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Abstract. Estimation of camera motion and structure of rigid objects
in the 3D world from multiple camera images by bundle adjustment
is often performed by iterative minimization methods due to their low
computational effort. These methods need a robust initialization in order
to converge to the global minimum. In this paper a new criterion for
keyframe selection is presented. While state of the art criteria just avoid
degenerated camera motion configurations, the proposed criterion selects
the keyframe pairing with the lowest expected estimation error of initial
camera motion and object structure. The presented results show, that the
convergence probability of bundle adjustment is significantly improved
with the new criterion compared to the state of the art approaches.

1 Introduction

The estimation of camera motion and structure of rigid objects in the 3D world
using camera images from multiple views has a long and sophisticated research
history within the computer vision community.

Usually a mathematical parameter model of a pinhole camera with perspec-
tive projection is used to describe the mapping between the 3D world and the
2D camera image. To estimate the parameters of the camera model most ap-
proaches establish corresponding feature points in each view. By the introduc-
tion of a statistical error model, that describes the errors in the position of the
detected feature points, a Maximum Likelihood estimator can be formulated
that simultaneously estimates the camera parameters and the 3D positions of
feature points. This joint optimization is called bundle adjustment [1].

If the errors in the positions of the detected feature points obey a Gaussian
distribution, the Maximum Likelihood estimator has to minimize a nonlinear
least squares cost function. In this case, fast minimization is carried out with
iterative parameter minimization methods, like the sparse Levenberg-Marquardt
method [1][2, Appendix 4.6].

The main difficulty of the iterative minimization is the robust initialization of
the camera parameters and the 3D positions of feature points in order to converge

