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ABSTRACT

Localisation of multiple active speakers in natural environments
with only two microphones is a challenging problem. Reverbera-
tion degrades the performance of speaker localisation based exclu-
sively on directional cues. This paper presents an approach based
on audio-visual fusion. The audio modality performs the multiple
speaker localisation using the Skeleton method, energy weighting,
and precedence effect filtering and weighting. The video modal-
ity performs the active speaker detection based on the analysis of
the lip region of the detected speakers. The audio modality alone
has problems with localisation accuracy, while the video modality
alone has problems with false detections. The estimation results
of both modalities are represented as probabilities in the azimuth
domain. A Gaussian fusion method is proposed to combine the
estimates in a late stage. As a consequence, the localisation accu-
racy and robustness compared to the audio/video modality alone is
significantly increased. Experimental results in different scenarios
confirmed the improved performance of the proposed method.

1. INTRODUCTION

The problem of localising the active speakers in reverberant and
clustered environments arises in a series of human computing ap-
plications, e.g. human-robot interaction, video conference sys-
tems where cameras are turned towards the persons that are speak-
ing [1], or autonomous recording systems [2] where only the cam-
era streams with the best view of speakers are recorded. Because
of the potentially large number of subjects moving and speaking
in such cluttered environments the problem of robust speaker lo-
calisation is challenging.

In many systems that handle speaker localisation, audio and
video data are treated separately. Such systems usually have sub-
systems that are specialised for the different modalities and are
optimised for each modality separately [3, 4]. With increasing
computing capabilities, both auditory and visual modalities of the
speech signal may be used to improve active speaker detection
and lead to major improvements in the perceived quality of man-
machine interaction. The reason is that each modality may com-
pensate for weaknesses of the other one. Thus, whereas a system
using only video data may mistake the background for the object
or lose the object altogether due to occlusion, a system also us-
ing audio data could continue to focus on the object by following
its sound pattern. Conversely, video data could help where an au-
dio system alone may lose track of the object as it is masked by
background noise and reverberation.

The problem of multimodal multiple speaker localisation
poses various challenges. For audio, the signal propagating from
the speaker is usually corrupted by reverberation and multipath ef-
fects and by background noise, making it difficult to identify the
time delay. For video, the camera view may be cluttered by ob-
jects other than the speaker, often causing a tracker to lose the
subjects. Another problem that needs to be addressed is the audio-
visual data fusion that makes use of the modalities’ complementar-
ity. Audio-visual correlations cannot always be observed and the
fusion approach needs to be robust against missing correlations.

Among the different methods that perform speaker localisa-
tion, only a few are performing the fusion of both audio and video
modalities. Some of them just select the active face among all
detected faces based on the distance between the peak of audio
cross-correlation and the position of the detected faces in the az-
imuth domain [2, 5]. A few of the existing approaches perform the
fusion directly at the feature level, which relies on explicit or im-
plicit use of mutual information [1, 6, 7]. Most of them address the
detection of the active speaker among a few face candidates, where
it is assumed that all the faces of the speakers can be successfully
detected by the video modality. However, this assumption does not
always hold in practise, especially in cluttered environments.

In this paper we present an approach that fuses the estimates
of both modalities in a late stage. The audio modality performs
the multiple speaker localisation using the Skeleton method [8, 9],
energy weighting, and precedence effect filtering and weighting.
The video modality performs the active speaker detection based on
the increased average value and standard deviation of the number
of pixels with low intensities in the mouth region of speakers. The
results of both modalities are represented as probabilities in the
azimuth domain. Inspired by the Skeleton method, the Gaussian
distribution is used for the representation of the video results to
compensate for the localisation deviation of the audio modality.
Meanwhile, the audio modality has the ability to correct the false
detection of the video modality.

