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Abstract. The SIFT (Scale Invariant Feature Transform) descriptor is
a widely used method for matching image features. However, perfect scale
invariance can not be achieved in practice because of sampling artefacts,
noise in the image data, and the fact that the computational effort limits
the number of analyzed scale space images. In this paper we propose a
modification of the descriptor’s regular grid of orientation histogram bins
to an irregular grid. The irregular grid approach reduces the negative
effect of scale error and significantly increases the matching precision for
image features. Results with a standard data set are presented that show
that the irregular grid approach outperforms the original SIFT descriptor
and other state-of-the-art extentions.

1 Introduction

The reliable matching of image features is a basic problem in computer vision
applications, like 3D reconstruction from stereo images [1], structure-and-motion
estimation [2], panorama generation [3], or object recognition [4]. Especially, if
the change in 3D viewpoint between the images is large, the matching of the
image features must be invariant to image transformations and illumination
changes. Usually, the matching process can be divided into two steps. The first
step is the detection of feature points (also called keypoints). In this step de-
scriptive image regions are selected and their exact image position is determined.
The second step is the keypoint correspondence analysis, where pairwise assign-
ments of keypoints are determined based on local region descriptors (also called
keypoint descriptors).

A well-established keypoint detector and descriptor is the Scale Invariant Fea-
ture Tranform (SIFT), which was published in 2004 by Lowe [5]. After detection
and localization of keypoints in different scale space images, an orientation is as-
signed to each keypoint using local image gradients. Then a keypoint descriptor
is assembled from the local gradient values around each keypoint using orienta-
tion histograms. In 2005, Mikolajczyk and Schmid [6] carried out a performance
evaluation of local descriptors and concluded that the SIFT-based descriptor
performs best.

In this paper, we suggest a modification, which differs from the original SIFT
approach only in how the keypoint descriptor is assembled from the local gra-
dient values around each keypoint. Instead of summarizing the gradients into



orientation histograms in subregions on a regular grid, we apply an irregular
grid with subregions of different sizes. This modification results in a keypoint
descriptor that is less sensitive to scale errors. It will be shown that this novel
approach has a remarkable impact on the matching performance.

The paper is structured as follows. In the next section we show how scale
quantization error can cause a wrong matching result. Section 3 introduces our
new irregular grid approach. In section 4 results are presented and the paper
ends with a conclusion.

2 The SIFT Descriptor and Scale Quantization Error

The scale invariance of SIFT is achieved by rescaling the input image repeatedly
with a Gaussian scale-space kernel. Feature detection is performed on every
scale space image. Obviously, computing more images, increases the accuracy
of the scale of a given feature and the more characteristic a descriptor of the
feature becomes. Unfortunately, the more images are processed the higher the
computational cost. Keeping the number of necessary scales small is consequently
a desirable design goal.
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Fig. 1. (a) first image patch, (b) second image patch, which is a scaled version
of the first patch with scale factor 2.0, (c) Sum of Squared Differences (SSD)
of the Difference of Gaussian (DoG) for the 2 patches for 4 and 25 scale space
intervals, (d) SSD of the SIFT descriptors for 4 and 25 scale space intervals, and
SSD of the proposed irregular grid (IG) descriptors. For 4 scale space intervals
the SIFT descriptor does not show a minimum at a scale of 2.0. In contrast the
IG descriptor still has the best SSD at the correct scale.

In many applications, a feature that is detected in one frame has to be rede-
tected in a subsequent image, which has been transformed in various ways. In
this paper we focus on scaling between images although other transformations
may also be present. Consider the very simple example in figure 1. A cross is
shown at two different scales. The difference of Gaussian (DoG), which is the
basis of SIFT based feature descriptors, of both images can be computed at dif-
ferent scales. By calculating the sum of squared differences (SSD) of the DoGs



of the two crosses, it is possible to show that by comparing DoGs of different
images, the scale factor transforming one cross into the other can be estimated.
Figure 1 (c) shows the SSD of DoGs of the two crosses, where scale space is
sampled a different number of times. Both plots have their minimum at the
scale closest to the real scale. Yet, figure 1 (d) shows that the SIFT descriptor is
unable to detect the feature at the correct scale unless a large number of scales
is computed.

