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Figure 1: Three images showing (left to right) a frame from the input sequence, part of the modelling process, and the final model

Abstract

This paper describes an interactive method for generating a model
of a scene from image data. The method uses the camera param-
eters and point cloud typically generated by structure-and-motion
estimation as a starting point for developing a higher level model,
in which the scene is represented as a set of parameterised shapes.
Classes of shapes are represented in a hierarchy which defines
their properties but also the method by which they are localised
in the scene, using a combination of user interaction, sampling
and optimisation. Relations between shapes, such as adjancency
and alignment, are also specified interactively. The method thus
provides a modelling process which requires the user to provide
only high level scene information, the remaining detail being pro-
vided through geometric analysis of the image set. This mixture of
guided, yet automated, fitting techniques allows a non-expert user
to rapidly and intuitively create a visually convincing 3D model of
a real world scene from an image set.

CR Categories: I.4.8 [Image Processing and Computer Vi-
sion]: Scene Analysis—Surface Fitting; I.3.5 [Computer Graph-
ics]: Computational Geometry and Object Modeling—Modeling
packages

Keywords: Image-Based Modelling, Model-Based Reconstruc-
tion, Structure-from-motion

1 Introduction
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This paper describes a system for the interactive 3D modelling of
scenes from video footage. The first stage of the process is the re-
covery of camera parameters and a point cloud representing the lo-
cation of various feature points within the scene by structure from
motion anaylsis [Thormählen 2006]. The user is then presented
with an interface which allows the selection of a particular shape (a
cube, or plane for example), and a means by which its projection in
one of the original images may be indicated. The indication appro-
priate for each shape varies according to the application and the ex-
pected density of the point cloud compared to the size of the objects
to be modelled. Potential interactions include a single ’click’ in or-
der to specify the location of a cube in an image, or a plane might
be identified by drawing a loop enclosing the corresponding group
of scene points. One of the key advantages of the system presented
here is the flexibility it offers in the interactions supported and the
structured means by which new shape models may be incorporated.

The speed of the fitting methodologies developed allows an inter-
active fitting process, with each iteration through user interaction
and fitting producing successively more accurate results. This pro-
cess of iterative interaction means that the user need never provide
more than the minimal information required to achieve the desired
level of accuracy. The resulting shape model is that which best
accommodates both the image data and the user-provided informa-
tion. The user thus provides high-level shape information and spec-
ifies the relationships between shapes (if such a relationship exists).
The system interprets this user input on the basis of projective ge-
ometry and information gained through automated image analysis
techniques to derive a

The model that is generated is a collection of parameterised 3D
shapes and a set of relationships between them. In order to fit such
a model the following system components are presented:

• We define a hierarchical shape model of shape. At the topmost
level of the hierarchy is the simplest shape—a point—while
more complex shapes apppear at lower levels of the hierarchy.
We will describe this model in Section 2.

• A strategy is devised for sampling for shapes that belong to
the hierarchy. The strategy makes use of the hierarchy to effi-
ciently search for a wide variety of shapes in the scene.

• A means by which a user can interact with the system and
intuitively influence its operation is also defined.



• A method for optimising the fit of multiple models to a scene
is described which takes into account the relationships be-
tween shapes, user interaction, and the fit of the shapes to the
video.

Previous work has addressed the area of interactive scene mod-
elling. The Facade system [Taylor et al. 1996] reconstructs archi-
tectural scenes as a collection of polyhedra, but requires the user to
outline each block in each image, and manually label corresponding
features in each image—a time consuming process. In contrast our
system can identify a block with a single mouse click in one image.
Photobuilder [Robertson and Cipolla 2000] is an architectural mod-
elling system that works by having the user highlight enough lines
in each image to identify vanishing points in 3 orthogonal direc-
tions. Again, this is demanding and not always possible. The work
of Sturm [Sturm and Maybank 1999] operates on a similar prin-
ciple, given a single image and significant user markup as input.
Wilczkowiak presents a more general approach to interactive mod-
elling based on parallelepipeds as scene primitives [Wilczkowiak
et al. 2005]. However this still requires the corners of the prim-
itives to be marked manually in each image. This is because it
does not make use of automated structure and motion estimation,
instead trying to estimate all camera and scene information from
user interaction. Other work which has made extensive use of prior
information but is not interactive is necessarily limited in the range
of scenes it can reconstruct, or slow to execute if the prior is not
informative [Dick et al. 2004].