In our human-machine interaction scenario, a motorised hu-
man dummy head with three degrees of freedom (called Bob) is
used (shown in Fig. 1). Bob resides in a normal office meeting
room and is able to turn its head to investigate the surrounding
auditory scene, which in our case consists of multiple speaking
subjects. The auditory scene is recorded by two microphones in
Bob’s ears. Bob has also two eyes (cameras) which have a hor-
izontal field of view of approximately 43 degrees and can move
approximately from −15 to +15 degrees in the horizontal direc-
tion.
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In summary, this paper presents the following contributions.
Firstly, we propose a robust system for speaker localisation that is
based on the combination of advanced audio and video process-
ing algorithms. Secondly, in contrast to [2, 5], our approach re-
quires only two microphones and two cameras. Furthermore, it
can handle the most difficult scenario where multiple speakers are
talking at the same time. Finally, the late fusion approach allows
the simultaneous improvement of estimation accuracy and robust-
ness. If both modalities are available, the estimation accuracy is
improved due to the accurate video localisation. Nevertheless, the
approach is also robust if only a single modality contributes infor-
mation.

Figure 1: Bob — the movable human dummy head.

The rest of this paper is organised as follows. Section 2 and
Section 3 present the audio modality and video modality, respec-
tively. The proposed fusion method is described in Section 4. In
Section 5, we will show experimental results of the audio modal-
ity and the fusion method. The last section provides the conclusion
and future work.

2. AUDIO SOURCE LOCALISATION IN REVERBERANT
ENVIRONMENTS

It is widely acknowledged that for human audition, Interaural Time
Differences (ITD) are the main localisation cues used at low fre-
quencies (< 1.5 kHz), whereas in the high frequency range both
Interaural Level Differences (ILD) and ITD between the envelopes
of the signals are used [10]. The resolution of the binaural cues
has implications for both localisation and recognition tasks. Head-
phone experiments show that listeners can reliably detect 10–15µs
ITDs from the median plane, which correspond to a difference
in azimuth of between 1 and 5 degrees. On the other hand, the
smallest detectable change in ILD by the human auditory system
is about 0.5 to 1 dB at all frequencies. Resolution deteriorates as
the reference ITD gets larger, and the difference limen can be as
much as 10 degrees when the ITD corresponds to a source located
far to the side of the head [10].

2.1. Auditory Periphery

Human cochlear filtering can be modeled by a bank of bandpass
filters. The filterbank employed here consists of 128 fourth-order
gammatone filters [11]. The impulse response of the ith filter has

the following form:

gi(t) =

(
t3 exp(−2πbit) cos(2πfit+ φi), if t > 0

0, otherwise,
(1)

where bi is the decay rate of the impulse response related to the
bandwidth of the filter, fi is the centre frequency of the filter, and
φi is the phase (here φi is set to zero). The Equivalent Rectangular
Bandwidth (ERB) scale is a psychoacoustic measure of auditory
filter bandwidth. The centre frequencies fi are equally distributed
on the ERB scale between 80 Hz and 5 kHz. We specifically set
the bandwidth according to the following equations for each fil-
ter [12]:

ERB(fi) = 24.7
`
4.37 fi

1 000
+ 1
´
, (2)

bi = 1.019 ERB(fi). (3)

In order to simulate the middle-ear transfer function, the gains of
the gammatone filters are adjusted according to the data provided
by Moore et al. [13]. We include this middle-ear processing for
the purpose of physiological plausibility. In the final step of the
peripheral model, the output of each gammatone filter is half-wave
rectified in order to simulate the firing rates of the auditory nerve
[8, 9]. Saturation effects are modeled by taking the square root of
the rectified signal.

