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Abstract

A common problem when using automated structure
from motion techniques is that the object to be modelled can
only be partially reconstructed from the video. This can oc-
cur because not all of the object is visible in the video, or
because of featureless or ambiguous regions on the object’s
surface. In this paper we present an interactive method
for rapidly and intuitively generating a complete 3D model
from the output of a structure and motion algorithm. The
method combines information obtained from the video data
with the partial 3D model and user interaction. It is demon-
strated on video containing partially seen objects, including
planar and curved surfaces, and indoor and outdoor set-
tings.

1. Introduction

Photo-realistic 3D models are now routinely used in ap-
plications such as movie post-production, architectural vi-
sualisation and video games. However, there is no simple
and reliable way to convert images and measurements of an
object into a 3D model. Typically this is done in one of
three ways:

(a) Build the model in a 3D modelling package such as
‘Blender’.

(b) Use a photogrammetry package such as ‘Photomod-
eler’ to build the model with the aid of calibrated im-
ages.

(c) Use a structure and motion [2] package such as ‘PF-
Track’ to automatically acquire a 3D mesh from the
images.

Using option (a) one is able to create a model of almost any
real world object, provided one is trained to use a 3D mod-
elling package. However for all but the simplest models it
is also extremely labour intensive, as it is difficult through
manual editing to generate a model which accurately re-

flects the shape and appearance of the objects depicted in
the input image set.

Option (b) still requires manual delineation of structural
features in each image, in order to recover 3D structure.
These systems also require camera calibration because they
do not make use of all the information that can be derived
from the images using vision algorithms. Examples of these
systems include Photomodeler, Canoma (derived from Fa-
cade [5]), paralleliped based modelling [8] and image based
architectural modelling packages such as [4, 3].

Option (c) requires less input from the user, as camera
calibration and some scene structure is recovered automat-
ically, but automatically generated mesh-based reconstruc-
tions rarely achieve level of fidelity required for real appli-
cations.

Unless an image sequence has been carefully captured
with the purpose of modelling in mind there are likely to be
parts of the scene about which there is not enough informa-
tion from which to generate a model automatically.

The approach described in this paper is a flexible alter-
native to those outlined above, and is also able to extend
the information recoverable from the image set to produce
models that would otherwise be impossible to achieve. In
order to achieve this goal we introduce a number of oper-
ations for modelling missing or hidden structure, based on
parts of the model that are visible. These are combined with
other sketching interactions to form a powerful set of mod-
elling operations that allow the rapid creation of complete
models from partial data.

1.1. System overview

The modelling system uses structure and motion estima-
tion to obtain camera parameters for each frame of video,
and a (possibly empty) set of reconstructed scene points.
A model is then created incrementally by sketching free-
hand strokes on frames of the video. After each sketching
interaction, the model estimate is updated (see Figure 1).
This overall workflow is similar to [6]. The authors in [6],



however, aim to facilitate the modelling of structures where
sufficient information exists in the image set. The work pre-
sented here extends this approach to use the combination of
image-based information and human input to generate mod-
els that would otherwise be impossible to recover.
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Figure 1. Modelling workflow. A model is in-
crementally built from the output of structure
and motion estimation by sketching on one
or more frames of video.

Many interactive 3D modelling techniques are already
provided by dedicated modelling packages. Rather than
duplicate these in an ad-hoc way we provide a structured
mechanism by which they may be incorporated into our
modelling process. This is done by the specification of a set
of interacting production rules describing the requirements
and consequences of each technique. Each rule describes
the means by which a certain technique changes the state of
the system, and therefore how it may be used in relation to
other similarly described techniques.

The use of production rules allows the integration of a
wide variety of existing modelling techniques with a novel
means of specifying a 3D curve through scene space by
drawing on a single image which we describe below. This
technique uses both image data and the camera information
recovered through structure and motion analysis to deter-
mine the most likely 3D location of a point on a 2D curve
drawn over a frame of video. This analysis is founded in 3D
and thus would not be possible without knowing the cam-
era parameters. This may be contrasted against sequential
2D techniques such as the image stack approach sometimes
used in video segmentation (see [7] for example).