In the manipulation of 3D range data, model fitting is used to match
either a pair of 3D point clouds [Arun et al. 1987] (and thereby
estimating their relative pose and orientation) or a 3D point cloud
and a pre-existing 3D model [Fisher et al. 1993]. In neither case is
fitting performed on the basis of both 2D and 3D data.

The work described in this paper builds on previous work in two
key ways: it uses a hierarchical model of shape, and it integrates
user interaction in an intuitive and undemanding way, including the
specification of relations between shapes. These features result in
a 3D modelling system that takes advantage of scene properties to
generate scene models extremely rapidly.

The hierarchical model of shape serves two purposes. It defines the
spatial properties of the objects in the scene, and it defines a strat-
egy for searching for these objects in the scene. When adding a new
class of shape to the system, placing it in the hierarchy automati-
cally defines its parameters and an algorithm for localising it. The
shape hierarchy is described more fully in Section 2, and its role in
sampling and fitting is described in Sections 4 and 3 respectively.

User interaction is an important factor in this system. The user
specifies the class of each shape in the scene, and roughly where
it is. This is done in an intuitive way, by drawing on the image
data where the object to be modelled appears. The exact form of
user interaction is not prescribed, and can vary from very slight (for
instance clicking on an image to locate an object) to fine adjustment
of the shape of an object, depending on the requirements of the user.
Interaction is accepted at almost any stage in the modelling process,
and it is accordingly described throughout this paper, although it is
the focus of Section 6.

The ability to define relationships between shapes, such as adja-
cency or repetition, greatly improves the accuracy achievable while
simultaneously reducing the user input required. These relation-
ships are encoded as probabilistic constraints on the parameter vec-
tors describing the related shapes. The power of these relation-
ships lies in the fact they allow information both user and automat-
ically generated information to be propagated throughout the scene
model, exploiting each to the full extent possible. The specification
of shape relations is the subject of Section 5.

2 The Shape Model

A shape model is defined by a parameter vector M . This vector
describes the 3D position, orientation, shape and size of the model.
It can contain the following:

• A position vector T (3-vector): the translation between the
world and object coordinate system

• A rotation axis U (2-vector): the axis of rotation between
world and object coordinates

• A rotation V (scalar): rotation about U; together with U com-
pletely defines rotation between world and object coordinates

• Scale factors S1, S2, ... (scalar): define a distance, scale or
size.

The simplest model is a single 3D point, whose parameter vector
is just the 3D position vector T. A typical reconstruction produced
by a feature based structure and motion algorithm is a collection of
these models. By incrementally adding parameters to this model,
we define a hierarchy of richer shapes, as shown in Figure 2.

By adding a scale factor S1 to the point model we arrive at a sphere
model: M = {T, S1}. By adding another scale parameter to the
sphere: M = {T, S1, S2}, we model a pair of concentric spheres.
This is not a generally useful model, and so we disregard this branch
of the tree. Adding an axis of rotation to the sphere model (M =
{T, S1,U}) we model a cylinder of infinite length and diameter
S1. Adding another scale factor (M = {T, S1,U, S2}) allows
us to specify a length and thereby model a cylinder, or indeed other
surfaces of revolution such as an ellipsoid, a torus or a cone. Adding
further scale factors, we can model surfaces of revolution that are
increasingly complex (asymmetrical).

Adding a full rotation to the sphere model (M = {T, S1,U, V }),
we specify a polyhedron that is symmetric about its centre—for
example, a cube, tetrahedron, or dodecahedron. Adding another
scale parameter to this model (M = {T, S1,U, V, S2}), we can
model a slightly less symmetric polyhedron, such as a prism with
square or triangular ends. Adding a further scale factor (M =
{T, S1,U, V, S2, S3}), we can model a general cuboid or any reg-
ular polyhedron with different scales along its 3 axes. Adding fur-
ther scale factors, we can model increasingly complex polyhedra,
such as cuboid with rounded corners, or a house with a roof, analo-
gous to the case for surfaces of revolution.

