
EUROGRAPHICS 2012 / P. Cignoni, T. Ertl

(Guest Editors)

Volume 31 (2012), Number 2

Exploring Shape Variations by 3D-Model Decomposition and
Part-based Recombination

Arjun Jain1 Thorsten Thormählen1 Tobias Ritschel2 Hans-Peter Seidel1

1MPI Informatik 2Télécom ParisTech (CNRS-LTCI)

Figure 1: A blend between a bike and a motorbike with different structure, produced without user intervention by our technique.

Abstract
We present a system that allows new shapes to be created by blending between shapes taken from a database.
We treat the shape as a composition of parts; blending is performed by recombining parts from different shapes
according to constraints deduced by shape analysis. The analysis involves shape segmentation, contact analysis,
and symmetry detection. The system can be used to rapidly instantiate new models that have similar symmetry and
adjacency structure to the database shapes, yet vary in appearance.

1. Introduction

Easy-to-use shape modeling systems that produce custom

detailed 3D models are hard to come by. Professional shape

modeling tools are difficult to master, and detailed shapes

take a long time to create. Thus, many non-expert users resort

to simply choosing the most suitable existing 3D model from

the increasing number of databases that are available on the

Internet. Yet, it is often the case that no model in the database

is entirely suitable, or that the user is looking for a custom

model.

This work presents a system that can be used to synthesize

new 3D models from a database of many-part shapes. The

system is well suited for non-expert users because a blend

between two database shapes, as shown Fig. 1, can be con-

trolled via a single slider. Professional users can employ the

system to conveniently and quickly generate a large number

of shape variations, e. g., it is possible to produce a crowd

of hundreds of re-combined individual robots from only a

few database shapes. Mixing shapes of different classes could

help artists to brainstorm new shapes, e. g., by mixing a boat

and an airplane to produce a fast-looking boat (cp. Fig. 12).

The system aims at blending between models that are

highly dissimilar from a conventional geometry processing

point of view; they can have different numbers of parts, dif-

ferent mesh connectivity, and different topological structure.

Our key simplification is to avoid varying the geometry inside

individual parts that constitute the shape. Instead, we segment

the database models into parts and synthesize new models by

recombining these parts.

The key challenge of part-based recombination is to min-

imize the synthesis of undesirable variations. The number

of possible models that can be synthesized from given parts

grows combinatorially, and most such models are undesirable.

The key assumption behind our system is that preservation

of symmetries and contacts found in the source models can

increase the desirability of the synthesized models. This con-

strains the models that the system generates, leading to more

visually pleasing blends.

Our system processes a database by segmenting the shapes

into parts and computing symmetries and contacts between

these parts. Contacts between the parts describe the adjacency

structure of the shape. The adjacency structure is employed

during the creation of a hierarchy that groups connected parts

in a coarse-to-fine manner. At runtime, given two database
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shapes that the user wishes to blend, the system performs

hierarchical matching between the shapes, remixing parts

that have similar positional information in the nodes of the

hierarchy. The computed matching is used to interpolate the

adjacency structure of the models. Individual parts are ex-

changed during the interpolation and are positioned by a

mass-spring system that enforces contacts.This produces new

models that incorporate parts from given shapes yet vary in

appearance.

2. Related Work

Creating a new shape that interpolates two given shapes is

called blending, or morphing. Morphing involves solving

a correspondence problem and requires a blending opera-

tor. Finding correspondences is a difficult problem both be-

tween images [Wol98] and surfaces [BN92,LDSS99]. Blend-

ing becomes easier when choosing a suitable representation,

such as distance fields [COSL98] and achieves more natu-

ral results when maintaining as-rigid-as-possible deforma-

tions [ACOL00].

Interpolating between multiple given models is even more

challenging. The problem is simplified when a parametric

model is available, as is the case for human faces and bod-

ies [BV99,ACP03], but it is not known how to construct such

parametric spaces given general models composed of many

meaningful parts.

Another approach to shape synthesis is to generate in-

stances based on statistical models. This is a popular approach

for texture synthesis, where example instances are decom-

posed into multiple texture elements and then recombined

into new instances [EL02]. This approach has been extended

to synthesize large models given a smaller one [Mer07];

however, when synthesized instances must have a complex

hierarchical structure, such as symmetry and preservation of

physical constraints, statistical models based on local sim-

ilarity are less effective, and some modeling of the global

structure is required.

Procedural modeling systems have been used to describe

the global hierarchical structure in shapes [Ebe03], but it

is difficult to automatically derive a grammar for a given

geometric model, despite promising recent steps [BWS10].

