with a valid type and identifier. The analysis triggers as soon
as the an ill-formed Param node is constructed and, thus, rejects the
construction if the parameter name is not wrapped in an Id syntax-
tree node or the parameter type atype is not a well-formed syntax
tree representing a Java type.

In fact, the analysis monitors the construction of every syntax-
tree node and checks whether the arguments are valid for the given
node. To do so, it computes the syntactic sort of the arguments
and checks whether they conform to the constructor. To reduce
performance overhead, the analysis caches the syntactic sort of a
tree on construction of that tree, so that the sort of arguments is
always directly available. For example, when checking the Param
construction, the analysis does not have to recurse on the arguments
to retrieve their syntactic sort, but it can retrieve the sorts from the
cache. This way, we were able to limit the analysis to a constant
run-time overhead per construction of a syntax-tree node.

Typesmart constructors. We also propose an implementation
strategy for realizing dynamic analyses of program generators,
called typesmart constructors. A typesmart constructor is a con-
ventional function that acts like a regular constructor and creates
tree nodes. However, in contrast to a regular constructor, a type-
smart constructor may reject the creation of a node if this would
violate a language-specific invariant. For example, a typesmart ver-
sion of the constructor Param from the example above would reject
the construction if the parameter name is not wrapped in an Id
syntax-tree node or the parameter type atype is not a well-formed
syntax tree representing a Java type.

Consider a constructor C with signature

C :: A -> B.

A typesmart constructor for C is any function f with signature

f :: A -> (fail or B∗)

that satisfies

f(a) = fail or f(a) = C(a).

Here, B∗ denotes the type B augmented with annotations of aux-
iliary data such as the syntactic sort or the type of a term. We as-
sume term equality (=) ignores annotations. Accordingly, a type-
smart constructor for C behaves exactly like C except that it may
fail or annotate auxiliary data to the constructed value.

Typesmart constructors can be used to enforce invariants about
constructed data. For example, here are two typesmart list construc-
tors that enforce that all list elements are even integers:

nil() = Nil()
cons(x, xs) =

if x % 2 == 0
then Cons(x, xs)
else fail

By calling typesmart constructors in place of regular construc-
tors, the developer of a program transformation can activate the
corresponding dynamic analysis. However, we also devised support
for modularly and transparently activating typesmart constructors,
as we discuss in the subsequent section.

3. Modular specification and modular
enforcement of well-formedness

In this work, we particularly focused on how to modularly specify
and modularly enforce syntactic well-formedness with typesmart

2 2014/2/20

constructors. Typically, a language’s syntax is specified centrally
by a grammar. It is bad practice to duplicate such specification
because this impedes consistency and maintainability. Instead, we
want to retain the grammar as a modular specification of a lan-
guage’s syntax. Conversely, manually applying typesmart construc-
tors is cross-cutting the whole transformation: Every occurrence of
a regular constructor must be replaced by a typesmart constructor.
Thus, the well-formedness of generated code relies on the users’
discipline to actually call typesmart constructors in place of regu-
lar constructors. Especially, when using third-party libraries, such
discipline cannot be expected.

To avoid replicating information of the grammar in the defini-
tion of typesmart constructors, we devised a transformation that
derives typesmart constructors from the grammar automatically.
This way, if the grammar changes, we can derive updated type-
smart constructors easily. Our transformation expects the grammar
to be expressed in SDF2 [8], which uses scannerless generalized
LR parsing. Since SDF2 does neither require constructor names to
be unique nor that every production has a constructor, the trans-
formation has to deal with ambiguous constructor usage. To this
end, the derived typesmart constructors use a subsort relation and
allow a tree to have multiple sorts. Details can be found in the full
paper [6].

To support modular activation and deactivation of typesmart
constructors, we integrated support for typesmart constructors into
the run-time system of the transformation language Stratego [10].
Specifically, we modified the way Stratego terms are constructed
such that a call to a regular constructor is always redirected to
the corresponding typesmart constructor. Since this redirection is
modularly defined, automatic, and transparent to users, we obtain
the following advantages: (i) transformations do not have to be
changed in any way, (ii) transformations can rely on the global
guarantee that all abstract syntax trees represent syntactically well-
formed programs during the whole execution, and (iii) dynamic
checks can be modularly activated and deactivated. Again, further
details can be found in the full paper [6].