T. Pajdla and J. Matas (Eds.): ECCV 2004, LNCS 3021, pp. 523–535, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN ----------------------------------------Dateioptionen:     Kompatibilität: PDF 1.3     Für schnelle Web-Anzeige optimieren: Nein     Piktogramme einbetten: Nein     Seiten automatisch drehen: Nein     Seiten von: 1     Seiten bis: Alle Seiten     Bund: Links     Auflösung: [ 2400 2400 ] dpi     Papierformat: [ 594.962 841.96 ] PunktKOMPRIMIERUNG ----------------------------------------Farbbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 300 dpi     Downsampling für Bilder über: 450 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Maximal     Bitanzahl pro Pixel: Wie Original BitGraustufenbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 300 dpi     Downsampling für Bilder über: 450 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Maximal     Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 2400 dpi     Downsampling für Bilder über: 3600 dpi     Komprimieren: Ja     Komprimierungsart: CCITT     CCITT-Gruppe: 4     Graustufen glätten: Nein     Text und Vektorgrafiken komprimieren: JaSCHRIFTEN ----------------------------------------     Alle Schriften einbetten: Ja     Untergruppen aller eingebetteten Schriften: Nein     Wenn Einbetten fehlschlägt: AbbrechenEinbetten:     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     Nie einbetten: [ ]FARBE(N) ----------------------------------------Farbmanagement:     Farbumrechnungsmethode: Farbe nicht ändern     Methode: StandardGeräteabhängige Daten:     Einstellungen für Überdrucken beibehalten: Ja     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja     Transferfunktionen: Anwenden     Rastereinstellungen beibehalten: JaERWEITERT ----------------------------------------Optionen:     Prolog/Epilog verwenden: Ja     PostScript-Datei darf Einstellungen überschreiben: Ja     Level 2 copypage-Semantik beibehalten: Ja     Portable Job Ticket in PDF-Datei speichern: Nein     Illustrator-Überdruckmodus: Ja     Farbverläufe zu weichen Nuancen konvertieren: Ja     ASCII-Format: NeinDocument Structuring Conventions (DSC):     DSC-Kommentare verarbeiten: Ja     DSC-Warnungen protokollieren: Nein     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja     EPS-Info von DSC beibehalten: Ja     OPI-Kommentare beibehalten: Nein     Dokumentinfo von DSC beibehalten: JaANDERE ----------------------------------------     Distiller-Kern Version: 5000     ZIP-Komprimierung verwenden: Ja     Optimierungen deaktivieren: Nein     Bildspeicher: 524288 Byte     Farbbilder glätten: Nein     Graustufenbilder glätten: Nein     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja     sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS ----------------------------------------IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<     /ColorSettingsFile ()     /AntiAliasMonoImages false     /CannotEmbedFontPolicy /Error     /ParseDSCComments true     /DoThumbnails false     /CompressPages true     /CalRGBProfile (sRGB IEC61966-2.1)     /MaxSubsetPct 100     /EncodeColorImages true     /GrayImageFilter /DCTEncode     /Optimize false     /ParseDSCCommentsForDocInfo true     /EmitDSCWarnings false     /CalGrayProfile ()     /NeverEmbed [ ]     /GrayImageDownsampleThreshold 1.5     /UsePrologue true     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /AutoFilterColorImages true     /sRGBProfile (sRGB IEC61966-2.1)     /ColorImageDepth -1     /PreserveOverprintSettings true     /AutoRotatePages /None     /UCRandBGInfo /Preserve     /EmbedAllFonts true     /CompatibilityLevel 1.3     /StartPage 1     /AntiAliasColorImages false     /CreateJobTicket false     /ConvertImagesToIndexed true     /ColorImageDownsampleType /Bicubic     /ColorImageDownsampleThreshold 1.5     /MonoImageDownsampleType /Bicubic     /DetectBlends true     /GrayImageDownsampleType /Bicubic     /PreserveEPSInfo true     /GrayACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>     /ColorACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>     /PreserveCopyPage true     /EncodeMonoImages true     /ColorConversionStrategy /LeaveColorUnchanged     /PreserveOPIComments false     /AntiAliasGrayImages false     /GrayImageDepth -1     /ColorImageResolution 300     /EndPage -1     /AutoPositionEPSFiles true     /MonoImageDepth -1     /TransferFunctionInfo /Apply     /EncodeGrayImages true     /DownsampleGrayImages true     /DownsampleMonoImages true     /DownsampleColorImages true     /MonoImageDownsampleThreshold 1.5     /MonoImageDict << /K -1 >>     /Binding /Left     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)     /MonoImageResolution 2400     /AutoFilterGrayImages true     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     /ImageMemory 524288     /SubsetFonts false     /DefaultRenderingIntent /Default     /OPM 1     /MonoImageFilter /CCITTFaxEncode     /GrayImageResolution 300     /ColorImageFilter /DCTEncode     /PreserveHalftoneInfo true     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ASCII85EncodePages false     /LockDistillerParams false>> setdistillerparams<<     /PageSize [ 595.276 841.890 ]     /HWResolution [ 2400 2400 ]>> setpagedevice



524 T. Thormählen, H. Broszio, and A. Weissenfeld

to the global minimum. One possible solution is to obtain an initial guess from
two [3,4] or three [5,6] selected views out of the sequence or sub-sequence. These
views are called keyframes.

Keyframes should be selected with care, for instance a sufficient baseline
between the views is necessary to estimate initial 3D feature points by triangu-
lation. Additionally, a large number of initial 3D feature points is desirable.

By comparison, keyframe selection has been neglected by the computer vision
community. In the case of initialization from two views, Pollefeys et al. [3] use
the Geometric Robust Information Criterion (GRIC) proposed by Torr [7]. This
criterion allows to evaluate which model, homography (H-matrix) or epipolar
geometry (F-matrix), fits better to a set of corresponding feature points in two
view geometry. If the H-matrix model fits better than the F-matrix model, H-
GRIC is smaller than F-GRIC and vice versa. For very small baselines between
the views GRIC always prefers the H-matrix model. Thus, the baseline must
exceed a certain value before F-GRIC becomes smaller than H-GRIC.

Pollefeys’ approach searches for one keyframe pairing by considering all pos-
sible pairings of the first view with consecutive views in the sequence. Thus,
the first keyframe of the keyframe pairing is always the first view of the se-
quence. The second keyframe is the last view for which the number of tracked
feature points is above 90% of the number of feature points tracked at the view
for which F-GRIC becomes smaller than H-GRIC. This approach guarants a
certain baseline and a large number of initial 3D feature points.