Modeling by Example [FKS∗04] is a modeling system that

can be used to generate a shape by manually cutting and glu-

ing parts from existing shapes. Chaudhuri et al. [CKGK11]

propose an example-based modeling system that expedites

the modeling process by presenting relevant components to

the user. Our goal is to further drastically simplify the model-

ing interface by synthesizing complete models automatically

and efficiently, allowing the user to explore a whole family

of new models with no direct manipulation of geometry. The

Shuffler system [KJS07] enables users to replace selected

parts in compatible models. Section 5 discusses similarities

and differences to our system. To efficiently explore large

Input Segmentation SymmetryContact Hierarchy

Figure 2: After segmenting the input shape, we detect sym-
metry and contacts on multiple levels of a shape hierarchy.

databases of 3D shapes, Ovsjanikov et al. [OLGM11] pro-

pose a navigation interface that allows users to find the desired

shape in the database by interacting with a deformable shape

template.

Higher-level shape analysis has received much interest

with applications that include deformation [GSMCO09,

ZFCO∗11], abstractions [MZL∗09], automated layout

[LACS08], or upright orientation [FCODS08]. A crucial com-

ponent here is the segmentation of meshes [SBSCO06,GF09,

KHS10] and the detection of symmetry [MGP06,PMW∗08].
Symmetries can also be organized hierarchically [WXL∗11];
joints between shape parts can be automatically extracted

[XWY∗09]; and mechanical assemblies can be animated

given only raw shapes as input [MYY∗10].

3. Shape Analysis and Synthesis

Our approach consists of two phases discussed in this section.

The offline phase is an analysis of a database of many 3D

objects leading to a representation of shape-part relationships

based on the hierarchical structure and contacts between parts.

During the online phase, this representation is then used to

synthesize new shapes from parts with relations similar to

those in the database.

3.1. Shape Analysis

Shape analysis is used to find the relations between parts

that constitute a shape. We start from S := {Si|Si ∈M, i =
1, . . . ,ns}, whereM is the set of ns shapes Si in the database.

Each shape Si is represented as a polygonal mesh. Our

database currently comprises 280 different man-made objects,

providing no symmetry or hierarchy information, which are

taken from 3D model repositories on the Internet. These mod-

els typically have different scales, but it is a prerequisite that

they have a consistent alignment to the global coordinate axes

(as is typically the case for 3D models from Internet reposi-

tories). In particular, all 280 of our models have a consistent

upright orientation.

The analysis is run on every shape in the database in-

dependently. It consists of segmentation, contact analysis,

symmetry detection, and hierarchy generation (see Fig. 2).

This section provides the details of every step.

Segmentation The i-th shape Si is decomposed into np
i parts

Si =
⋃ j=np

i
j=1 Pi, j which are again polygonal meshes. In our
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Figure 3: a.) Shape, b.) Segmentation, c.) PCA, d.) Contacts.

case, segments are connected components of the polygonal

input mesh, which are generated by region growing.

Next, every part Pi, j is re-sampled to a point cloud P̄i, j for

further processing. The individual points of P̄i, j are placed on

the surface in such a way, that their distance is roughly equal

(blue noise). Now, a principal component analysis (PCA)

of P̄i, j is performed, which provides a transformation Ti, j
from the global into the local coordinate system of the part.

A point p′ in the local coordinate system is given by a trans-

formation Ti, j, which combines a translation, a rotation and

a scaling: p′ = Ti, jp = Si, jRi, j(p− ci, j). The geometric cen-

ter of the part’s point cloud in the world coordinate system

defines the center ci, j of the local coordinate system. The

local 3× 3 rotation matrix Ri, j is given by the three PCA

basis vectors and defines the local rotation axes. The diag-

onal 3×3 matrix Si, j = diag(1/sx,1/sy,1/sz) describes the
local non-uniform inverse scaling using the three singular-

values si, j = (sx,sy,sz)�.

Contact Analysis. During contact analysis all intersections

of all parts for a shape are found. For each part Pi, j of shape

Si it is evaluated, if it is in contact with another part Pi,k. We

call the subset of points in the point cloud P̄i, j for which

a point with a distance of less than 0.1% of the bounding

box diameter exists in P̄i,k the contact Ci, j,k of part j and k.
In practice, an axis-aligned bounding box tree [vdB98] on

all points of shape Si is used to compute the set of contact

points efficiently. The set of contacts describes the adacency

structure of a shape.