We now return to the point model at the root of the shape hierarchy.
By adding an axis of rotation U to this model, we define a plane
whose normal is that axis: M = {T,U}. By adding a scale fac-
tor to this model, we have a planar circle (M = {T,U, S1}). If
we fully define the plane’s coordinate system by including the final
rotation parameter (M = {T,U, S1, V }) we can define any sym-
metrical planar shape, such as an equilateral triangle or a square.
Adding further scale factors, we can model increasingly complex
planar shapes, by analogy with the polyhedra. A scale factor can
also define a displacement normal to the plane, thereby creating a
3D shape such as those discussed previously. See the links in the
tree.

Although this may not seem the most intuitively obvious arrange-
ment of shapes and choice of parameters, it has been chosen be-
cause it meshes with a strategy for sampling each shape in the
scene, as will be described in Section 4. Note also that order mat-
ters. And it divides shapes into 3 types: surface of revolution, poly-
hedron, and planar shape, but hypothesised shapes can switch be-
tween these categories.
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Figure 2: The shape hierarchy.

Each modelled object represents an instance of a shape, and asso-
ciated with each instance is a label describing class of represented,
such as ’cube’, and a corresponding parameter vector, such as M
for example. By a slight abuse of notation we also refer to the object
itself by this label (M in this case).

3 Problem formulation: single shape

Recall that our goal is to model a scene as a collection of shapes.
To do this we need a mechanism for finding a shape model that fits
the scene well given the data (we focus on a single shape for now).
More precisely, we wish to find a shape model M that, given image,
camera and sparse 3D point data D and any prior information I
(more later on this), maximises the posterior probability

Pr (M |DI) ∝ Pr (D|MI) Pr (M |I) . (1)

The posterior depends on likelihood Pr (D|MI) and prior
Pr (M |I) terms, which are explained in the following sections.

3.1 Likelihood

The likelihood of the image data given a shape model is based on
the assumption that edges in the model will give rise to intensity
gradients in the image. Edges have a number of advantages over
corners or other features that might be used to guide model fit-
ting, including rapid detection and relative robustness to changes
in lighting. In order to calculate the degree to which a hypothesised
model is supported by the image intensities the visible edges are
projected back into the image set and the negative log likelihood
− log Pr (D|MI) is measured by the weighted distance to local
intensity gradient maxima [van den Hengel et al. 2006].

This likelihood function is based on image data and is therefore ex-
tremely sensitive and difficult to optimise. To initialise the optimi-
sation, we make use of the sparse 3D data generated as a by-product
of the initial structure from motion algorithm. Becuase this 3D data

is based on corresponding image features, it is likely to occur in
regions near the edges and corners of objects.

For each 3D point, we evaluate a distance to the shape model which
is closely related to the reprojection error (after all, the 3D points
were generated by bundle adjustment, which minimises this error).
Let PM be the point on the surface of the model M which is closest
to the reconstructed data point P. If we label the projection of a 3D
point P into image Im as p(P, Im) then we wish to measure the
distance between p(P, Im) and p(PM , Im) in each of the images
that were used in the estimation of P. The distance in image Im is

d2(p(P, Im),p(PM , Im)) (2)

where d2(·, ·) represents the Euclidean 2D image-based distance.
Not all points in the reconstruction necessarily belong to the model
that is being fitted, so a Huber function [Huber 1964] h(·) is ap-
plied to the distance measure, to diminish the influence of points far
from the model. The distance measure for a 3D point P thus be-
comes h(d2(p(P, Im),p(PM , Im))). The model parameters cor-
responding to the 3D shape that minimises this measure are used to
initialise the subsequent image based optimisation.