Gibson et al. [4] propose a quite similar approach. Instead of GRIC they
evaluate a score consisting of three weighted addends. The first addend becomes
small if the number of reconstructed initial 3D feature points reduces in the
actual keyframe pair compared to the previous keyframe pair. The second addend
is the reciprocal value of the median reprojection error when a H-matrix is fitted
to the feature points and the third addend is the median reprojection error when
the F-matrix model is applied. Gibson’s approach marks the pairing with the
lowest score as keyframes.

The disadvantage of both approaches is, that they do not select the best
possible solution. For instance, a keyframe pairing with a very large baseline is
not valued better than a pairing with a baseline that just ensures that the F-
matrix model fits better than the H-matrix model. Thus, only the degenerated
configuration of a pure camera rotation between the keyframe pairing is avoided.
Especially, if the errors in the positions of the detected feature points are high,
these approaches may estimate a F-matrix, that does not represent the correct
camera motion and therefore provides wrong initial parameters for the bundle
adjustment.

The approach for keyframe selection presented in this paper formulates a new
criterion using techniques from stochastic. By evaluating the lower bound for
the resulting estimation error of initial camera parameters and initial 3D feature
points, the keyframe pairing with the best initial values for bundle adjustment
is selected. It will be shown that this new approach increases significantly the
convergence probability of the bundle adjustment.
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Fig. 1. Projection of 3D feature points on rigid objects in multiple camera views.

The following chapter defines a reference framework for the keyframe selec-
tion approaches by describing the processing steps that are used for the estima-
tion of camera motion and structure of the observed objects. In Chapter 3 the
new approach for keyframe selection is presented. Chapter 4 compares results of
the different approaches in the defined framework and conclusions are drawn in
Chapter 5.

2 Reference Framework

For estimation of camera motion parameters from corresponding feature points,
the real camera must be represented by a mathematical camera model. The
camera model describes the projection of a 3D feature point P to the image
coordinate p through a perspective camera. Using homogeneous representation
of coordinates, a 3D feature point is represented as P = (X, Y, Z, 1)� and a 2D
image feature point as p = (x, y, 1)�. Where pij is the projection of a 3D feature
point Pi in the j-th camera (see Fig. 1), with

pij ∼ Kj [Rj |tj ] Pi = Aj Pi ∀ j ∈ {1, . . . , J}, i ∈ {1, . . . , I} (1)

where Kj is the calibration matrix, Rj is the rotation matrix, tj is the translation
vector, and Aj is the camera matrix of the j-th camera. The software system
used for estimation of Aj and Pi consists of five processing steps, as shown in
Fig. 2. Each processing step is described briefly in the following subsections.
Detailed related reading may be found in [2].



526 T. Thormählen, H. Broszio, and A. Weissenfeld

sequence
image

Recovery

Initial
Camera & StructureBundle Adjustment

Detection of

camera parameters
and structure

Feature Points Analysis &
Correspondence

Outlier Elimination

Keyframe
Selection

Fig. 2. Processing steps for the estimation of camera parameters and structure from
image sequences

2.1 Detection of Feature Points

2D image feature points p̃ are detected with sub-pixel accuracy using Harris’
feature point detector [8]. For each image j of the sequence a list of feature
point coordinates Lj = {p̃1j , . . . , p̃ij , . . . , p̃Ij} is extracted. Due to noise in
the intensity values of the images, the positions of the detected feature points
p̃ = (x̃, ỹ, 1)� differ from the true positions p = (x, y, 1)�, with

x̃ = x + ∆x and ỹ = y + ∆y (2)

The error model in this paper assumes that ∆x and ∆y of all points p̃ij are
uncorrelated and obey a zero-mean Gaussian distribution with covariance matrix

Σp̃ij =
(

σ2
xij

0
0 σ2

yij

)
(3)

2.2 Correspondence Analysis and Outlier Elimination

The feature points in list Lj and Lj+1 of two successive views are assigned
by measuring normalized cross-correlation between 15 × 15 pixel windows sur-
rounding the feature points. The correspondences are established for those fea-
ture points, which have the highest cross-correlation. This results in a list of
correspondences Lc = {q1, . . . , qi, . . . , qI}, where qi = (p̃ij , p̃i j+1) is a corre-
spondence.