In summary, the above two steps produce a segmentation

of each shape into parts, as well as a list of contacts between

the parts of a shape. An example is shown in Fig. 3.

Symmetry Detection. Next, the dominant global symmetry

transformation Hi (a reflection, rotation, or translation) for the

i-th shape is found using a RANSAC approach [BBW∗08].
The approach randomly samples a number of potential sym-

metry transformations. In every trial, one symmetry transfor-

mation candidate K is generated. Then, the support α(K) of all
parts for this symmetry candidate is computed. To this end,

the center ci, j of every part Pi, j is mapped to p′i, j = Kpi, j , and

if a matching part Pi, j′ is found at p′, a support counter is in-

cremented. Two parts match if their eigenvalues si, j and si, j′

are similar, i. e., they are of similar shape. After all trials, the

symmetry with the highest support count Hi = argmaxK α(K)
is assumed to be the dominant symmetry.

To generate candidate transformations, the following pro-

cedure is used: for reflective symmetry, two random parts Pi, j
and Pi,k are selected. The difference vector di, j,k = ci,k− ci, j
between the part centers ci, j and ci,k defines the normal of a

reflective symmetry plane, and a reference point on the plane

is given by (0.5di, j,k + ci, j). Translational symmetries are

found by directly using di, j,k as a translational offset. For

rotations, a third part Pi,l is selected and a circle is fitted to

the center of all three parts defining a rotation around a point

by an angle.

In practice, we first compute the best reflective symme-

try. If its support is below a threshold of 80%, we assume

no reflective symmetry and compute the best translational

symmetry. If the support of this symmetry is below 80% as

well, the best rotational symmetry is computed. If rotational

symmetry is supported by less than 80%, no symmetry is

assumed.

The result of this step is the one most dominant global sym-

metry for each shape (if present). Most shapes in our database

exhibit a dominant reflective symmetry, which is therefore

preferred by the described approach over other forms of sym-

metry. Since the manually modelled 3D objects are almost

noise-free, the detection of symmetries is typically very ro-

bust.

Hierarchy. Finally, a hierarchy is generated for each

shape Si. This hierarchy is constructed in a coarse-to-fine

manner and has approximately log(np
i ) levels. On each level,

parts are grouped into hierarchy nodes N, which know their

children and store this information. The j-th node of the

i-th shape at level k is denoted as Ni, j,k. On each level

each node computes and stores its corresponding eigen-

transformation Ti, j,k as well as its symmetry transformation

Hi, j,k, if it exists.

On the coarsest level, k = 0, all np
i parts are added to a

single root node Ni,0,0. As the single root node on level 0 com-

prises all the parts of the shape, its eigen-transformation Ti,0,0
corresponds to the eigen-transformation of the complete

shape Si and its symmetry transformation is given by the

dominant global symmetry.

When going from a coarser level (k− 1) to a finer level

k, for each parent node Pi, j,k−1 on the coarser level, two

child nodes on the finer level are generated. Only those parts

that belong to the parent node are now split into two sets

and those sets are assigned to the two child nodes on the

finer level. If a symmetry was detected, the splitting into

children takes this information into account. For reflective

symmetry, the reflective symmetry plane splits the parts of

the parent node into two sets that are assigned to the two chil-

dren. In a similar fashion, splitting planes can be defined for

translational and rotational symmetry, e. g., for translational

symmetry the splitting plane is located halfway on the trans-

lational offset vector. A third child is added in those cases

where the centroid of a part is located in close proximity

to the splitting plane. The splitting operation is successful

c© 2011 The Author(s)

c© 2011 The Eurographics Association and Blackwell Publishing Ltd.



Jain et al. / Exploring Shape Variations by 3D-Model Decomposition and Part-based Recombination

Figure 4: Generation of a hierarchy that takes symmetry
into account: Symmetric parts are grouped to nodes on the
same level. The coarsest level of the hierarchy is shown top
left, the initial part segmentation at the bottom right.

if at least two child nodes have at least one part assigned.

If the splitting based on the symmetry information is not

successful or if no symmetry is available, the splitting plane

x = 0 in the local coordinate system of the parent (defined

by the parent’s eigen-transformation Ti, j,k−1) is used. If this

splitting operation fails as well, the y = 0 and z = 0 planes

are tested. If the operation is unsuccessful for any splitting

plane, only a single child is generated for the parent node,

where the child contains all the parts of the parent. Other-

wise, if the splitting operation was successful, each child’s

corresponding eigen-transformation is computed and stored.

