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Abstract

When depicting both virtual and physical worlds, the viewer’s
impression of presence in these worlds is strongly linked
to camera motion. Plausible and artist-controlled camera
movement can substantially increase scene immersion. While
physical camera motion exhibits subtle details of position,
rotation, and acceleration, these details are often missing
for virtual camera motion. In this work, we analyze camera
movement using signal theory. Our system allows us to stylize a
smooth user-defined virtual base camera motion by enriching
it with plausible details. A key component of our system
is a database of videos filmed by physical cameras. These
videos are analyzed with a camera-motion estimation algorithm
(structure-from-motion) and labeled manually with a specific
style. By considering spectral properties of location, orientation
and acceleration, our solution learns camera motion details.
Consequently, an arbitrary virtual base motion, defined in
any conventional animation package, can be automatically
modified according to a user-selected style. As shown in
our experiments, the resulting shots are still fully artist-
controlled, but appear richer and more physically plausible.

Keywords: style transfer, camera shake, camera motion
estimation, structure-from-motion

1 Introduction

The ability to change the camera viewpoint over time – camera
motion – is a key ingredient of expressive film making. Different
movies, TV productions, or cinematographers often adhere
to specific styles of camera motion. Some famous directors
even have a stylistic ”trademark” on how they employ camera
motion [1].

The style in which a camera is moved through the scene can
substantially change the perception of the scene. Different

camera motion styles are often used to highlight certain moods
or situations and can be an important narrative element, e.g.,
fast-paced camera motion in action scenes. In some movies,
e.g., Cloverfield or Blair Witch Project, a shaky camera style
adds to the impression of the story being non-fictional and the
scenes being recorded by the protagonists themselves with a
consumer hand-held camera.

In most real-world productions, however, strong camera shake
is not desired and a multitude of different equipment is used to
reduce the high frequencies in the camera motion paths. This
is achieved by steadicam systems or by mounting the camera
to a dolly, a boom, or a crane. But even well-stabilized camera
systems still exhibit shake. Observers got used to these more
or less subtle deviations, and tend to classify scenes without
camera shake as unnatural.

Camera animations in virtual worlds are usually generated
by an animator who designs a camera motion by assembling
a motion path from multiple mathematically-defined smooth
motion curves. These motion curves contain no camera shake
at all. In a virtual scene the animator has more artistic freedom
in designing the camera path and can test more options than a
cinematographer at a real-world set. Nevertheless, the results
are often not convincing and have an artificial appearance.

Creating a convincing camera movement manually is a
challenging task. Therefore, in this paper we present an
approach to transfer camera shake from real videos onto an
artificially designed camera motion path in a virtual scene.
These additional subtle or strong movements increase the
feeling of unpolished, direct realism. The resulting virtual
camera motions can still be designed by an artist, but exhibit a
richer and more physically plausible look.

Our solution consists of three stages: the data acquisition stage,
the learning stage and the query stage. In the initial data
acquisition stage, our system extracts camera motion from a
video database using computer vision techniques. In the second



stage, the learning stage, we decompose this camera motion
into a base and a detail component and store it, so that base
motions can define a query for suitable detail motions. In the
final query stage, a user provides base motions using common
animation techniques, like three-dimensional spline editing, and
the system adds suitable details interactively. A virtual path
with plausible details can thereafter be used to drive a camera
in a virtual scene.

The paper is structured as follows. We review related work
in Section 2. Section 3 gives details about our approach. We
present results in Section 4 that are discussed in Section 5 before
concluding in Section 6.

2 PreviousWork

In this paper, we combine ideas from camera control and
animation processing, with a recent trend in rendering and image
processing which seeks to extract visual style.

Our system relates to camera control for static [2, 3, 4] or
animated scenes [5, 6, 7], and overlaps with storytelling [8]
in a continuous range from complete artist camera control to
complete computer control. Our approach is orthogonal to and
could be combined with such approaches because we maintain
the original artist-defined path and only enrich it by transferring
camera motion styles.

The formation of images using a certain camera is described by
its internal parameters. Projective parameters can be determined
using images of known scenes [9] and image sequences allow
to capture the radiometric response [10]. Recently, image
collections [11] were used to calibrate brands of cameras. A
separation of base and detail information of camera motion of
real observations has not been described yet.

Camera shake can be an unwanted effect and can be removed
using camera stabilization [12]. Buehler et al. [13] extracted
3D camera motion using structure-from-motion to de-shake and
then warp the images according to this new motion. Content
preserving warps can be used to reliably warp the image into the
stabilized 3D view [14]. After extracting a 3D camera motion
path, Gleicher and Feng [15] project this path onto the closest
“cinematographic” path to make a video appear more directed.