2.2. Azimuth Localisation and the Skeleton Method

Current models of azimuth localisation almost invariably employ
cross-correlation, which is functionally equivalent to the coinci-
dence detection mechanism proposed by Jeffress [14]. Cross-cor-
relation provides excellent time delay estimation for broadband
stimuli and for narrow band stimuli in the low-frequency range.
However, for high frequency narrow band signals it produces mul-
tiple ambiguous peaks. ITD is estimated by computing the cross-
correlation between the outputs of the precedence processed audi-
tory filter response at the two ears. Given the output of the prece-
dence effect model for the left and right ear in channel i, li(n) and
ri(n), the cross-correlation for delay τ and time frame j is

C(i, j, τ) =

M−1X
n=0

li(jT − n)ri(jT − n− τ) win(n), (4)

where win is a window of M time steps and T is the frame period
(10 ms, or 441 samples with a sampling rate of 44 100). Currently,
we use a Hann window with M = 441, corresponding to a dura-
tion of 10 ms, and consider values of τ between −1 and +1 ms.
For efficiency, the Fast Fourier Transform is used to evaluate func-
tion 4 in the frequency domain. Computing C(i, j, τ) for each
channel i (1 6 i 6 N ) gives a cross-correlogram, which is com-
puted at 10 ms intervals of the time index j.

Ideally, the cross-correlogram should exhibit a ‘spine’ (sharp
peak) at the delay τ corresponding to the ITD of a sound source.
This feature can be emphasised by summing the channel cross-
correlation functions, giving a pooled cross-correlogram, P (j, τ),
which is shown as follows:

P (j, τ) =
NX
i=0

C(i, j, τ). (5)

In free-field listening conditions, diffraction effects introduce a
weak frequency-dependence to the ITDs which is evident in the
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HRIR (Head-Related Impulse Responses)-filtered stimuli used
here. As a result, the ‘spine’ can be unclear and Eq. (5) does
not exhibit a clear peak at the ITD. Here, we address this issue
by warping each cross-correlation function to an azimuthal axis,
resulting in a modified cross-correlogram of the form C(i, j, φ),
where φ is the azimuth in degrees. The azimuth is quantised to a
resolution of 1 degree, giving 181 points between −90 and +90
degrees. Warping is achieved by a table look-up, which relates the
azimuth in degrees to its corresponding ITD in each channel of
the auditory model. The functions relating azimuth to ITD were
trained using HRTF (Head-Related Transfer Function) simulation
and typical mapping formulas [3]. For high frequencies, the cross-
correlogram always exhibits multiple ‘spines’. Here we choose the
‘spine’ which is closest to the corresponding azimuth angle based
on ILD. The ILD can be calculated by Eq. (6). The mapping from
ILD to azimuth angles can be trained for each frequency [3].

ILD = 10 log10

P
n l

2(n)P
n r

2(n)
dB. (6)

A further stage of processing is based on the Skeleton cross-cor-
relation function [9]. For each channel of the cross-correlogram, a
Skeleton function S(i, j, φ) is formed by superimposing Gaussian
functions at azimuths corresponding to local maxima, in the cor-
responding cross-correlation function, C(i, j, φ). First, each func-
tionC(i, j, φ) is reduced to a formQ(i, j, φ), which contains non-
zero values only at its local maxima and the values are weighted by
the energy of the current frame. Subsequently, Q(i, j, φ) is con-
volved with a Gaussian to give the Skeleton function S(i, j, φ):

S(i, j, φ) = Q(i, j, φ) exp

„
−φ2

2σ2
i

«
. (7)

The standard deviations of the Gaussians, σi, vary linearly with the
frequency channel i, being 4.5 samples in the lowest frequency
channel and 0.75 samples in the highest (these parameters were
derived empirically using a small data set) [9]. This approach is
similar in effect to applying lateral inhibition along the azimuth
axis, and causes a sharpening of the cross-correlation response.

2.3. Precedence Effect Filtering and Weighting

The term ‘precedence effect’ refers to a group of psychophysical
phenomena which are believed to underlie the ability of listeners
to localise sound sources in reverberant environments [10, 15]. In
such environments, direct sound is closely followed by multiple
reflections from different directions. However, listeners usually re-
port that the sound has originated from a single direction only. The
perceived location corresponds to the direction of the first wave-
front. Hence it appears that the directional cues in the first-arriving
sound are given ‘precedence’ over cues contained in the later re-
flections.