Furthermore, the symmetry detection algorithm described

in the last paragraph is applied to all the parts of the child

node. This process is repeated for subsequent levels until a

level is reached, where no further splitting operations can be

performed. Fig. 4 shows the hierarchy for an example shape.

Enforcing Nodes without Disconnected Parts. At this

stage, the hierarchy generation does not take into account

contact information between parts. Consequently, it can hap-

pen that a child node contains parts that are disconnected, i. e.,

that there is no connection path between the parts over one or

multiple contacts. In this paragraph we describe an algorithm

which ensures that each node N of the hierarchy contains only

non-disconnected parts. This algorithm is executed after the

creation of each new level k in the hierarchy. Let’s assume

that after its creation the level k has nN
k nodes.

In a separating step, a region-growing algorithm on the

contact adjacency structure is used to decompose the parts

of a child node on the current level k into sets of non-

disconnected parts. For each set, we generate a new child

node in the current level that contains the parts of the set.

Thus, the original child node may be replaced by multiple

new ones. After the separating step is performed for all origi-

nal child nodes, we execute a merging step that tries to merge

the child nodes (in order to obtain a similar number of nodes

as the number nN
k of nodes on the current level k in the origi-

nal configuration). All the nodes of the current level are sorted

by area, and the nN
k largest nodes are kept. The other nodes

are merged with a kept node with which they share at least

one contact. If the merged nodes share contacts with multiple

a.) H

b.)

c.) d.)

Figure 5: Enforcing non-disconnected nodes: a.) Split along
the dominant (reflective) symmetry H during the creation
of the hierarchy may result in disconnected nodes (dashed
lines). b.) In the separating step disconnected nodes are split
into individual non-disconnected nodes c.) The merging step
ensures that there are only a low number of additional nodes
for each level. However, this leads to arbitrary decomposition
of tentacles on the second levels (if the tentacles have very
similar sizes). d.) In this particular case our merging step
make an exception and separates all tentacles, which have
similar size, at the same level into separate nodes.

kept nodes, the smallest of the kept nodes is selected for the

merge operation. During the merge operation, all parts from

each merged node are added to the selected kept node and

the merged nodes subsequently are deleted.

After the separating and merging step, we have the same

number of nodes as before but it is ensured that each node

only contains non-disconnected parts. There is, however, an

exception. In cases where merged nodes are available that

have very similar size as the smallest kept node (we used a

threshold of 95%), those nodes are also kept and not merged.

This is necessary for the algorithm to produce the same re-

sults for different branches of the tree hierarchy because the

selection by size would otherwise be arbitrary. Fig. 5 shows

an example of the enforcement of non-disconnected nodes.

All of the above analysis is pre-computed and serialized to

disk. It will be used to synthesize new shapes in the next step.

3.2. Shape Synthesis

The synthesis of new shapes is performed online at interactive

speed using the pre-computed analysis results obtained from

the previous steps. It consists of three steps: shape matching

(Sec. 3.2.1), interpolation (Sec. 3.2.2), and contact enforce-

ment (Sec. 3.2.3).

3.2.1. Shape Matching

While all previous steps were performed on individual shapes,

in this step, a matching between two shapes S1 and S2 is

established.

In general, the number of parts is not the same for each

shape; thus, a one-to-one mapping for parts cannot be estab-

lished. This problem could be resolved to some extent by

c© 2011 The Author(s)
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S
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Figure 6: Re-grouping parts (represented by polygons) into
nodes (represented by the same color) of a new hierarchy can
help to find a better match between two shapes S1 and S2:
a.) original hierarchy for both shapes; b.) updated hierarchy
of the target shape S2.

Source hierarchy Matching

0

Level

1

2

Target hierarchy

Figure 7: During shape matching the target hierarchy is
re-generated. The structure of the source hierarchy is repro-
duced for the target shape (if possible). The one-to-one map-
ping of the nodes on each level directly defines the matching
between the two shapes.

selecting a hierarchy level for both shapes where the number

of nodes on both sides are the same, and performing matching

between nodes on those levels. The shapes in our database,

however, typically have a very different structure, resulting in

a different hierarchy. As an example, let’s assume the source

shape is a car and the target shape is a truck, as shown in

Fig. 6a. Both models have the same number of nodes, but the

back of the car (yellow) has to be used as one of the truck’s

tires to generate a one-to-one mapping of nodes. Instead,

we propose to rebuild a new hierarchy for the target shape

that adapts to the observed segmentation of the source shape

during matching (as can be seen in Fig. 6b).