Moving a camera during its (virtual) film exposure also
influences the scene capture and leads to motion blur [16].
For camera shake, the movement is complex, leading to a
complicated blur kernel and, hence, a distinct look (cf. Fig. 1)

Separating a signal into style (sometimes also called the “form”,
the “look” or the “decoration”) and content (sometimes called
“base” or “guide”) is of interest in many classic media, such
as traditional painting [17], or even dancing, where variations
are added on top of a basic movement. Tackling this challenge
computationally allows, among other applications, to perform
style transfer, that is, to extract a style from a signal and apply
it to different content.

Image analogies [18] learn the style of a certain image filter by

Figure 1: Four frames from an animation with complex blur
kernels generated by our system for a walking style motion.

analyzing several before-after examples, similar to approaches
in texture synthesis. Adjustments of tonal values (histogram
matching) [19, 20] are often successful in reproducing a distinct
photographic look.

Surfaces, like landscapes, also have distinct statistical properties
that follow a guide signal [21]. For the special case of human
face geometry Golovinskiy et al. [22] derived a statistical model
to synthesize details.

Style transfer has also been applied to animation, e. g. , of
humans [23, 24, 25], to transfer motion between characters
[26] or to cartoon characters [27].

Texture synthesis can be seen as extracting only the decoration
and then re-synthesizing it to fill a certain space [28, 29, 30, 31].
In [32], Mertens et al. synthesize texture details, but use the
underlying geometry as a guiding signal.

3 Camera Motion Style Transfer

Our system for camera motion style transfer consists of three
phases: the data-acquisition phase, the learning phase and the
query phase. During the acquisition phase, a database of camera
motions is built from a selection of input videos containing
different types of camera motion. Thereby, the camera motion
information is extracted from the videos by a fully-automatic
camera motion estimation algorithm. In the learning phase, the
camera motion paths are separated into low and high frequencies
(base and detail layer). In the query phase an animator can
specify a query-camera motion path using a standard modeling
tool, e.g., by key-framing or, in our case, by editing three-
dimensional splines. The base layer of the query camera motion



is compared to the base layers of the videos in the database. The
detail layers of the locally-well-matching paths are used to add
suitable details to the stylized camera path (cp. Fig. 2).

3.1 Acquisition phase

For the data acquisition we used selected videos of varying
camera motions from different sources, including casual home
video, feature films and TV series. All input videos had a sample
rate of 25 Hz. We exclude all forms of virtual camera motions,
such as computer animated footage.

From this data, we reconstruct the three-dimensional camera-
motion paths originally used in the shooting of the footage.
Our fully automatic camera motion estimation approach [33]
employs well-known computer vision techniques [34, 35, 36]
to extract the camera position, orientation, and focal length
for each frame of the video. As the absolute scale of the
scene cannot be determined from the videos, we convert the
automatically obtained result into an absolute framework by
manually specifying one spatial reference unit for each video.
The resulting camera motion is a regularly-sampled time series
of camera positions and orientations. Such a representation has
six degrees of freedom per frame, where position is stored as
an Euclidean 3-vector x and orientation as a unit quaternion q.
We denote the i-th out of N camera motion paths representing
positions and orientations as a time-varying mapping from time
t to position R3 and orientation S3:

fi(t) : t→ R3 × S3 .

In practice, f is only available over a limited time range
[0, tmax]. If required, we extend the definition of f to R, by
specifying an border mode, such as repeat (the default) or
ping-pong. Further, we denote the matrix corresponding to
a transformation (x,q) as T (x,q) and the inverse as T−1. The
resulting data is called the camera-motion database. While the
algorithms also extract the focal length, we do not make use
of this variation and keep all intrinsic parameters unchanged
during the stylization.

3.2 Learning phase

In the learning phase, we use the camera-motion database to
establish a relation between base camera motion fbase and
camera-motion details denoted as fdetail, which we call the
camera-style model. This model predicts the detail statistics
of a certain base motion with respect to a chosen camera style
at a certain point in time. Precisely, the base motion will act
as the key and the details as the value of a style relation. We
decompose the camera motion into base and detail as follows
(cf. Fig. 3).

Base The base motion, is a smooth version of the camera path,
i. e., the basic curving of the camera path. For smoothing, we
use a Taubin filter [37] S of approximately 0.5 seconds support:

fbase
i (t) = S(fi)(t) .
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Figure 3: We decompose the original camera animation path
into a smooth base path as well as details which are stored in
the local frames of the base path.

In other words, all motion finer than 0.5 seconds is considered a
detail, all coarser motions are included in the base motion.