Due to erroneous assignment of feature points arising from moving objects,
illumination changes or similarities in the scene, usually some of the correspon-
dences are incorrect. Most of these outliers can be detected because they must
fulfill the epipolar constraint between two views:

p�
i j+1 Fpij = 0 ∀ i and det(F) = 0 (4)
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where F = K−�
j+1[tj ]xRK−1

j is the F-matrix. In the case of motion degeneracy, if
the camera does not translate between the views, or structure degeneracy, if the
viewed scene structure is planar, a homography is the stricter constraint between
two views:

pi j+1 = Hpij ∀ i (5)

where H = Kj+1RK−1
j is the H-matrix. H or F should be estimated by min-

imizing the residual error ē of the Maximum Likelihood cost function for the
used error model, consequently here:

ē2 =
1

4 I

I∑
i=1

d(p̃ij , p̂ij)2Σ + d(p̃i j+1, p̂i j+1)2Σ =
1

4 I

I∑
i=1

e2
i −→ min (6)

subject to p̂ij and p̂i j+1 fulfill exactly Eq. 4 for F-matrix estimation and Eq. 5
for the estimation of H-matrix, where d(. . . )Σ denotes the Mahalanobis distance
for the given covariance matrices, here Σp̃ij and Σp̃i j+1 . To achieve a robust
estimation the random sampling algorithm MSAC (see [9,10] for details) is em-
ployed.

After estimation of H and F, Torr’s GRIC is used to decide which of the
both models should be used for outlier elimination and guided matching [7].

GRIC =

(
I∑

i=1

ρ(e2
i )

)
+ λ2 m I + λ2 k (7)

with ρ(e2) =

{
e2

σ2 for e2

σ2 < λ3(r − m)
λ3(r − m) for e2

σ2 ≥ λ3(r − m)

}
(8)

where k is number of essential parameters of the model, m is dimension of the
fitted manifold, and r is dimension of the measurements, with k = 7, m = 3,
r = 4 for F-GRIC and k = 8, m = 2, r = 4 for H-GRIC. The model with the
lower GRIC is indicated as more likely.

2.3 State of the Art in Keyframe Selection

In the keyframe selection step keyframe pairings are determined to start the
initial camera and structure recovery in the following step.

In general, many possible keyframe pairings exist. To reduce complexity
Pollefeys’ and Gibson’s approaches always set the first keyframe of a keyframe
pairing at the first view. Then consecutive views of the sequence are considered.
For comparability this procedure is also adopted in our reference framework.

Pollefeys’ approach chooses as second keyframe the last view for which the
number of tracked feature points is above 90% of the number of feature points
tracked a the view where F-GRIC becomes smaller than H-GRIC.

In Gibson’s approach the following score Sg is evaluated for each pairing of
views:

Sg = w1

(
1.0 − I1

I2

)
+ w2

1
ē2
H

+ w3 ē2
F (9)
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where I2 is the number of 3D feature points that were reconstructed in the pre-
vious pair and I1 is the number of those features that can also be reconstructed
in the currently evaluated pair, ēH is the residual error defined in Eq. 6 with
the H-matrix model fitted to the data, and ēF is the residual error for the F-
matrix model. The pairing with the lowest Sg is marked as new keyframe. Gibson
suggests to choose the weights w1 = 3, w2 = 10, w3 = 1.

Pollefeys and Gibson apply different optimization strategies in their bun-
dle adjustment step. While Pollefeys’ approach uses Incremental Bundle Ad-
justment, Gibson’s approach uses Hierarchical Merging of Subsequences. In the
incremental approach one keyframe pairing per sequence must be selected. In
contrast, the hierarchical approach divides the sequence into subsequences ac-
cording to the chosen keyframes. Thus, in this case one keyframe pairing per
subsequence is available.