Algorithm 1 Shape Matching

Build the target hierarchy root node

for all source hierarchy levels starting from level k = 0 do
1. Copy the child node structure of the current source

level into the target (empty target child nodes);

2. Assign target parts to target child nodes by nearest

neighbor matching, which compares the positions of the

corresponding source child nodes with the positions of

the target parts (all given in the local coordinate system

of their parent node);

3. If any target child node is empty, remove it from the

target hierarchy and merge the corresponding source

child node with another source child node;

4. Enforce nodes without disconnected parts in the target

hierarchy;

end for

An overview of the proposed shape matching approach

is given in Algorithm 1. In the beginning, a target hierarchy

root node is generated. As illustrated in Fig. 7, all target

parts are assigned to the root node, which defines the new

coarsest level (k = 0) of the target shape S2. We then calculate

the eigen-transformation T2,0,0 of the target root node. We

also define that the source and the target root nodes are in

correspondence, which means that they match onto each

other.

The algorithm now iterates over all levels of the source

shape. We start from the coarsest level (k = 0) of the source

shape and, in each iteration, the next finer source level (k+1)
is processed. For each iteration, a corresponding target level

is created, so that the source and target hierarchies ultimately

have the same number of levels.

In order to generate a level k of the hierarchy for the target

shape S2, the following steps are executed (cp. Algorithm 1):

First, the same number of child nodes in the target hierarchy

is generated as on the current level of the source shape. The

child nodes in the source and in the target are defined to be

in exact correspondence, i. e., the child nodes with the same

indices match onto each other: N1, j,k ↔ N2, j,k. The nodes in

the target shape are empty at the moment, i. e., they currently

do not have assigned parts. The parent and child nodes in the

target are now linked exactly the same, as the source parents

are linked with their child nodes in the source hierarchy. This

means each target parent links to the target child nodes with

the same indices as its corresponding node on level (k− 1)
in the source hierarchy links to its children.

In the second step, all parts of a target node are distributed

among the children. Each target child node knows its corre-

sponding source child node. The part assignment is based

on nearest neighbor matching of the positions of a target

part’s center in the local coordinate system of the target par-

ent, and the position of the corresponding source child node

in the local coordinate system of the source parent. To be

more explicit, let T2,p( j),k−1 be the eigen-transformation of

the target parent node. The position of the part’s center c2, j
in the local coordinate system of the parent is then calcu-

lated by c′2, j = T2,p( j),k−1(c2, j). Similarly, let T1,p(m),k−1

be the eigen-transformation of the parent of source child

node N1,m,k. The position of the source child node’s cen-

ter c1,m in the local coordinate system of the source parent is

given by c′1,m = T1,p(m),k−1(c1,m). During nearest neighbor-

matching, target parts are assigned to the target child node

with the smallest distance between the local position of the

corresponding source child node c′1,m and the local part po-

sition c′2, j (cp. Fig. 7). Afterwards, the eigen-transformation

for each child node of the target is calculated.

In the third step, the special case where a target child

node has no attributed target part is considered. Here, the

target child node is removed from the target hierarchy. Con-

sequently, to ensure an exact one-to-one mapping, the cor-

responding source node has to merge with the closest child

node of its parent that still has at least one target part in the

corresponding target node. As a result the source hierarchy is

modified.

Similar to the shape analysis procedure, nodes in the target
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S1 N1,a N2,bT1,a-1(N1,a) T2,b-1(N2,b) S2

Figure 8: Matching parts inside their parent nodes N1,a and
N2,b (black boxes) of two shapes S1 and S2 (left and right
humanoid). The parts in each node are transformed into the
unit cube by the inverse eigen-transformation T−1

1,a and T−1
2,b

and matched to the nearest neighbor.

shape hierarchy might have disconnected components. Thus,

in the fourth step, we run the exact same algorithm as in

the shape analysis to ensure that parts in a target node are

not disconnected, with one exception: it is always ensured

that the number of nodes on the same level does not change

(during the shape analysis, we allow to create more nodes if

nodes selected for merging have very similar sizes as kept

nodes).

In summary, after the algorithm has processed all source

levels, the source and target hierarchy have the same number

of levels and the same number of corresponding nodes on

each level; however, the individual nodes N1, j,k and N2, j,k
may have different numbers of assigned parts. The matching

between source and target shape is directly given by the

correspondence between the nodes N1, j,k ↔ N2, j,k.