In reverberant recordings, many time-frequency units ui,j will
contain cues that differ significantly from free-field cues. Includ-
ing a weighting function or cue selection mechanism that indicates
when an azimuth cue should be trusted can improve localisation
performance [16]. Motivated by the precedence effect [15, 17],
we incorporate a simple cue weighting mechanism that identifies
strong onsets in the mixture signal. We generate a real-valued
weight, wi,j , that measures the energy ratio between unit ui,j and
ui,j−1.

Better performance can be achieved by keeping only those
weights that lie above a specified threshold (ThresPE). The final

results of audio source localisation can be represented as A(φ),
which is the sum of Skeleton functions S(i, j, φ) for all time-
frequency units with precedence effect filtering and weighting:

A(φ) =
X
i

X
j

wi,jS(i, j, φ), if wi,j > ThresPE. (8)

Fig. 2 shows the precedence effect filtering and weighting for two
male speaking sources at 0 and−45 degrees. From the results, we
first can see that it is difficult to determine the non-dominating au-
dio source without precedence effect filtering or weighting. Mul-
tiple audio sources are easier to distinguish with precedence effect
weighting and filtering. We also found that a threshold of 1.0 leads
to the best performance in our recording environment for most can-
didates. The fixed threshold may cause too few frames above the
threshold [17]. To avoid this problem, an automatic threshold con-
trol is applied. It ensures that the remaining frames have no less
than 25% of the overall signal energy. Moreover, precedence ef-
fect weighting and filtering can also reduce the disturbing peaks
caused by reverberations.
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Figure 2: Precedence effect filtering and weighting (allows ampli-
fication of the non-dominating audio source in this example).

3. VISUAL ACTIVE SPEAKER DETECTION

Besides the audio information, visual information can also be used
to localise multiple subjects. To this end, we employ the two cam-
eras that are available in our motorised robotic head. In the first
step, we calibrate the cameras as will be described in the next sub-
section. Afterwards, we present our approach to detect faces in the
images and to determine the active speaker.

3.1. Camera Calibration

The goal of camera calibration is to estimate camera parameters.
Typical camera parameters are position and orientation of the cam-
era (extrinsic parameters) and focal length, principal point offset,
and radial distortion parameters (intrinsic parameters). Popular
and often used approaches use a calibration pattern with known
geometry for parameter estimation [18]. From one or several im-
ages of such a calibration pattern, 2D-3D correspondences can be
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extracted. These correspondences are then used to estimate the
camera parameters. However, calibration of the rotating robotic
head requires a special calibration procedure because of the large
range of possible viewing directions. Hence, in order to perform
this calibration, we use the idea presented in [19]. In this approach
multiple spatially distributed calibration patterns are used for cam-
era parameter estimation. Initial camera parameters are estimated
with Tsai’s approach [18]. Afterwards, the spatially distributed
patterns are related into a globally consistent coordinate system.
Finally the parameters are optimised by bundle adjustment. In our
case, we jointly estimate the intrinsic camera parameters (focal
length, radial distortion) for all viewing directions.

3.2. Active Speaker Detection

Our approach for visually detecting active speaker consists of the
following three steps:

• Face detection,

• Mouth region detection, and

• Active speaker detection.

3.2.1. Face Detection

We apply a face detection approach [20] that is provided by the
OpenCV library. The OpenCV face detector is a popular, easy-to-
use, and robust method for face detection. It is based on Haar-like
features for object detection, which are used in a classifier cas-
cade. The classifier cascade is trained on a large data set of pos-
itive images (those containing a face) and negative images (those
not containing a face). Training the classifier on a large data set
of images makes it relatively robust to image degradations such
as noise, blur, and illumination changes in the input images, and
gives a good detection rate for faces with different expressions and
skin colour. For our detection we used the trained classifier for
frontal faces (see Fig. 3), which worked well as long as the face of
a stationary or moving speaker is facing the camera.