3 Irregular Orientation Histogram Binning

The original SIFT descriptor summarizes the gradients around a given feature
point into orientation histograms in subregions on a regular grid. Several sam-
pling schemes have been proposed in the literature [5,6]. Three of the most
common ones are displayed in figure 2.

Fig. 2. Left to right: The histogram sampling strategies of the SIFT descriptor,
the log polar grid, and the GLOH descriptor.

Consider the matching problem shown in figure 3. The first two images in
the top row can be transformed into each other by a single scale s. The matching
algorithm processes only a small number of frames to speed up the computation.
Assume that the resulting quantization of scale space is so coarse that both
descriptors fall into the same interval and, therefore, the scale difference is not
compensated. Since the images are related by a scale only, we can transform
the regions for which the statistics of the descriptors are collected back into
the original image. The predictable similarity of the two descriptors is directly
dependent on the overlap areas of the bins of the descriptor. So the design goal
of a descriptor that is robust to scale quantization error should be to maximize
the overlap of corresponding bins of descriptors when the support regions differ
in scale.

When considering the regular 4× 4 binning grid on 8× 8 pixels, as proposed
by Lowe for the SIFT descriptor, the size of the overlapping region R when one
of the descriptors is scaled by s can be calculated. For s < 0.5, there is no overlap
between the outer bins of the original SIFT bins and inner bins overlap s2 of the
area. In contrast, in the irregular grid description, all bins overlap s2. However,
this case is irrelevant in practice because adjacent scales are never separated
by more than a factor of 0.5. In fact, normally the scale is closer to 0.8. More
interestingly, for 0.5 ≤ s < 1 overlapping region for an inner, outer, and mixed



Fig. 3. On the left two images of the same scene are shown. In both images the
same feature is detected and the support regions of the bins of the SIFT de-
scriptor (top) and of the proposed irregular grid sampling approach (bottom)
are shown. In the third column the support region of the scaled image is trans-
formed back into the original image. In the right column the regions of overlap
of corresponding bins of the scaled descriptors are colored green. It is easy to
see, that the green areas for the proposed method are larger than those for the
classic SIFT approach.

region, as defined by Fig. 4, amounts to

Rinner = 4s2, (1)
Router = (4s− 2)2, (2)
Rmixed = 2s(4s− 2). (3)

So, the average overlap per pixel of the scaled regular grid can be computed by

RSIFT =
1
64

(4Router + 4Rinner + 8Rmixed) =
9
4
s2 − 3

2
s +

1
4

(4)

Closer analysis of these terms reveals that the bins that are farther away from
the center of the feature lose their region of overlap the fastest.

So, instead of a regular grid, we propose to use the arrangement of bins shown
in figure 5. The increased size and the absence of an inner boundary of regions
that are farther away from the center improves the overlap in presence of scale
quantization error. In fact, for all squares the region of overlap can be computed



Fig. 4. The inner regions Rinner (green) are affected the least by scale quanti-
zation error because they reach to the center of the feature. In contrast, corner
regions Router (red) are affected the most. The intermediate regions Rmixed (blue)
inherit properties from both and are consequently affected moderately.

Fig. 5. The proposed sampling strategy does not use a grid or ring structure
like previous methods (cf. fig. 2). Instead, all regions extend to the center of
the feature. The inner region is consequently sampled several times by different
bins. This allows us to drop the Gaussian weighting of the bins used by the SIFT
descriptor.

by
Rk = (k · s)2, (5)

with k ∈ 1, 2, 4. The average overlap per pixel of the irregular grid is then

RIG =
1

148
(8R4 + 4R2 + 4R1) = s2, (6)

and thus
RSIFT < RIG, for 0.5 ≤ s < 1. (7)

Other binning schemes proposed in the literature exhibit similarly undesirable
overlap progression under scaling. Since the innermost pixels are sampled several
times by different bins, an implicit weighting scheme is applied that weights
inner regions higher than outer ones. This implicit weighting allows us to drop
the Gaussian weighting of the bins suggested by Lowe [5].