This algorithm only takes positional information into ac-

count; however, the positions are compared in the local co-

ordinate systems of the parent node. Thus, the shape of the

parts that were assigned to the parent play an important role,

as those define the parent’s local coordinate system. Let’s

assume we want to match the arms of two humanoid shapes

as shown in Fig. 8. If the matching on the previous level was

successful, each part of the arm is now defined in its local co-

ordinate system and part matching and conjoined re-grouping

will return a reasonable result. This approach of conjoined

matching and re-grouping is able to handle the difficult prob-

lem of matching parts that have different amounts of detail

(like the arm in Fig. 8). This is demonstrated in Fig. 9 with

two 3D aeroplane models from our database. The source

shape, a lear jet, has no turbines on the wings, and thus a

wing is modelled with only a few parts. The target shape,

an MD-11, has turbines at the wing, and the complete wing

(including the turbine) exhibits a large number of parts. As

can be seen in the matching results of Fig. 9, our algorithm

handles this situation by just grouping the wing and the tur-

bine of the target shape in a single node in order to adapt to

the source shape.

This approach can be extended to not only consider spatial

information when attributing a target part to a target node.

For example, parts with similar shape or size can be assigned

with higher likelihood; however, as the models in our database

Figure 9: Result of the matching and conjoined re-grouping
of nodes. The source shape is a Learjet and the target is a
McDonnell Douglas MD-11; Top row: Input hierarchy of
the target, Left: The three coarsest levels, Right: finest level;
Middle row: resulting hierarchy of the target; Bottom row: re-
sulting hierarchy of the source (same colors identify matching
parts for the lower two rows).

have rather different shapes, especially in the fine details, we

resorted to taking only positional information into account.

3.2.2. Shape Interpolation

Using the shape matching described previously, allows to

interpolate shapes composed of parts, i. e., to generate „in-

between” composition of parts into shapes.

Linear Interpolation. A new shape S(w) can be generated

depending on a weight parameter w ∈ [0,1] to blend between

two shapes S1 and S2. As it is customary for interpolations, it

is clear that S(0) = S1, and S(1) = S2. The question is what

would be expected, e.g., at S(0.5)?

In our approach, shapes are interpolated using the nodes

on the finest level of the hierarchy. The employed shape

matching ensures that matching nodes have the same index

j in the source shape S1 and in the target shape S2. During a

blend, every part from S1 should be replaced only once by a

part from S2 and never change back. This can be achieved by

instantiating the first w ·nN
l nodes (and all containing parts)

from S2 and all others from S1:

Pj(w) =
{

P2, j if j < w ·nN
l

P1, j else

If two nodes in the source or in the target are symmetric, it is

ensured that either both or neither are instantiated. The result

depends now to some extent on which index j was assigned to

a node because, during a blend, a node with a small index is

instantiated earlier for an increasing w. Thus, we have chosen

to reassign the indices by sorting the corresponding nodes

by the conjoined source and target node size. Obviously,

the reassignment of indices must be done similarly in the

source and the target hierarchy to ensure that the matching of

nodes (which is encoded in the index) is not lost. Our chosen

reassignment places the node with the largest conjoined size

in the middle of the blend, at w = 0.5, and node sizes are

decreasing towards both sides w = 0.0 and w = 1.0. This
choice typical gives visually pleasing blends. However, a

user of our system can choose from several different sorting

criteria, if desired.
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Incremental interpolation of multiple shapes. Linear in-

terpolation generates classic morphs between two shapes.

Interpolation between more than two shapes is performed by

executing multiple consecutive blends between two shapes.

Starting from an existing shape S1, this shape is modified by

an incremental step of size w1→2 to become more similar

to another shape S2. This is achieved by simply exchanging

parts in S1 by a number of parts in S2 proportional to w1→2,

as described above. The blended shape S1→2 can then serve

as a source shape for the next blend operation with a third

shape S3, and so on.

3.2.3. Contact Enforcement

While the interpolation rule tells us which nodes from which

model should be instantiated, the exact positioning of the

node’s parts in the new shape must still be optimized. A good

placement can be found by enforcing the contacts between

nodes as these were observed in the source and in the target

shape. This may impose multiple conflicting positioning con-

straints and a consensus needs to be found. Nodes that were

in contact in the source and target shape should be attached

to each other in the interpolated shape as well (Fig. 10). A

node (from the source or from the target) usually tends to be

in contact with its contact partner part that originated from

the same shape. If this partner is unavailable, the node will

try to enforce a contact with a node from the other shape that

forms a match with the original contact partner. As shown in

Fig. 10, it will often occur that nodes have a mutual desire to

connect to each other. These bi-directional contacts will be

enforced in any case. If the wish to form a connection is only

unidirectional, such contacts are only enforced if they are not

in conflict with bidirectional contacts (cp. Fig. 10).