3.2.2. Mouth region detection

Within each face found in the image we locate the mouth region.
We detect the mouth region using the approach presented in [21].
This approach uses an Active Shape Model (ASM) for fitting and
tracking facial features in image sequences. It is based on a pa-
rameterised shape model that is fitted to the locations of detected
landmarks in the face. The approach is capable of identifying the
silhouette of the face, the position of the eyes and eyebrows, the
position of the nose, and the position and contour of the lips. We
decided to use the approach because of its robust and reliable de-
tection results for various poses of the head and facial expressions.
Although the detection results for face, eyes, mouth, etc. were re-
liable, they were not precise enough for the detection of visual lip
activity. Consequently, we use the contours of the lips to compute
a bounding box of the mouth region, which is used as input for the
last step of active speaker detection (see Fig. 3).

3.2.3. Speech Detection

For detecting active speakers, we employ the main idea of [4]. In
this approach the active speaker is identified by computing the av-
erage fraction and the variance in the fraction of pixels with low
intensities in the mouth region. In this context pixels with low

Figure 3: Top: Left and right frame of test sequence with de-
tected faces marked; Bottom: Contours of face, eyes, nose, lips,
and mouth region bounding box of faces detected in left frame.

intensities are those below a specified threshold in the greyscale
image. The average and variance are computed over a time win-
dow of several frames. Lip activity is detected in case where both
values exceed specified thresholds. These thresholds can be deter-
mined by test sequences in which the persons are silent. The idea
behind this approach is that while speaking, parts of the mouth
cavity of the speaker are visible in the image, which are not well
illuminated and hence increase the fraction of dark pixels in the
mouth region (see Fig. 4).

3.3. Detection Results

To combine audio and visual localisation, we compute the azimuth
angle for the detected speakers. Given pixel coordinates from the
position of each detected face, in the video we obtain the line of
sight from camera calibration. By projection onto the reference
plane, we get the azimuth for each detected face in each frame.
From the azimuth of a detected face in the left and right image we
then compute the azimuth with respect to the robotic head. Two
sources of inaccuracy occur in the computation of the azimuth:
the estimation of camera parameters in camera calibration and the
detection of faces in the frame. Because of the short focal length
of the cameras (f = 6 mm) a deviation of approximately 23 pixels
translates into an angular error of one degree. In our experiments,
we found the error of the azimuth in visual localisation to be below
one degree.

Finally, we combine the localisation information with the vi-
sual active speaker detection to determine the azimuth of the active
speaker.

We tested this approach on 10 sequences with speakers of dif-
ferent ethnicities. For each sequence, we captured two synchro-
nised RGB video streams with 1024 × 768 pixels at 7.5 frames
per second resulting in sequences between 40 and 60 seconds in
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Figure 4: Top: Number of low greyscale intensity pixels in the
mouth region of one subject in left (red) and right (blue) frames
of a test sequence. Centre and Bottom: Corresponding visual lip
activity detection result for left (blue) and right (red) frames. The
observed subjects started to talk at frame no. 125.

length. In each sequence two persons are visible. In the first part
of the sequence both persons are quiet. After a signal, both per-
sons start to talk at the same time until the end of the sequence.
The sequences consisted of approximately 4 000 frames in total.
With two video streams for each test sequence and two speakers
observed in each video stream, lip activity detection has been eval-
uated on approximately 16 000 instances. We evaluated the num-
ber if times visual lip activity was correctly detected in the test
sequences and achieved a detection rate of 95%.

There are three main reasons for a slightly lower detection rate
in comparison to the performance reported in [4]. First, the cam-
era’s automatic shutter adjusts the brightness of the image to main-
tain an average brightness in the entire image, which sometimes
leads to poor contrast in the faces. Second, imprecision in fitting
the lip contour to the image sometimes leads to poorly detected
mouth regions. Third, face and especially mouth region detection
might fail in case of motion blur.