Section 2 of the paper describes the general format of a
modelling rule, and gives some examples. In Section 3 the
fundamental rule for transforming a sketched 2D curve into
3D is described in detail, along with a selection of other
rules. These rules can be combined to model complex ob-
jects, as shown in Section 4.

2. Production rules

By defining a production rule corresponding to each
modelling operation we provide a common framework
within which to formulate all modelling operations. One
of the most important benefits of the production rule for-
malism is that it requires each method to use the same input
and output formats, allowing the output of one method to
form the input of another. This facility is critical for the
modelling of non-visible aspects of the scene as it allows a
curve modelled on part of the image set to be extruded past
the image boundaries and then replicated, for example.

The rules operate on two lists: a list of interactions (we
call the I-list) and a list of modelled primitives (called the
M-list). Since interactions are all in 2D, the I-list contains
2D primitives (line segments or curves). These are grouped
according to whether they are connected in the image. Each
image has its own I-list.

2.1. Some basic rules

The user can manually select a number of modelling op-
erations. These modes of operation determine how each
stroke is interpreted by the modelling engine, and are indi-
cated in the precondition of a rule by the name of the mode.
Where two rules might fire on the same input, we apply the
rule which comes last in the list. The ordering of the list
thus affects the behaviour of the system. If the application
of a rule fails the input is not removed from the input queue.
Following is a subset of the implemented rule set in the fol-
lowing format:

Name {Input}[Precondition]⇒ Effect.

• Add line {Single drawn line}[Drawing mode]⇒ Add
line to a new group in the I-list
• Group lines {Single drawn line}[Drawing mode,

Drawn line endpoint equals an existing endpoint] ⇒
Add new line to existing line’s group in the I-list
• Close curve {Single drawn line}[Drawing mode,Both

line endpoints equal endpoints within existing group]
⇒ Add closed curve group to I-list

Further rules are presented in Section 3, along with a de-
scription of the processing which they involve.

3. Modelling by sketching

A 3D model is composed of a number of 3D primitives,
including planar facets, NURBS surfaces, and curves. This
section details how these 3D primitives are obtained from
2D sketching interactions with one or more images, and
how the model is re-estimated after each sketching opera-
tion.



3.1. A 3D curve from single drawn curve

The production rule for this process is
3D curve from line {Single drawn
line}[Drawing mode] ⇒ 3D curve added to
added to M-list

In order to specify 3D models by sketching, a fundamental
operation is to specify a 3D curve by tracing over it in a sin-
gle image. This allows the user to specify either a curve
in space, or more commonly the boundary of a NURBS
surface, through a single interaction. A curved line drawn
by the user on an image does not, of itself, contain suffi-
cient information to recover the required 3D scene curve.
By exploiting the camera parameters recovered through the
structure-from-motion process, however, the intended 3D
shape can be recovered using image data.

The 2D drawn curve has fixed (known) length and
thus can be modelled in parametric form as l(u) =
(x(u), y(u))>with 0.0 ≤ u ≤ 1.0 such that each allow-
able value of u specifies a location along the curve. A point
l(u) thus specifies a ray projected into scene space which
intersects the 3D scene curve at least once. The points in
scene space at which this intersection occurs may be iden-
tified by the distance along the projected ray at which they
occur. We call this distance d.

In order to simplify the problem of identifying the re-
quired scene curve a set U of 100 equally spaced points u
are distributed along the length of the drawn curve. Sim-
ilarly, a set D of 500 potential values for d is selected on
the basis of the range of distances from the camera centre
at which reconstructed points occur. A line l and a {u, d}
pair specifies the location of a point in scene space which
we label L(u, d). A 3D scene curve L is thus fully specified
by identifying the set Du = {d1, . . . , dN} of intersection
distances for every allowable u along a drawn curve l.