3.2 Prior distribution

Clearly, the problem of finding shapes in the scene is impractical
without the use of prior information. One option would be to spec-
ify limits on the ranges of shape parameters, and likely combina-
tions of shape parameters. However this limits the range of scenes
to which the system applies. We instead make use of user inter-
action to provide prior information about shape parameters. This
works well in practice because the kind of global prior information
about the scene that is required is exactly the information that is
easy for a human observer to provide.

There are some things in a scene that are obvious to a human ob-
server but surprisingly difficult to infer computationally. For exam-
ple, a user can easily click on a prominent object in a scene. This



defines a ray in scene space, effectively constraining the object po-
sition in 2 dimensions. If instead of clicking the user draws a shape
on the image, some idea of scale can also be determined. Interac-
tions are selected for particular classes of shape on the basis of the
amount of prior information required to guide the fitting process in
practice and the ease with which this information may be provided
by the user.

4 Shape sampling

In accordance with the Bayesian formulation of modelling, we
seek a sampling strategy to characterise the posterior distribution
Pr (M |DI). The dimension of the distribution depends on the
number of parameters in the shape model M , but is usually too
high to effectively sample directly. Additionally, the posterior is
expected to have many local extrema due to the complexity of im-
age data and sparseness of the 3D data.

To counter these problems, we sample from a succession of
marginal posteriors. Each marginal is based on a subset of the
shape parameters. The choice of shape parameters is related to the
shape hierarchy defined in Section 2. For example, consider the
cube model, M = {T, S1,U, V }. By marginalising over the ori-
entation paramters U and V , we return to the sphere model which
has only 4 parameters. Thus, instead of sampling from the joint
parameter space for a cube (7 dimensions), we can sample initially
from a marginal distribution parameterised by position and scale:

Pr (TS1|DI) =

Z
U

Z
V

Pr (TS1UV |DI) dV dU

=

Z
U

Z
V

Pr (TS1|UV DI) Pr (UV |DI) dV dU (3)

This equation can be directly evaluated for a given value of T and
S1 by summing probabilites over all orientations. As an approxi-
mation to this, we can instead evaluate the probability of the sphere
with parameters T and S1. This does not require integration and is
therefore much faster.

Having sampled T and S1 in this manner, the samples are locally
optimised to reflect local modes in the marginal distribution. We
can then sample for the remaining cube parameters (i.e. orientation)
from the following conditional distribution:

Pr (UV |TS1DI) (4)

based on the values of T and S1 sampled previously. This strategy
of sampling from marginal distributions followed by conditional
distributions applies to any shape in the hierarchy. Furthermore,
new shapes when added to the hierarchy already have an associated
sampling strategy defined by their ancestors in the hierarchy. Note
that integrating directly over scale factors is also possible because
they have a constrained range. As well as the scale of the bound-
ing box containing the scene, each scale factor in a shape model is
constrained to be smaller than its predecessors.

For example, consider the cube model, with 7 parameters. In the
hierarchy it is descended from the sphere model with 4 parame-
ters, which is in turn descended from the point model with three.
This suggests the following strategy. First, define a distribution over
the scene space based on the point model (we assume a bounding
box around the scene). This distribution is based on the distance to
points in the neighbourhood. We then sample spheres in the scene
space, based on the distribution for T derived from the point distri-
bution. Finally, we sample cubes in the scene space based on the
distribution for T and S resulting from sphere sampling. In this
way, we obtain a set of cube samples, while never needing to sam-
ple more than 3 parameters at once. The idea is to define a sequence

of sampling steps in subspaces of the full parameter space, to make
sampling high parameter models feasible.

In general, a strategy for sampling a model can be derived by sam-
pling its ancestors in the tree. Some shapes have multiple ances-
tries, and this is reflected in the fact that they can be sampled in
multiple ways. The best way might depend on the nature of the
shape. For example, a cuboid might be almost cubic—in which
case the sphere route is best—or it might be an almost flat planar
surface like a tabletop—in which case the planar route is suitable—
or it might be long and thin like a table leg, in which case the cylin-
der path is appropriate. A nice feature of this formulation is that the
most effective path chooses itself as part of the sampling process.
For example, when sampling for a cuboid, we begin by sampling
separately for planes and spheres. If one of these shapes does not
give a positive overall result, we can forego sampling its children
and instead sample only from the other’s children. Thus a tabletop
is likely to be found by sampling planes, whereas a table leg will be
found by sampling cylinders.