Taubin’s filter is a non-shrinking filter, which is important for
the two boundary vertices at 0 and tmax. We use 100 iterations
with simple (1,2,1) weights.

Detail Next, we define the detail camera motion as the original
input camera pose, but in the reference frame of the base path
(an offset transformation)

T (fdetail
i (t)) = T−1(fbase

i (t)) · T (fi(t)) .

E. g., a camera motion that is already smooth will not lead to
any details at all, whereas areas with a strong deviation between
the smooth and the non-smooth version of the path have more
details – as expected. Note, that the non-shrinking property
of the Taubin filter [37] prevents spurious detail values at the
boundaries. Further, shrinkage would influence the extraction
and shift base content in the detail layer.

Finally, we perform local frequency analysis (Gabor
decomposition) of this offset transformation leading to a
time-varying spectrum:

F detail
i (ω)(s) = F(fdetail

i (t) ·Nσ(t− s))

A Gabor transform is a Fourier transform F with a time-varying
parameter s. This parameter is used to mask the input signal’s
intensity with a Gaussian and give more weight to the part of
the signal that is close to s in time.

Fig. 4 shows a Gabor decomposition for a very simple input
signal. For Gabor filtering, we use a σ of around 0.2 units, that
is, at every point in time we locally consider the frequencies of
0.1 units to the left and 0.1 units to the right in time.

Query Key As a key to query details, we use the derivative of
the base:

fkey
i (t) = ∇fbase

i (t) .

We compute the derivative ∇ using simple forward
differentiation, which works well as fbase

i (t) is already
smooth. We use the derivative because it correlates best with
the detail movements. For example, moving faster (large
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Figure 2: Stylization overview: Input to the stylization is a smooth virtual camera path (blue line): the style query. A style
database of camera paths (red lines) and their time varying spectra (blocks) was build in a pre-process. To perform the query,
the camera path (blue line) is locally matched against smooth versions of all training examples (pairs of red and blue paths)
at every point in time (orange square) resulting in a distance (number). For each time slice, a new spectrum (orange block
at bottom) is generated as a linear combination of the database spectra, weighted by the inverse distance. Note, that orange
blocks are slices in time: When fixing time, time-varying spectra are just spectra. Finally, we produce the style result by
adding noise with a matching time-varying spectrum.
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Figure 5: Example spectra extracted from two camera motion paths using a Gabor transform. The top row shows the spectra
of a path obtained from a sequence filmed while making a right turn with a bicycle; the bottom row depicts the spectra of a
path reconstructed from a running sequence in the movie Cloverfield. From left to right: position, x-, y-, and z-component;
orientation, x-, y-, and z-component.

derivative) gives stronger details, as well as moving around a
corner (derivative with multiple non-zero components) results
in more shake than a straight movement (only a single non-zero
component).

3.3 Query Phase

In the query phase, a user provides a base camera movement
gbase(t). Its derivative gkey(t) is matched against all elements
fkey
j in the database of the chosen style. Each database element

has an associated spectrum F detail
i (ω)(s) that encodes the detail

statistics. These statics are linearly weighted to yield the detail
statistics Gdetail(ω)(s) that are synthesized by:

Gdetail(ω)(s) =
N∑
i

w(gkey, fkey
i )(s)∑N

j w(gkey, fkey
j )(s)

· F detail
i (ω)(s) ,

with the time-varying weighing w

w(f, g)(t) =
1

|f(t)− g(t)|
,

where | | is a modified L2 norm that weights orientation and
position with differing coefficients. In practice, our scene scale
allows us to use the same factor for both. When computing w,
the border mode extends both f and g to be defined for every t,
allowing for sequences of different length.

We then re-generate motion details according to the derived
statistics Gdetail(ω)(s). For this, we rely on uniformly
distributed random numbers. These numbers are interpolated
on varying scales and are used to sample according to the
time-varying spectrum [38, 39]. We call N the operator that
generates the signal according to the given spectrum:

g(t) = T (gbase(t)) · T (N (Gdetail(ω)(s))) .

Note, that the details – by design – will only share the spectrum
of what was observed and are not actual copies, i. e., they are
non-repetitive.
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Figure 4: Example of a Gabor transform to perform a time-
frequency analysis of a signal.

3.4 Application

In our system, a user loads a virtual scene that can be inspected
in 3D in real-time. The user can define a camera motion path by
placing splines in the scene. The system then synthesizes detail
for that motion path interactively by querying the current path
in the database of details.