4. Application
We applied our dynamic analysis for syntactic well-formedness
within Spoofax [7], SugarJ [1, 2], and SugarHaskell [3, 4]. Spoofax
is a language workbench for agile development of external textual
languages with IDE support. SugarJ is an extensible language that
encapsulates language extensions as regular base-language mod-
ules that can be activated via import statements. Both Spoofax and
SugarJ use Stratego as underlying term transformation language
with which a language developer/extender can define static anal-
yses, program semantics, and semantic editor services.

Spoofax. In Spoofax, we applied typesmart constructors in a
project that implements a compiler for a subset of Java called Mini-
Java. The MiniJava compiler is a Stratego program that transforms
MiniJava trees into their equivalent counterpart written in the Jas-
min assembler language 1 for the Java Virtual Machine. We tested
the MiniJava compiler by applying it to 233 programs written in
MiniJava. To our surprise, this gradually uncovered more than 20
bugs in the Jasmin generator, which we repaired. The uncovered
defects caused syntactically incorrect Jasmin ASTs to be gener-
ated by the compiler. The majority of violations involved missing
constructors that wrap references to classes, fields, and labels. For
example, we changed the compiler as follows:

Reference("java/io/PrintStream")
 Reference(CRef("java/io/PrintStream"))

1 http://jasmin.sourceforge.net

GOTO(end)
 GOTO(LabelRef(end))

When working with abstract syntax trees, this is a typical problem:
The abstract syntax requires more intermediate nodes than seems
necessary for a programmer. Therefore, it is easy to forget some of
these nodes, such as LabelRef. Note that using concrete syntax in
the generation template [9] would only have resolved the former
violation but not the latter violation, because the sort of end is
unknown at compile time.

Another significant part of the morphological errors were
caused by mismatching types, such as integers used instead of
strings, and ill-placed or missing constructors:

ALOAD(n)
 ALOAD(VarNum(<int-to-string> n))

JBCVarDecl(
VarNum(n), x, <to-jbc> t,
LabelRef(START()), LabelRef(END()))

JBCVarDecl(

<int-to-string> n, x, JBCFieldDesc(<to-jbc> t),
LabelRef(START()), LabelRef(END()))

In the MiniJava compiler, the generated Jasmin code is for-
warded to a rather permissive pretty-printer that only locally ap-
plies formatting rules that do not capture nor rely on the hierar-
chical structure of the tree. We suspect that the errors we found
remained hidden until now because the pretty-printer accepts these
ill-formed syntax trees and emits syntactically correct concrete Jas-
min syntax. In different application scenarios, the bugs we found
could have been severe. Especially, forwarding ill-formed code to
another program transformation, for example a byte-code verifier
or optimizer, may lead these tools to fail. Such bugs are very hard
to track down, because a developer needs to manually retrace the
data flow of the generated program to discover where the ill-formed
term was originally constructed. Typesmart constructors reject ill-
formed programs right away when they are constructed. This pro-
vides precise and early feedback to developers.

SugarJ and SugarHaskell. In SugarJ and SugarHaskell, we ap-
plied typesmart constructors for validating language extensions of
Java and Haskell (transformations are implemented in Stratego).
This led to the discovery of a number of bugs in previously devel-
oped and tested language extensions. Similar to the MiniJava com-
piler, we found a few instances of missing constructor applications
that were supposed to wrap expression literals, variable symbols in
expressions, etc. But we also found more complicated defects.

For example, in a SugarHaskell language extension that intro-
duces special syntax for “idiomatic brackets”, we found a bug re-
lated to constructor and variable symbols in Haskell. The Haskell
grammar distinguishes constructor symbols (starting with an upper-
case character) from variable symbols (starting with a lower-case
character). One transformation failed to retain this distinction. We
had to rewrite the production of the language extension and the
desugaring to fix the issue:

"(|" Exp Qop Exp "|)" -> Exp {"IdiomBrack"}
 "(|" Exp Qvarsym Exp "|)" -> Exp {"VarIdiomBrack"}

<apply-effect> (BinCon(op), [e1, e2])
 <apply-effect> (BinOp(op), [e1, e2])

The first change restricts the production for idiomatic brackets to
only permit variable symbols and to prohibit constructor symbols.
The second change fixes the generation template, which was declar-
ing that the parsed symbol is a constructor whereas it in fact is
a variable. Would we break this distinction between constructors
and variables (as the original code did), this may have far-reaching

3 2014/2/20

http://jasmin.sourceforge.net

consequences. For example, subsequent optimizations may assume
that constructor calls can be executed cheaply, whereas regular
function calls should be inlined or are subject to further optimiza-
tion if they are recursive. An optimization that transforms the pro-
gram accordingly would have failed. Typesmart constructors noti-
fied us of the error immediately when the illegal program fragment
was generated, instead of silently failing.