If a hypothesised 3D point L(u, d) is part of L̂ then it
must lie on the surface of an object in the scene. If we label
the image patch surrounding the projection of the 3D point
P into image I as I(P), then the normalised cross correla-
tion between the drawing image patch Id(P) and the corre-
sponding target image patch It(P) is C(Id(P), It(P)). If
the image set over which this correlation measure is per-
formed is labelled I = {Ik} , k = 1 . . .K then the total
correlation measure for P in I is

JC(I,P) = K−1
∑K

k=1
C(Id(P), Ik(P)). (1)

Let ∆P represent the image intensity gradient of an image
patch P . On the basis of the assumption that edges in the
scene will correspond to edges in the images we construct
image gradient cost function for the point P by

J∆(I,P) = K−1
∑K

k=1
∆Ik(P)−1

. (2)

The total cost associated with each curve is constructed
from the weighted sum of these measures calculated for
each point along the length of the curve:

J (I,L) =
∑

u∈U

∑
d∈Du

(αJC(I,L(u, d)) + βJ∆(I,L(u, d)))
(3)

where Du is the set of d ∈ D such that L(u, d) is an el-
ement of the curve L and the scalars α and β reflect the
relative scales of JC and J∆, and have been set at 0.7 and
0.3 respectively on the basis of testing with real image se-
quences.
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Figure 2. a) A single MRF corresponding to a
single drawn curve such as that shown in b),
c) shows multiple intersecting MRFs corre-
sponding to a more complex problem involv-
ing fitting to multiple drawn lines.

We seek the continuous curve from L for which J (I,L)
is minimal. In order to identify the continuous curve with
the minimal total cost efficiently, we use the max-flow[1]
algorithm to find the lowest cost path through a graph. The
graph is effectively a Markov Random Field (MRF) with
pairwise costs determined by equation 3. One of the advan-
tages of graph-based max-flow approach is that it allows
‘S’-shaped cuts, which provides the flexibility required to
represent the many-to-many mapping between u and d. The
max-flow process typically requires approximately one sec-
ond to reach a solution for a single curve.

Each node in the graph represents a {u, d} pair selected
from U and D respectively (see Figure 2). The nodes are
arranged in a lattice structure with increasing values of u
along the positive x-axis and increasing values of d along



Figure 3. Four curves drawn in one image
of the sequence, and the resulting graphs
showing the lowest cost paths.

the positive y-axis. Each node is connected to 4 neigh-
bouring nodes, with the weights on the links in the positive
y directions set to J (I,L(u, d)) and in x direction set to
γJ (I,L(u, d)). Source and sink nodes are connected by
zero-weight links to the top and bottom rows of nodes re-
spectively.

The max-flow algorithm finds the continuous cut through
the graph which minimises the sum of the weights of the
severed links. This sum is approximately equivalent to the
value of J (I,L). In fact the sum of weights of cut links
equals J (I,L) if the cut is parallel to the x-axis. The so-
lution is biased against cuts parallel to the y-axis, which
means that it is biased against solutions which ascribe multi-
ple d values to the same u and against solutions which have
large changes in d. The value of γ can be used to control the
influence of this bias. A higher value of γ gives smoother
solutions. The final 3D NURBS curve is generated on the
basis of the graph cut solution.

3.2. Multiple intersecting 3D curves

The production rule for this process is

3D curves from lines {Line group in I-
list}[Drawing mode] ⇒ 3D curves added to
added to M-list, replacing previous estimates

Curves exist as modelling primitives in their own right,
but are most useful in the role they play in specifying the
boundaries of surfaces. In order to effectively determine
the boundary of a surface, it must be possible to specify
that two 3D curves intersect at a particular point. For the
purposes of the interface we assume that curves which in-
tersect in the image in which they are drawn are intended
to intersect in scene space. We do not assume that these
intersections occur at the beginning or end points of curves.

Two drawn curves l1(u1) and l2(u2) which intersect
have an image point in common. The fact that the cor-
responding scene curves L1 and L2 also intersect means
that there are points on each curve such that L1(u1, d1) =
L2(u2, d2) and therefore that at the intersection point d1 =

d2. If we are to estimate the 3D scene curves L1 and L2 us-
ing the graph-based method described above this implies a
constraint on the allowable set of solutions. The constraint
is that if {u1, d} forms part of cut partitioning the first graph
then {u2, d} must form part of cut partitioning the second,
and vice versa.