5 Shape relations

So far, we have considered each shape model in a scene in isola-
tion. In doing so, we ignore the highly constrained nature of many
scenes, in which the position of each object is strongly dependent
on the positions of others. For example, the positions of a collec-
tion of objects resting on a table all depend on the position of the
table. We encode these constraints probabilistically. To do so, we
first define a graph where each object in the scene is a node in that
graph. Objects that are related are linked via a relation node R that
expresses how they are dependent.

Fitting models to the scene is now a matter of optimising a joint
probability over all models. We now have a set of models M =
{Mi : i = 1 . . . N}, some data D (images, camera parameters
and 3D points) and prior information I based on user interaction,
shape relations and priors on individual shape parameters. Our goal
is once more to maximise the posterior probability of the models
given the data and prior: Pr (M|DI).

As the parameters of separate shape models are independent except
where linked by a relation, we represent this problem graphically.
Each shape model is a node in the graph, and is linked to an ob-
servation node. Shape models are linked via relation nodes which
express their dependency, as illustrated in Figure 3.

We can factorise the joint probability over the model set M as the
(normalised) product of the individual clique potential functions of
the graph formed by the nodes and their relations [Besag 1974].
The cliques in this case are all of size 2 because of the tree struc-
ture of the scene graph. The potential function adopted for the
cliques containing an observed node and a model node is the un-
normalised posterior Pr (M |DI) ∝ Pr (D|MI) Pr (M |I). The
potential function for cliques representing object relationships is the
joint probability Pr(M, R) of the model M and the relationship R.

The full joint probability of the set of models M and the set of ob-
ject relationships R given the data set D and the prior information
I is thus

Pr (M|DI) =
1

Z

Y
M∈M

Pr(D|MI) Pr(M |I)
Y

R∈RM

Pr(M, R)

=
1

Z

Y
M∈M

Pr(D|MI) Pr(M |I)
Y

R∈RM

Pr(M |R) Pr(R) (5)

The set RM represents the set of object-group relationships involv-
ing M , and the scalar Z a constant chosen such that Pr (M|DI)
integrates to 1.
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Figure 3: Example scenegraph. Observation nodes Oi are linked to corresponding model nodes Mi. Models are linked by one or more
relations Ri.

The prior and likelihood functions for a single shape have been dis-
cussed in Section 3. The conditional relation PDF Pr(M |R) is
defined differently for each type of relation. For example, adja-
cency is a common inter-object relation, expressing the constraint
that two objects contain a face that coincides. Like user interaction,
this constraint is expressed probabilistically, as a PDF linking the
parameters of the two shape models involved. In the case of ad-
jacency, this PDF is defined in terms of the distance between the
nearest pair of faces in each object.

Relations can apply to more than just a pair of objects. For example,
regularity and repetition is often a feature of urban and man-made
environments, such as windows on a building, a set of steps, and
so on. In this case a relation might express the height of a row
of windows, and apply to all windows in that row. However each
window in the row is still only part of a pairwise relation with the
relation node. The PDF describing each window’s probability is
based on the difference between the height of that window and the
height stored in the relation node.

6 Putting it all together

We now demonstrate how the terms from previous sections are in-
corporated into a problem formulation, and how this problem is
solved. The process of modelling a scene is an iterative one, in
which computation is driven by user interaction. In fact it involves
a series of Bayesian estimation problems, in which the set of model
parameters may be different each time. It proceeds in general as
follows (see also Figure 4):

1. User highlights an object in the scene by clicking or drawing
on an image.

2. The parameters of this object are optimised (see Section 4).

3. User highlights another object or adjusts an existing one, or
specifies a link between two or more existing objects.

4. The parameters of all known objects are optimised as in Sec-
tion 5. Further shapes belonging to a relation are found auto-
matically if required.