In order to compare the two state of the art approaches and the new ap-
proach, a common framework must be defined. In our reference framework the
incremental approach is used in the bundle adjustment step. Hence, only one
keyframe pairing per sequence is selected.

2.4 Initial Camera and Structure Recovery

After a keyframe pairing is selected a F-matrix between the keyframes is es-
timated by MSAC using Eq. 6 with Eq. 4 as cost function. The estimated F-
matrix is decomposed to retrieve initial camera matrices Âk1 and Âk2 of both
keyframes. Initial 3D feature points P̂′

i are computed using triangulation (see
[2, Chapter 11]). Now bundle adjustment between two views is performed by
sparse Levenberg-Marquardt iteration using Eq. 6 subject to p̂i k1 = Âk1P̂′

i and
p̂i k2 = Âk2P̂′

i as cost function. Initial camera matrices Âj , with k1 < j < k2,
of the intermediate frames between the keyframes are estimated by camera re-
sectioning. Therefore, the estimated 3D feature points P̂′

i become measurements
P̃′

i in this step. Assuming the errors mainly in P̃′
i and not in p̃ij the following

cost function must be minimized:

µ̄2
res =

1
3 I

I∑
i=1

d(P̃′
i, P̂i)2Σ −→ min (10)

subject to p̃ij = ÂjP̂i for all i, where µ̄res is the residual error of camera resec-
tioning.

2.5 Bundle Adjustment

The final bundle adjustment step optimizes all cameras Âj and all 3D feature
points P̂ i of the sequence by sparse Levenberg-Marquardt iteration, with

ν̄2
res =

1
2 J I

J∑
j=1

I∑
i=1

d(p̃ ij , ÂjP̂ i)2Σ −→ min (11)
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where ν̄res is the residual error of bundle adjustment. The applied optimization
strategy is Incremental Bundle Adjustment: First Eq. 11 is optimized for the
keyframes and all intermediate views with the initial values determined in the
previous step. Then the reconstructed 3D feature points are used for camera
resectioning of the consecutive views. After each added view the 3D feature
points are refined and extended and a new bundle adjustment is carried out
until all cameras and all 3D feature points are optimized.

3 Keyframe Selection Algorithm

In this chapter the new approach for keyframe selection is presented. The ap-
proach attempts to find the keyframe pairing that minimize the estimation error
of the following final bundle adjustment step. Bundle adjustment with iterative
minimization is heavily reliant on good initial values for 3D feature points P̂i and
camera matrices Âj . Thus, a keyframe selection criterion that judges the quality
of these initial values is needed. Therefore, it should be taken into account, that
initial camera matrices Âj are estimated from initial 3D feature points P̂′

i as
described in step 2.4, which rely on the choice of the keyframe paring.

Consequently, the first step of the approach is the estimation of the covariance
matrix of initial 3D feature points P̂′

i for each keyframe pairing where F-GRIC
is smaller than H-GRIC. If F-GRIC ≥ H-GRIC the keyframe pairing candidate
is rejected without evaluation of the covariance matrix. In the second step the
estimated covariance matrix is applied to approximate a lower bound for the
estimation error of 3D feature points P̂i and camera matrices Âj after camera
resectioning.

3.1 Covariance Matrix Estimation

For the estimation of covariance matrix of initial 3D feature points P̂′
i a bundle

adjustment between the two analyzed keyframes with camera matrices Ak1 and
Ak2 is performed. As derived in [2, Chapter 4.2], the covariance matrix ΣÂkP̂′

i

of both cameras and the 3D feature points is the first order equal to:

ΣÂkP̂′
i
= (J�Σ−1

p̃ J)+ (12)

where J is the Jacobian matrix calculated at the optimum for Âk1, Âk2, and
P̂′

i, and where Σp̃ = diag(. . . ,Σp̃ij
, . . . ) and (. . . )+ denotes the pseudo-inverse.