Figure 4. The combined graph generated by
considering the four intersecting curves from
Figure 3 collectively and the resulting graphs
showing the lowest cost paths. Note the dif-
ferences in minimal cost paths from those in
Figure 3

In order to estimate both curves simultaneously while en-
forcing the constraint we join the two graphs. A set of zero-
weight links is inserted between the nodes corresponding
to u1 in the first graph and u2 in the second which share
the same value of d. Note that this does not assume that
the sets of joined nodes represent the first or last columns
of either graph. This process of joining nodes correspond-
ing to intersecting curves is repeated for every intersection,
and the combined problem solved using the max-flow algo-
rithm. Generating a solution typically takes approximately
as many seconds as there are curves in the combined graph.
A symbolic example of the merging process is shown in
Figure 2, and Figures 3 and 4 show the graphs associated
with a real example.

3.3. Matching pairs of drawn curves

The production rule for this process is
3D curve from 2 lines {Pair of drawn lines in
different images}[Drawing mode] ⇒ 3D curve
added to added to M-list

In some circumstances the process described above for gen-
erating a 3D curve from a single drawn 2D curve fails. This
sometimes occurs in the presence of significant occlusion,
or when modelling a shape which is not visible in the image
set. For example, the cross section of the padded section of
the chair shown in Figure 6 is difficult to determine auto-
matically, but can be specified manually with ease. In the
event that the automatically detected curve does not match
the user’s intention, another view of the same scene curve
may be drawn in another image to specify its shape.



Generating a 3D curve on the basis of a pair of drawn
curves requires that each point along each drawn curve is
matched to its corresponding point on the other. The same
many-to-many problem occurs as as in the single drawn
case above, but in addition to this, it would also be unrea-
sonable to expect the user to draw the two curves so as to
have exactly the same beginning and end. The full length
of the shorter curve must be used however, solutions which
match only parts of the curve will not suffice. The prob-
lem is again suitable for formulation as an graph to which
the max-flow algorithm might be applied. The details of the
graph formulation and the max-flow solution are presented
in [6].

3.4. Curves and surfaces

The process by which a set of lines is used to gener-
ate a NURBS surface is that described in [6] for generat-
ing a Coons surface. The method outlined in Section 3.2,
however, provides an improved means by which such sur-
faces may be specified, requiring only that the user trace
the outline of the surface in one image. The NURBS fitting
process utilises points from the reconstructed point cloud
where possible, but is particularly useful in the case where
no such points are available. This is likely to occur in the
case where the object being modelled does not exhibit sig-
nificant surface texture. Any automated means of recon-
structing surface shape will fail in this case. Allowing the
user to specify the shape of an object simply by modelling
its boundaries often overcomes this problem, as most shapes
can be divided into sets of abutting NURBS surfaces suit-
able for specification by this process. The production rule
for this process is

3D surface from line group {Closed line
group}[Surface mode] ⇒ 3D surface added to
added to M-list

The chair shown in Figure 6 is a particular example of this
process. By tracing the edge of the curved arm rests and
extruding it has been possible to model these complex but
feature-point free surfaces. Similarly, by tracing the two
long edges and top of the padded section of the chair in
one image each it was possible to record the majority of the
shape information. Generating a profile for the bottom end
of the padded section required drawing the same curve in
two images, as the images contain insufficient information
to achieve this task from a single drawn curve. The result
of these 5 interactions is the NURBS surface which was
rendered to produce Figure 6.

3.5. Planar Surfaces

If the user sketches a face boundary using only straight
lines, it is assumed that that face is planar. Estimation of

a planar face can be considered a special case of curved
surface estimation, but for the sake of efficiency it is carried
out using a simpler method [6]. This fitting and projection
process is effectively instant, which allows the user to select
another image in which to edit the shape at will. Editing in
another image allows manipulation of the 3D placement of
the planar surface, but also modification of its boundary. In
particular it is possible to turn a straight boundary into a
curve by editing. The drawn curve replaces the boundary
of the planar surface which was previously specified by the
line. If the line to be replaced forms part of the boundary
of more than one plane, then the plane with normal closest
to the viewing direction has its boundary replaced by the
planar curve. The remaining adjacent planar surfaces have
their boundaries adjusted on the basis of this planar curve.
This adjustment is typically out of the plane of the surface,
which is then converted to a set of independent triangles.