In the following section we show that the improved robustness to scale quan-
tization error significantly increases the recall precision compared to the classic
SIFT descriptor, although all other parts of the SIFT algorithm are left un-
touched.



4 Results

In this section a comparison of the proposed irregular grid (IG) sampling method
with a number of well known feature descriptors is performed on the image
dataset introduced for performance evaluation by Mikolajczyk and Schmid [6]1.

Results are shown for Complex Filters(CF) [7], Gradient Location and Orien-
tation Histograms (GLOH) [6], Steerable Filters (SF) [8], Differential Invariants
(DI) [9], Moment invariants (MOM) [10], PCA-SIFT (PCA-SIFT) [11], SIFT
(SIFT) [5], Spin images (SPIN) [12], and Cross Correlation (CC). For the re-
sults of CF, GLOH, SF, DI, MOM, PCA-SIFT, SIFT, SPIN, and CC we used
the code provided by the Visual Geometry Group, University of Oxford2.

The images we use are compiled in figure 6. The task for all feature descriptors
is to find the correct corresponding feature pairs between features detected in the
images of the leftmost column and one of the images of the other two columns.

All descriptors work on the same set of features detected by our implemen-
tation of the SIFT detector. Since not all details of the original implementation
were published by Lowe our algorithm detects slightly different feature point
sets. However, the comparison we perform is still fair because all descriptors use
the exact same keypoint locations.

Figures 7 and 8 show the points correctly detected by the classic SIFT al-
gorithms on the different input images in blue and the additional correct points
detected by the irregular grid (IG) algorithm in red. Also, the recall precision
of a number of state-of-the-art algorithms as a function of the total number
of matches is given, where recall precision is the ratio between the number of
correct matches and number of possible matches

recall precision =
#correct matches
#possible matches

,

and the number of possible matches is defined as the smaller number of feature
points detected in either of the input images. The total number of matches N is
equal to the number of correct plus the number of false matches.

N = #correct matches + #false matches

The total number of matches can be varied by changing the threshold for the
maximum allowed distance between two descriptors. The classification into cor-
rect matches and false matches is done based on the ground truth transforma-
tions that are available for the test images. Our algorithm consistently performs
better than the other approaches on all test images.

Please note that in all test scenarios but the second graffiti example (Fig. 6 c(3))
the precision axis is plotted from zero to one. In the second graffiti example,
however, the performance of all evaluated descriptors is rather weak because the
transformation between the images cannot be approximated very well by rota-
tion and scaling alone. Instead, a strong affine transformation effectively confuses
1 http://www.robots.ox.ac.uk/∼vgg/research/affine/index.html
2 http://www.robots.ox.ac.uk/∼vgg/research/affine/descriptors.html

http://www.robots.ox.ac.uk/~vgg/research/affine/index.html
http://www.robots.ox.ac.uk/~vgg/research/affine/descriptors.html


the merely rotation and scale invariant descriptors. The proposed irregular grid
descriptor still outperforms the other investigated methods.

5 Conclusion

In this paper a modification of the binning method employed by the classic SIFT
descriptor is proposed, which significantly improves the recall precision of the
algorithm. The main observation leading to the improved approach is that the
overlap of ring or grid based binning schemes diminishes quickly in the presence
of scale quantization error. By working with many scales of the input images,
this effect can be countered effectively but this is computationally expensive.
The presented approach, however, improves the robustness to scale quantization
errors at no additional computational cost. We show that recall precision of the
modified descriptor consistently outperforms SIFT and several other state-of-
the-art descriptors on a standard dataset.
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Fig. 6. The input images used to compare the proposed algorithm with state-
of-the-art alternatives.
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Fig. 7. Left: Blue points are correctly identified by the classic SIFT algorithm
and red dots indicate additional correct points found by our method. Results are
shown for N = 200. Right: Recall precision of detected features as a function
of the total number of matches N .
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Fig. 8. Left: Blue points are correctly identified by the classic SIFT algorithm
and red dots indicate additional correct points found by our method. Results are
shown for N = 200, except for the second row, where N = 500. Right: Recall
precision of detected features as a function of the total number of matches N .
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