We employed a simple mass-spring system to enforce the

contact constraints between nodes. This system is a set of

masses with locations and a set of springs that connect masses.

The system to enforce our constraints is set up as follows:

one mass is created in the node’s center and one for every

contact to another node. A spring is then generated between

every node’s center and each of its contact points. The contact

point of each node with a connected node is calculated by

averaging all the contacts points of the individual part con-

tacts Ci, j,k, where part j is a member of the current node and

part k is a member of the connected node. The springs within

a node want to keep their length and enforce that the distance

between the center of a node and its node contacts is main-

tained. We then add zero-length springs between contacts of

different nodes that should be enforced. These springs seek to

reduce their length to zero and are consequently pulling nodes

towards each other. The mass-spring setup for a simple exam-

ple is shown in Fig. 11. The mass-spring system is solved in

a Jacobi fashion by successive over-relaxation [MHHR07].

Here, in each iteration, both masses connected by a spring

are moved to make the spring come closer to its rest length.

Note that a mass-spring system (or an equivalent opti-

mization procedure) is required for contact enforcement, as

a.)

c.) d.)
b.)

e.)

f.)

Figure 11: A simple example demonstrating the mass-spring
contact enforcement: a.) interpolated shape without mass-
spring, b.) source shape, c.) mass spring system, d.) solved
mass spring system, e.) solved shape and f.) target shape.

a simple top-down relation between nodes (and their parts)

does not exist. The contacts between nodes do not, in general,

form a tree but a graph. For shapes that have the structure of

a tree, children would just need to follow their parents. While

many man-made objects appear as trees on a coarse level, in

their details they are indeed graphs.

4. Results

In this section, we present the results that were generated

with our system. More results are shown in the supplemental

video. Users of our system can create new shapes by blending

between database shapes. To this end, we offer a simple and

very intuitive user interface. When the user clicks the new tool

button, icons of available models in the database are shown.

The shapes are organized into categories (e.g., “robots” or

“ships”) in order to help browsing the database. The user then

selects a shape that should be used as the starting point of

the exploration process. To create a blend, the user clicks the

blend tool button and selects the target shape of the blend

operation. Now a single slider appears which lets the user

control the blending process. The slider varies the weight w
of the linear interpolation between the source and the target

shape (cp. Section 3.2.2). Fig. 12 shows some results of such

blending operations for different source and target shapes.

The results shown here are blends for complex shapes with

several hundreds of parts. More results for shapes with only

a few parts and from different classes (e. g., tables, lamps,

or cars) are given in the supplemental material. Due to the

precomputed shape analysis, the blends can be performed at

interactive rates with high-quality rendering feedback. Inter-

active user sessions are shown in the supplemental video. The

two robots in the top row of Fig. 12 both have ≈ 2.5M poly-

gons. Recomputing their shape analysis takes approx. 10 s

each, shape matching 720ms, and the rest of the shape syn-

thesis runs at 5 fps. Fig. 13 shows a matrix of blend results

for a weight of w ≈ 0.5. The matrix contains blends for all

combinations that are possible to generate between five differ-

ent robots in our database. More matrices for different shapes

are provided as supplemental material. Fig. 14 shows a result

for incremental interpolation of multiple shapes.

It is also possible to reproduce to some extent the function-

ality known from the Shuffler system [KJS07], which allows
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Match 0a.) b.) Instantiated
matches

Instantiated
matches

Instantiated
matches

Match 1

Match 2
Match 3

Figure 10: Finding contacts for interpolated shapes: a.) for the source shape and the target shape it is known which nodes are
in contact by the shape analysis; b.) to generate an interpolated version between the source and the target shape, either the node
from the source or from the target shape can be instantiated for each match. An instantiated node wants to connect to its contact
partners that originated from the same shape; however, if a contact partner is not available, a node connects to the node of the
other shape with which the original contact partner forms a match.

Figure 12: Results of the blend operation (far left source shape, far right target shape)

the user to control which part of the current shape is replaced.

We call this functionality the object brush as it is possible

to paint the parts of a selected new shape onto the current

shape. In Fig. 15 the result of such a brush operation is shown.