4. AUDIO VISUAL FUSION

In this work, we propose a new method to fuse audio and video re-
sults, the goal of which is to deal with disadvantages of both audio
and video modalities. We fuse both results and build a new proba-

bility curve in the azimuth domain. The new peaks show the final
localisation results. The motivation is to keep partial information
from both modalities. Audio localisation deviations are adjusted
by video results, while video detection failures are compensated
for by audio results.

4.1. Probabilistic Representation of Video Detections

In order to fuse the results of both audio and video modalities, the
video results have to be represented as a probabilistic function of
azimuth angles. To compensate for potentially missing detections
of the video modality, the probability of all the unclear azimuth
angles is set to 0.5. So the video localisation results can be repre-
sented as follows:

V (φ) =

(
pφ, if speaker at φ,
0.5, otherwise,

(9)

where pφ denotes the probability of the speaker activity from video
results, e.g. 0.90, 0.95. As discussed in the above sections, the lo-
calisation results of the audio modality have larger deviation than
the video detections (where the error is below one degree), es-
pecially in reverberant environments. So the representation of the
video results is expected to have the ability to improve the accuracy
of the audio results. We replace the pulses in Eq. (9) with smooth
peaks. Inspired by the Skeleton method, we propose a Gaussian
representation of the video detections as follows.

V (φ) =

8><>:
0.5+(pφ−0.5) Gau(φ, [σ, φ0]), if speaker at φ and

|φ− φ0|<RangeA,
0.5, otherwise,

(10)
where RangeA is equal to the half range of the maximum errors in
degrees from the audio modality. In this way, the video representa-
tion has the ability to cut off the deviated audio peaks over a wider
azimuth range. Note that the accuracy of the video detection is not
reduced by the smoothing with a Gaussian kernel.

4.2. The Fusion Procedure

In order to build a new probability curve in the azimuth domain,
we first multiply audio and video probabilities and then smooth
the curve by median filtering. The position of the new peaks in-
dicates the final localisation results. The fusion procedure can be
summarised as follows:

1. Multiply both audio and video results in the azimuth do-
main:

F (φ) = A(φ) · V (φ). (11)

2. Remove small and side peaks based on a specified thresh-
old. This is to remove fake and disturbing sources from
audio or video modality.

3. The indices of the residual peaks are the final localisation
results of active speakers.

We will show and discuss the fusion results for different scenarios
in the next section.

5. EXPERIMENTAL RESULTS AND ANALYSIS

In this section we present audio localisation results and the final
fusion results.
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5.1. Auditory Localisation Results

Our robotic head, Bob, resides in a normal office meeting room
of size 10 × 6 m with a reverberation time of RT60 = 0.4 s. The
audio signals are recorded by two microphones in Bob’s ears. For
our experiments, we invite various candidates from among our lab
members to do the audio/video recording. These data are denoted
as meeting room data. We also use HRTF to generate audio signals
without reverberations (RT60 = 0 s), denoted as anechoic data. In
our experiments, scenes with one or two sound sources are con-
sidered. For scenes with two or more sound sources the deviation
of audio localisation is a little larger than for scenes with only one
sound source. Moreover, movement of sound sources also degrade
the accuracy of audio localisation. The overall audio modality re-
sults with and without precedence effect handling are shown in
Tab. 1.

0◦ ±10◦ ±20◦ ±30◦

anechoic−PE 0.13 0.20 0.22 0.20
anechoic+PE 0.13 0.13 0.20 0.22
meeting−PE 1.7 2.2 2.3 3.5
meeting+PE 0.5 0.9 1.7 2.5

±45◦ ±60◦ ±80◦

anechoic−PE 1.8 2.8 8.4
anechoic+PE 1.7 3.3 7.8
meeting−PE 7.3 10.5 14.2
meeting+PE 3.2 4.2 9.3

Table 1: Average azimuth errors in degrees (−PE and +PE de-
notes our audio modality without and with precedence effect han-
dling, respectively).