We also applied typesmart constructors to three Java extensions
implemented with SugarJ: tuple notation, lambda expressions, and
literal XML. We did not discover any additional syntactic errors in
code generated from these extensions for our test programs. Since
we only used a handful of test inputs for our language extensions,
it might well be that the test coverage was too low. Alternatively,
the transformations indeed are safe and produce well-formed pro-
grams.

5. Conclusion
To support developers of program transformations, we propose to
apply dynamic analyses that check the well-formedness of gener-
ated code. So far we focused on syntactic well-formedness and im-
plemented a dynamic analysis that guarantees that generated code
adheres to the grammar of the target language. We propose type-
smart constructors as an implementation technique for dynamic
analyses of program generators. Application of typesmart construc-
tors in existing transformations indicates their effectiveness to re-
veal bugs, even within well-tested code.

To enable the modular specification and enforcement of well-
formedness checks, we derive typesmart constructors from a lan-
guage’s grammar and provide support for transparent activation and
deactivation of typesmart constructors in the run-time system of
Stratego. In future work, we plan to explore the application of type-
smart constructors to check for semantic properties such as well-
typedness.

References
[1] S. Erdweg. Extensible Languages for Flexible and Principled Domain

Abstraction. PhD thesis, Philipps-Universiät Marburg, 2013.

[2] S. Erdweg, T. Rendel, C. Kästner, and K. Ostermann. SugarJ: Library-
based syntactic language extensibility. In Proceedings of Conference
on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), pages 391–406. ACM, 2011.

[3] S. Erdweg and F. Rieger. A framework for extensible languages. In
Proceedings of Conference on Generative Programming and Compo-
nent Engineering (GPCE), pages 3–12. ACM, 2013.

[4] S. Erdweg, F. Rieger, T. Rendel, and K. Ostermann. Layout-sensitive
language extensibility with SugarHaskell. In Proceedings of Haskell
Symposium, pages 149–160. ACM, 2012.

[5] S. Erdweg, T. van der Storm, M. Völter, M. Boersma, R. Bosman,
W. R. Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, G. Konat,
P. J. Molina, M. Palatnik, R. Pohjonen, E. Schindler, K. Schindler,
R. Solmi, V. Vergu, E. Visser, K. van der Vlist, G. Wachsmuth, and
J. van der Woning. The state of the art in language workbenches. In
Proceedings of Conference on Software Language Engineering (SLE),
volume 8225 of LNCS, pages 197–217. Springer, 2013.

[6] S. Erdweg, V. Vergu, M. Mezini, and E. Visser. Modular specification
and dynamic enforcement of syntactic language constraints. In Pro-
ceedings of International Conference on Modularity (AOSD), 2014. to
appear.

[7] L. C. L. Kats and E. Visser. The Spoofax language workbench: Rules
for declarative specification of languages and IDEs. In Proceedings of
Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 444–463. ACM, 2010.

[8] E. Visser. A family of syntax definition formalisms. Technical Re-
port P9706, Programming Research Group, University of Amsterdam,
August 1997.

[9] E. Visser. Meta-programming with concrete object syntax. In Pro-
ceedings of Conference on Generative Programming and Compo-
nent Engineering (GPCE), volume 2487 of LNCS, pages 299–315.
Springer, 2002.

[10] E. Visser, Z.-E.-A. Benaissa, and A. P. Tolmach. Building program
optimizers with rewriting strategies. In Proceedings of International
Conference on Functional Programming (ICFP), pages 13–26. ACM,
1998.

4 2014/2/20

	Motivation
	Dynamically analyzing program generators
	Modular specification and modular enforcement of well-formedness
	Application
	Conclusion