The algorithms employed during the brush operation are ex-

actly the same as those for blending; the only difference is

that the user has full control over which node j is flipped

from the source to the target, i. e., when the user clicks on a

source node the algorithm simply instantiates the correspond-

ing target node. We evaluated our system with an informal

user study with 14 computer science students who had never

used the system before. On average the participants needed

01:41 min:sec to create a new shape with the blend tool, and it

took 01:37 min:sec to reproduce a given result with the object

brush tool. When asked if our system was helpful to solve the

given task, the average rating over three tasks was 6.05 on a

7-point Likert scale (where 1 is worst and 7 is best). Details

of the user study are provided as supplemental material.

5. Discussion

Not all the shapes generated by our system are useful or

visually pleasant. Nevertheless, most of the results are of high

quality, especially when it is taken into account that there was

no manual intervention in the complete processing pipeline.
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Figure 13: Matrix of blend results between 5 different robot
shapes in our database. The diagonal contains the original
shapes, the off-diagonal the blends for a weight of w≈ 0.5.
As described in Section 3.2.1 the blend is not symmetric.

Figure 14: Blending three shapes: (from left to right) source
shape, first target shape, intermediate result, second target
shape, final result that contains parts from all three inputs.

As can be verified in Fig. 13, it is possible to generate a large

number of blended shapes that have similar quality as those

that come directly from the database.

Currently, we only provide a very high-level user-interface

with very easy-to-use tools; however, our system currently

has no tools to repair a shape, e.g., when an undesired placing

of a part occurs. One option would be to provide our system

as a plug-in for a conventional modeling package. A falsely

placed part can then be corrected easily with the editing tools

provided by the conventional modeling package.

Most of the time, unpleasant or strange-looking recombina-

tions occur if the structure of the source and the target shape

are very different or objects of different classes are combined,

Figure 15: Exchanging parts of a shape using the object
brush: (from left to right) the source shape, the target shape,
the user clicked on the black base of the source shape, the
user then clicked on the extended arm.

Figure 16: Graph matching between parts of two humanoid
figures. Left: spectral graph matching. Right: our approach.
Note that our approach prevents, e. g., parts of the foot from
being mapped to the hand. The spectral graph matching finds
a good global solution; however, as the resolution hierarchy
is not updated, it cannot perform as well as an approach that
combines matching and re-grouping of parts.

i. e., a morph between two boats does typically look more con-

vincing than a morph between a boat and a plane (cp. Fig. 12).

Nevertheless, our system produces reasonable results even

in those situations. This works only because our algorithm

updates the resolution hierarchy during matching. Fig. 16

compares our approach to spectral graph matching [Leo09],

which does not re-group parts to form a new resolution hierar-

chy. Spectral graph matching additionally allows to consider

pairwise scores between two matches. For example, a high

score can be given to two matches if there is a contact be-

tween the two involved parts in the source shape and there

is also a contact between the two involved parts in the target.

Furthermore, it is possible to assign higher pairwise scores

to two matches if two source parts are symmetric and the

corresponding targets parts are symmetric as well. However,

for our particular application, the algorithm presented above

usually gives better results (a comparison is shown in Fig. 16).

In comparison to Shuffler [KJS07], where users specify

indivdual parts to be replaced, our system performs complete

blends where all parts have to be subsequently exchanged.

Furthermore, our approach differs in the employed shape

segmentation and shape matching strategy. In the Shuffler

approach segments are matched that have a similar midpoint

graph distance and similar geometry. The goal of our method

is to allow matching of parts that have rather different ge-

ometries (cp. Fig. 13); consequently, our approach relies on

positional (and contact) information instead.

The quality of the blended results depends on the way

segments are grouped into shapes. If they are coupled loosely,

with few contacts (e. g., limbs of robots, or features attached
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to the body of a vehicle), the approach works best. For too

complex contact constraints, such as segments inside a car,

the recombination might fail. Our approach does not allow

the deformation of individual parts. Consequently, shapes

that have puzzle-like structures (i.e., where each part has

to fit into another) typically also produce visible artefacts.

Furthermore, as we do not perform any functional analysis,

some intermediate shapes do not look plausible.

6. Conclusion

In this work, we addressed the problem of interactively com-

posing complex shapes from individual parts such as those

found in the world that surrounds us every day. We exploit the

constraints of symmetries and physical contacts, as analysed

from the example shapes, to restrict the produced shapes.

As a result, visually pleasing blends can be rapidly gener-

ated between a large number of database shapes of different

structures. Combining our approach with a more explicit

functional analysis would be a challenging but interesting ex-

tension of our system that may improve the plausibility of the

results. In future work, we would like to apply our approach to

organic shapes, images, animations, or audio.
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