Finally, we can hallucinate and synthesized motion frequencies
that were not even present in the original 25 Hz motion
observation. We do this by fitting a line in the spectral domain
into the spectrum and extrapolate frequencies above the original
data’s cut-off frequency. When using a high-refresh-rate display
(e. g. , 120 Hz), these supplementary details add further subtle
movements that increase realism.

4 Results

While motion is difficult to reproduce on paper, depicting
animation details is hardly possible and we refer to the
accompanying video for a visualization.

For our experiments we generated a camera motion database
with a total of 48 automatically analyzed sequences. These
sequences are manually labeled with styles. We used 5 different
labels: walking (17 sequences), running (2 sequences), bicycle
(16 sequences), skateboard (9 sequences), and helicopter (4
sequences). Fig. 5 shows two example spectra extracted from a
biking and a running sequence.

In a first example (please see the supplemental video), a user has
set up a virtual scene (which is also shown in the teaser figure)
and selects different style tags that alter the camera motion style.
First, the user selects a simple walking motion from a certain
movie as style. Our system transfers this walking style to a
different camera animation. The result is a motion including
a curve instead of the straight motion that was present in the
original input movie. Furthermore, the motion is several times
longer than the original input style example. The user then
selects running-style motion details for a faster motion. Note
that the speed changes the details. Then, the user selects a

bicycle style, where mainly details in the y component of the
position, as well as high-frequency rotational noise is present.
Finally, when selecting the skateboard style, only high frequency
positional noise remains.

In a second example (cf. Fig. 6), the user modifies a camera
path, and details are synthesized interactively while the path
changes. The details adapt to the shape of the path, i. e. , details
orthogonal to the path remain orthogonal, even if the path is
deformed. Finally, the users selects the strength and cutoff
frequency of the details to reach the desired result.

Having captured the camera-shake spectrum, we made certain
findings. We can confirm, that – similar to many things in
nature – the power spectrum of camera shake is indeed 1/fh,
with an h ≈ 2, which is the same as, e. g. , for the intensity
distribution in natural images.

5 Discussion

There are alternatives to our detail extraction approach. One
option is to subtract a smoothed version of the path from the
original path and directly rely on the difference. We did not
use this approach, because the resulting animations are always
repetitive and contain copied details (cp. Fig. 7).

The quality of the Gabor time-frequency resolution is limited,
because we have to detail with a relatively limited sampling rate,
compare to, e. g. , sound samples (25 Hz camera animation vs.
typical 44 kHz audio).

Depending on the motion, our choice of 100 iterations for the
Taubin filter might not be optimal. In practice, picking a higher
smoothing will shift base information into the details, while
doing less smoothing will only cause small parts of the signal
to be detected as details. The details are finer for some paths,
while they are coarser for others, and so choosing this parameter
globally is a compromise. Nevertheless, due to our fixed input
sampling rate, we found that our indicated global values make
sense and behave well in most cases. In general, it would be
interesting to find criteria that separate base and detail on a
perceptual basis and for varying frame rates. Fig. 8 shows
extracted details for different cut-off frequencies.

6 Conclusion

We presented a system to add plausible camera motion details
to a virtual camera motion. The system synthesizes details at
interactive rates, so novel camera animations can be readily
inspected in real-time. We avoid repetitive structures in the
motion and are able to mimic various styles.

In future work, we would like to find physical camera parameters
(i. e. , weight, mass tensors), by applying inverse physical
modeling to the extracted camera motion data. Once such data is
available, novel camera paths could also take a physical model
into account. Further, structuring the detail space according
to spectral properties could be used to derive priors for other
applications, i. e. , automatic classification of footage. In the
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Figure 6: An edit session using our system. From left to right: Users manipulate a spline in a 3D world using an existing
framework including an interactive camera preview. Our system adds the details from the style example to two edited path
shapes. Note, how the edited path shapes are different from the style example (which is a straight line) in shape and duration,
but the details are similar. An animated version of this figure can be found in the supplemental video.

Base path Preview Euclidean details Gabor details

Figure 7: Synthesizing details from a time-varying spectrum instead of adding them directly avoids repetition. From left to
right: Given a base path and a preview, adding details in Euclidean space can lead to repeating details (arrows), whereas
Gabor details do not repeat and only share their spectral properties with the style example.

context of rendering, realistic motion blur [16] is achieved by
convolving with the full point spread function (PSF) of the
camera movement during exposure (cp. Fig. 1). We could use
our spectrum extrapolation to generate intra-frame details from
tracking data available only at frame resolution. The resulting
motion blur would agree better with the expected spectrum of
the camera movement. Finally, our results might also be of
interest for stabilization, which could be easier, if the expected
spectrum of camera shake can be modeled.
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