It should be stressed, that the bundle adjustment between two views and the
covariance matrix ΣÂkP̂′

i
can be estimated with significant time savings using

techniques for sparse matrices, because J�Σ−1
p̃ J has a sparse block structure (see

[2, Appendix 4.6] for details). By extracting ΣP̂′
i

from ΣÂkP̂′
i

the total variance

of the 3D feature points P̂′
i is calculated by the trace of ΣP̂′

i
.

E

[
I∑

i=1

d(Pi, P̂′
i)

2

]
= trace(ΣP̂′

i
) (13)
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where Pi are the true 3D feature points, E[. . . ] denotes the expectation of the
function, and d(. . . ) denotes the Euclidian distance.

3.2 Expectation of Estimation Error

Now, a lower bound for the mean estimation error µ̄est of 3D feature points P̂i

and camera matrices Âj after camera resectioning is derived (compare Eq. 10):

E[µ̄2
est] = E

[
1

3 I

I∑
i=1

d(Pi, P̂i)2
]

(14)

The measurements in the cost function defined by Eq. 10 are the 3D feature
points P̃′

i, that correspond to the estimated P̂′
i in the previous step. The esti-

mated 3D feature points P̂′
i obey a Gaussian distribution defined on a space of di-

mension 3 I. In order to simplify calculation and reduce computational effort, let
us assume P̃′

i obey an isotropic Gaussian distribution with ΣP̃′
i
= σ̄2 I, where I

is the Identity matrix and σ̄2 = trace(ΣP̂′
i
)/3 I, so that trace(ΣP̃′

i
) = trace(ΣP̂′

i
).

The constraint p̃ij = ÂjP̂i of Eq. 10 enforces that P̂i can be located only on
the line of sight defined by p̃ij and Âj . Thus, the degrees of freedom for every es-
timated 3D feature point P̂i reduces from three to one. This means, that within
the measurement space of dimension 3 I a surface of dimension I+A exists, where
A is the number of essential parameters of one camera Aj . On this surface all
possible solutions for P̂i and Âj are located. In the Levenberg-Marquardt algo-
rithm this solution surface is approximated by a tangent surface, which has the
same dimension. Because the Gaussian distribution in the measurement space is
assumed isotropic and thus invariant to rotation, the projection on the tangent
surface is equal to the projection on the first (I +A) coordinate axes of the mea-
surement space (see [2, Chapter 4.1.3] for details). Thus, on the tangent surface
one gets an isotropic Gaussian distribution with total variance (I + A) σ̄2. This
results in a expected estimation error

E[µ̄2
est] =

1
3 I

(I + A) σ̄2 =
I + A

(3 I)2
trace(ΣP̂′

i
) = Sc (15)

If F-GRIC < H-GRIC, the score Sc is the new criterion to evaluate a keyframe
pairing candidate, where the pairing with a lower Sc indicates a better choice.
This is conceivable as a small trace(ΣP̂′

i
)/(3 I) corresponds to a small variances

of the estimated initial 3D feature points and the quotient (I +A)/(3 I) becomes
smaller for a larger number of 3D feature points I.
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Fig. 3. Relative frequency of residual error ν̄res (see Eq. 11) for 500 trials. The errors
in the positions of feature points obey a Gaussian distribution with standard deviation
σ = 0.7 pixel. The left most and right most bins capture all residual errors that are
smaller than 0.6 pixel and larger than 0.7 pixel. Trials with these residual errors are
counted as failures of the bundle adjustment: a) new approach, b) Pollefeys’ approach,
and c) Gibson’s approach. d) Failure rate over standard deviation σ for the different
approaches.

4 Results

4.1 Synthetic Data Experiments

This chapter compares the new criterion with the state of the art approaches
by Pollefeys and Gibson. Therefore, synthetic data experiments are carried out
in the defined reference framework of Chapter 2, whereby only the keyframe
selection criterion is changed.