From Tab. 1 we can see that for the anechoic room the prece-
dence effect weighting and filtering makes no big difference. This
is because there are no reverberations in audio signals from the
anechoic room. As expected, for the meeting room scenario the
performance of the audio modality without PE degrades signifi-
cantly. Meanwhile, our audio modality with PE still works well,
thanks to the precedence effect weighting and filtering.

It is also confirmed in our experiments that the Skeleton meth-
od and precedence effect weighting/filtering are helpful to distin-
guish weak peaks and to reduce disturbing peaks. To further im-
prove the localisation performance, we need help from the video
modality, where the localisation errors can be as low as one degree.
The performance of the proposed fusion method will be shown in
the following subsection.

5.2. The Fusion Results

Fig. 5 shows the fusion result for the case where both modalities
perform well. Two speakers are located at 0 and −45 degrees, re-
spectively. The audio modality alone detects two peaks, but the lo-
calisation is not very accurate. The video modality can localise the
speakers accurately (below one degree of deviation in our work)
but the speaker activity is not 100% plausible. Using the proposed
fusion method, the peaks of audio results are correctly adjusted,
which leads to a more precise localisation result.

Fig. 6 shows the case where the video modality has a false
positive active speaker detection. We can see that the audio re-
sults have the ability to remove these false peaks of the visual re-
sults. The audio modality is sometimes more robust for determin-
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Figure 5: Experiment 1: speakers at 0 and −45 degrees, for the
case where both modalities perform well; Top: probability of the
audio localisation from Eq. (8); Centre: probability of the video
localisation using Gaussian extension from Eq. (10); Bottom: fu-
sion result, azimuth of detected speakers indicated by blue lines.
(The layout remains the same for the figures below).
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Figure 6: Experiment 2: speakers at 0 and−45 degrees, for a case
where the video modality has a false positive active speaker.

ing speaker activity than the video modality, because there could
be lip movements without sounds. Fig. 7 and 8 show the cases
where the video modality misses an active speaker. We can see
that the audio peaks still remain large enough after the fusion for a
robust speaker detection.

Fig. 9 shows a case where the audio modality fails to detect
an audio source. This may be due to the voice of this speaker
being too weak. In this case, the fusion method can create a peak
with the help of video modality. Fig. 10 shows a case where two
audio sources are too close and the audio modality alone fails to
distinguish them. In this case ,the proposed fusion method can also
distinguish the audio sources with the help of the video modality.
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Figure 7: Experiment 3: speakers at 0 and−45 degrees, for a case
where the video modality misses one non-dominating speaker.
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Figure 8: Experiment 4: speakers at 0 and−45 degrees, for a case
where the video modality misses one dominating speaker.

6. CONCLUSION

In this work, we first proposed a robust system for speaker local-
isation in reverberant environments that is based on the combina-
tion of advanced audio and video processing algorithms. Multiple
speaker localisation is performed by the audio modality using the
Skeleton method, energy weighting, and precedence effect filter-
ing and weighting. The video modality performs an active speaker
detection and localisation as well. Detection of an active speaker
is based on the increased average value and variance of the number
of pixels with low intensities in the lip region. Camera calibration
allows the localisation of the speaker. The localisation results of
both modalities are represented as probabilities in the azimuth do-
main. A Gaussian fusion method is used to fuse the estimates in
a late stage. As a consequence, the localisation accuracy and ro-
bustness compared to the audio/video modality alone can be sig-
nificantly increased. Experimental results for different scenarios
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Figure 9: Experiment 5: speakers at 0 and−45 degrees, for a case
where the audio modality misses one dominating speaker.
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Figure 10: Experiment 6: speakers at 7 and −16 degrees, for a
case where the audio modality fails to separate speakers.

confirmed the improved performance of the proposed method.

Future work includes improving the audio source localisation
by monaural grouping and onset filtering, and threshold optimi-
sation for visual lip activity detection. Another future research
direction is speech separation based on audio-visual fusion.
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