5. Return to step 3.

This process continues until the scene is modelled with the fidelity
required by the user. We now illustrate how this works in practice,
with a couple of examples.

Shape sampling
and/or

Joint PDF
optimisation

User adds state
by drawing

User adds
relation
between
shapes

Figure 4: Steps in interactive modelling.

6.1 Example A - University Forecourt

To test this modelling approach, a video was taken of the front
courtyard of the Unviersity of Adelaide. Frames from the sequence
are shown in Figure 5. The video was taken with a handheld cam-
corder whose properties were unknown, as was its motion.

A sparse 3D reconstruction of the scene was obtained along with
camera calibration information using an existing structure from mo-
tion technique [Thormählen 2006]. This reconstruction was suffi-
cient to begin the interactive modelling process.

The first step in this process is that the user identifies a part of the
scene by drawing on an image. In this case the user draws on the
ground plane, which results in a plane being fitted to the 3D points
whose projections lie within the drawn curve and to other points
that are approximately coplanar with them. Fitting occurs by max-
imising the single shape posterior, as described in Section 3, where
the prior is defined by the user’s interaction and the likelihood is op-
timised first by fitting to the available 3D data, and then by fitting
to the images. The fitting is fast enough that the user sees the fitted
plane, which is superimposed on the image, instantly after drawing
on the image.

Having established one part of the scene, further objects in it can be
modelled and linked to existing parts. The user next draws on one of
the bollards in the scene, as shown in Figure 6. This begins a sam-
pling process as described in Section 4, where cuboids are sampled
for in the volume of space defined by the user’s interaction, first
by sampling spheres, and then cubes and then cuboids. The cuboid
samples that have the highest likelihood are then optimised—this
often results in nearby samples resolving into a single solution, as
is the case in this example. The resulting sample is fitted to the im-
age, but because there are so few 3D points on this structure, the
estimate can be very inaccurate. However by constraining the bol-
lard to lie on the ground plane, we are able to obtain an accurate fit.
This fitting occurs by maximising the joint probability (Equation 5).

Multiple instances of the bollard can be modelled without explic-



Figure 5: (a) Frame from sequence. (b) User selects region of ground plane. (c) The fitted plane.

Figure 6: (a) Drawing on the bollard. (b) Initial fit. (c) After constraining to lie on plane.

itly modelling each one individually. By specifying a repetition
relation, the user can specify that the bollard that has already been
modelled is repeated at regular intervals. This is done by dragging
the pointer along the axis of repetition in the image as shown in Fig-
ure 7. Note that although a 3D direction is being specified, because
it is anchored to the ground plane, a 2D interaction (dragging on
the image) is sufficient. This turns out to be a much more intuitive
way of modelling than by faking a 3D interface. As each shape is
added to the model, the joint probability is once again optimised
over all shapes. This means that the number of repeated shapes,
and the spacing between them, does not need to be specified manu-
ally. They are determined as those which maximise the probability
function 5.

6.2 Example B - Art Gallery

The art gallery scene shown in Figure 8 contains similar constraints
to the previous example, but a slightly different set of shape prim-
itives: planes, cuboids and cylinders. The planes and cuboids are
sampled and optimised as described in the previous section. The
position of the pillar nearest to the camera is initialised by a user
selecting an area on it. This is used to initialise a set of sphere
samples which are then combined to form a cylinder sample. Once
fitted, this shape is replicated as before.

7 Conclusion

The system is still work in progress but shows promise as a means
of quickly and intuitively modelling real world scenes. Future work
involves the inclusion of a wider range of shapes and constraints.
When choosing which shape and shape relation primitives to in-

clude, there is often a tradeoff between flexibility and the amount
of user interaction required. The inclusion of more shapes also in-
creases the difficulty of sampling to find the best fitting model. We
plan to investigate ways in which sampling can be optimised; one
promising approach is to use context to constrain the sample space.

We have also been working on more general means of interaction
via sketching on video [van den Hengel et al. 2007]. This has
proved to be a fast and flexible means of acquring models of low
to moderate complexity, and as a way to add detail to the types of
models described in this paper.
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