3.6. Extrusion

Extrude {Drawn extrusion line}[Extrude mode]
⇒ Faces added to M-list to extrude selected sur-
faces

The extrusion operation creates new model structure based
on part of the model that already exists. It is particularly
useful for modelling solid objects like cars, that are essen-
tially a planar profile with depth. Extrusion takes a planar
set of faces and creates a duplicate of those faces, separated
from the original faces by a distance specified by the user.
If image information is available, the new faces are fitted
to the images. However this operation can also be used to
complete an extruded model even if the other side of it is
not visible in any image. Figure 5 shows the use of extru-
sion to model the bumper on the front of a car. Initially, the
lower edge of the bumper is traced out. The front face of
the bumper is then modelled by extruding this lower edge
upwards with a single mouse stroke. Finally, the top of
the bumper is modelled by extruding the top edge inwards,
again with another mouse stroke.

3.7. Mirroring

Mirroring is a powerful tool for modelling parts of a
scene not visible in the image set, allowing visible geometry
and texture to be duplicated in order to model non-visible
scene aspects. The details of the mirroring process are pro-
vided in [6], where a similar idea was applied in order to
simplify the process of modelling identical parts of an ob-
ject. This technique has been extended here to facilitate the
modelling of non-visible aspects of an object by allowing
more complex geometry to be mirrored, and critically, for
mirrored geometry to retain its original texture. This allows
texture captured from the image set to be easily replicated



Figure 5. Using extrusion to model a bumper bar. Initially the lower edge of the bumper is traced,
and snapped to image edges. Two extrusion operations are then used: first the lower edge of the
bumper is extruded upwards, and then the upper edge is extruded inwards. This involves just 2
mouse strokes.

over non-visible aspects of the model. The production rule
for this process is

Mirror {Drawn mirror lines}[Mirror mode] ⇒
All geometry in M-list (and associated texture in-
formation) duplicated

4. Results

The system has been used to model a variety of scenes
containing objects that are only partly seen, and cannot be
completely reconstructed using automated methods. The
chair, shown in Figure 6, presents two main problems for
automatic reconstruction: only its front and sides are seen,
and its surface contains few identifiable features. However
by tracing out one side of the chair, and then extruding it,
we are able to obtain a complete model that can be rendered
convincingly from any viewpoint.

The truck, also shown in Figure 6, has a more complex
shape, and requires several sketching operations to create,
extrude and mirror faces in order to model it. The com-
plete set of operations is shown in the video submitted with
this paper. Again only one side of the truck, and its front,
are visible, and yet the completed model is accurate when
viewed its far side.

To test the accuracy of this method, we modelled a
cube with an edge length of 150mm on a tabletop. The
camera was placed approximately 100 cm from the object,
had a vertical FOV of 23 degrees, and image resolution

720x576 pixel. We traced the egdes of the cube in one view
and evaluated the estimated 3D reconstruction by project-
ing the corner points of the reconstructed cube into another
view. This second view had a baseline distance of 37 cm
to the first view. After sketching the cube and projecting
it into the other view 15 times, the standard deviation of
the projected reconstructed corner points about the ground
truth corner points was 1.8552 pixel, which corresponds to
approximately 1.4 mm, or less than 1% of the cube’s size.

5. Conclusion

Image based modelling has progressed remarkably in the
last two decades, but has yet to realise its goal of fast, reli-
able creation of photo-realistic 3D models from video. This
paper has presented a different approach towards that goal,
where user operations are informed by an automatically ob-
tained structure and motion estimate. Operations within the
system are defined by rules, that specify their input, pre-
conditions and output. A fundamental operation is the con-
version of a 2D sketched stroke into a 3D primitive, allow-
ing the creation of 3D structure by sketching on an image.
By combining rules this system is able to rapidly create
complex and convincing models in a variety of situations
where purely automated systems cannot.



Figure 6. Completed models of a chair and truck, both showing detail not recoverable from the
original sequences alone.
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