500 synthetic test sequences with random camera motion and random scenes
are generated. Each test sequence consists of 40 views. The camera translation
between two successive views is uniformly distributed between 0 and 80 mm in all
three coordinate directions and the camera rotation around the coordinate axes
is uniformly distributed between 0 and 1 degree. 50% of the generated camera
motions between two images are purely rotational. The camera has an image size
of 720 × 576 pixel = 7.68 × 5.76 mm and a mean focal length of 10.74 mm. The
random scenes consist of 4000 3D feature points, which have a distance from the
camera between 800 and 3200 mm. Approximately 35 to 40 of these 3D feature
points are used in the final bundle adjustment step. The errors in the positions of



532 T. Thormählen, H. Broszio, and A. Weissenfeld

the generated 2D image feature points obey an isotropic Gaussian distribution.
20% of the generated correspondences between 2D feature points are outliers.

Fig. 3a-c opposes the relative frequency of residual error ν̄res after bundle
adjustment for the three approaches. 500 trials are performed and the errors
in the feature point positions have a standard deviation σ = 0.7 pixel. The
expectation value of the residual error

E[ν̄res] = σ

√
1 − A J + 3 I

2 J I
(16)

is approximately 0.65 pixel. Therefore, if a residual error is smaller than 0.6 pixel
or larger than 0.7 pixel, the bundle adjustment has not converged to the correct
minimum and these trials are counted as failures. It is obvious, that the new
approach improves the convergence probability of the bundle adjustment signif-
icantly because failures occur less frequently. In Fig. 3d the failure rates over
standard deviation σ for the different approaches are plotted. Especially, if the
standard deviation is large, the new approach shows its improved robustness.

Fig. 4. Examples of augmented image sequences.
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Fig. 5. a) Image sequence showing a test object with an exactly known structure.
b) Ground truth extrinsic camera parameter generated with Tsai’s camera calibration
method. Difference between ground truth and estimation c) new approach, d) Pollefeys’
approach e) Gibson’s approach.

4.2 Natural Image Sequences

The new keyframe selection criterion has also demonstrated to work well on
natural image sequences taken by a moving camera. Results of augmented image
sequences that have been calibrated using the technique described in this paper
are illustrated in Fig. 4. Videos of these augmented image sequences can be
found on our website1.

An empirical comparison of the new criterion with the state of the art ap-
proaches for natural image sequences is difficult because a large database con-
taining natural image sequences with ground truth camera parameters would
1 http://www.digilab.uni-hannover.de/results.html
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be necessary. However, in order to illustrate the practical relevance of the new
approach, a real-world example is given in Fig. 5. In Fig. 5a the evaluated image
sequence is shown, which contains a test object with exactly known structure.
Camera parameters are generated for every 10th view of this sequence with Tsai’s
camera calibration method [11], whereby the necessary 3D�→2D correspondences
are manually edited. Generated camera parameters are exhibited in Fig. 5b and
serve as ground truth. In Fig. 5c-e the differences between the ground truth
and the estimated camera parameters after bundle adjustment for the different
keyframe selection approaches are plotted. In this example the bundle adjust-
ment does not converge to the right solution, if Pollefeys’ or Gibson’s approach is
used. In contrast, the new keyframe selection approach gives satisfying results. It
should be stressed, that this single selected example gives no information about
the general performance of the three keyframe selection criteria. However, this
example reveals, that failures due to wrong keyframe selection can be observed
not only in synthetic data experiments but also occur in practice.

5 Conclusion

A new criterion for keyframe selection is proposed. It is derived from the estima-
tion of the covariance matrix of initial 3D feature points and a lower bound for
the estimation error of camera resectioning. While the state of the art approaches
just avoid degenerated camera motion configurations, the new approach searches
for the best possible keyframe pairing. This results in more accurate initial values
for 3D feature points and camera parameters. Thus, iterative parameter min-
imization methods that are applied in the bundle adjustment, like the sparse
Levenberg-Marquardt method, converge more frequently into the global mini-
mum.

Furthermore, we see no reason against an adaptation of the new criterion into
the three view framework of [5,6], where the trifocal tensor is used and initial
3D feature points are estimated from three views. Though a verification of this
is left for future work.
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