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Abstract. Estimating the disparity field between two stereo images is a
common task in computer vision, e.g., to determine a dense depth map.
Variational methods currently are among the most accurate techniques
for dense disparity map reconstruction. In this paper a multi-level adap-
tive technique is combined with a multigrid approach that allows the
variational method to achieve real-time performance (on a CPU). The
multi-level adaptive technique refines the grid only at peculiarities in the
solution. Thereby it reduces the computational effort and ensures that
the reconstruction quality is kept almost the same. Further, we introduce
a technique that adapts the regularizer, used in the variational approach,
dependend on the the current state of the optimization. This improves
the reconstruction quality. Our real-time approach is evaluated on stan-
dard datasets and it is shown to perform better than other real-time
disparity estimation approaches.

1 Introduction

A classical correspondence problem in computer vision is the estimation of a
disparity field between a stereo image pair. During disparity estimation, for
each pixel in one image the corresponding pixel in the other image is sought,
so that the corresponding pixels are the projections of the same 3D position.
Afterwards, if the camera calibration is known, a depth map can be calculated
from the disparity field. If a standard stereo setup is used, the corresponding
pixels are constrained to lie on the same row. Thus, the search range for the
disparity is 1-dimensional.

Estimation of a 1D disparity field is related to the estimation of a 2D dis-
placement field. A displacement field of corresponding pixels arises, e.g, between
consecutive frames in an image sequences. Such a displacement field, represented
as a vector field, is called optic flow. Variational methods allow to compute a
precise and dense estimation of an optic flow field. Moreover, the research by
Mémin and Pérez [1] and Brox et al. [2] has proven the variational methods to be
among the best techniques for optic flow reconstruction. These techniques mini-
mize an energy functional by solving the corresponing Euler-Lagrange equation.
Numerically, the Euler-Lagrange equation is represented as a system of differen-
tial equations with finite differences. To optimize the energy functional, iterative
solvers, like the Jacobi and Gauss-Seidel methods, are used. The speed of con-
vergence of these methods is quite slow. As a result, processing a single image
pair takes several minutes or even up to half an hour on todays CPUs.
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As a remedy against this slow convergence, multigrid methods were devel-
oped [3], which allow to overcome the rigidity of the single grid approach by
using multiple discretization levels. With a single fixed sampling grid, multiple
solution components that have different scales may produce conflicting solutions
and, thereby, cause slower convergence. For example, the smooth components,
which are effectively approximated on coarse grids but slowly converge on fine
grids, are often in conflict with high-frequency components, which should be
taken into account only on fine grids.

In 1961, Fedorenko [4] formulated the multigrid algorithm for a standard 5-
point discretization of the Poisson equation, which allowed to gain a numerical
solution in O(N) arithmetical operations (where N is the number of grid nodes).
During the 1980s, Brandt [5], Stuben and Trottenberg [6], and Hackbush [7] made
important contributions by transfering the multigrid ideas to the area of non-
linear problems, by introducing multi-level adaptation techniques (MLAT), and
by developing the full multigrid (FMG) method. In 2006, Bruhn et al. [8] have
demonstrated a real-time variational solver for optic flow reconstruction with
discontinuity-preserving techniques. The solver uses a coarse-to-fine strategy in
combination with a full approximation scheme (FAS).

Because the first-order Taylor expansion to linearize the energy functional is
only valid for small disparities, for large disparities, multigrid methods are often
combined with so-called warping steps. With warping steps [9,2] the original
problem is compensated by the already computed solution from all coarser levels
before the remaining residual is minimized on the finer level. In this paper, we use
linear interpolation to linearize the energy functional. This approach can handle
large displacements directly and was shown to be faster and more accurate [10].

In this paper a current variational approach with multigrids is extended by
a MLAT in combination with a FAS. In contrast to the current multigrid meth-
ods, a grid adaptation technique refines the sampling grid not for the whole
image, but locally in regions where interesting structures are located [11]. A
similar adaptive mesh algorithm, which is based on a Galerkin finite element
method on a triangular mesh for object flow computation [12], is difficult to use
with the FAS. It will be shown that with multigrids in combination with the
MLAT, heterogeneous adaptive structures can be used with a variational solver
for real-time disparity estimation. Thereby, the MLAT allows to quickly perform
local and precise adjustment. Furthermore, improved reconstruction quality is
achieved by adapting the applied regularizer locally during optimization. A com-
parison on standard data sets with other real-time disparity estimators shows
that our real-time variational approach outperforms the current state-of-the-art.

The paper is organized as follows. The next section gives an introduction
to disparity estimation with variational methods. In Section 3 first state-of-
the-art multigrid techniques are described and afterwards a different multigrid
techniques to improve computation time is suggested. This technique is base on
what we call null-cycles (O-cycles). Section 4 describes our multi-level adaptive
technique for variational solvers. In Section 6 the approach is evaluated and the
paper ends with a conclusion.
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2 Variational Methods

Let us suppose that we are given a stereo image pair. Each scalar-valued image
I(x, y) is stored in a pixel matrix and (x, y)> is the coordinate of the pixel within
the rectangular image domain Ω. Having two images of a stereo pair I1(x, y)
and I2(x, y), we try to estimate the position to which every pixel from the first
image has moved in the second image. In order to do that, we have to assume
that certain image features are still the same in both images. Such features may
include the grey value, higher image derivatives (such as the gradient or the
Hessian), or scalar-valued expressions (such as the norm of the gradient, the
Laplacian, or the determinant of the Hessian) [13]. For simplicity, we will only
consider grey value constancy assumption in the remainder of this paper.

If (x, y)> is the coordinate of a pixel in the first image and u(x, y) is the
disparity, then (x + u(x, y), y)> is the new position of the pixel in the second
image. By formulating the problem like that, we can state that the computation
of the disparity field is actually the computation of the vector field (u(x, y), 0)>.
Now we can write the grey value constancy assumption:

I1(x, y)− I2(x + u(x, y), y) = 0 . (1)

As we are working with continuous real-world data, which is not discrete like the
pixel locations in the pixel matrices, the disparities are not necessarily integer
values. To perform the linearization, we use a linear interpolation technique [14].
We express the disparity u(x, y) as the sum of two components: integer A(x, y)
and floating point b(x, y), such that:

u(x, y) = A(x, y) + b(x, y), with |b(x, y)| < 1 . (2)

The linearized form of Eq. (1) is given by:

I1(x, y)− |b(x, y)| · I2(x + A(x, y), y) − (3)
(1− |b(x, y)|) · I2 (x + A(x, y) + sign(b(x, y)), y) = 0

We construct an energy functional, that consists of two terms: a data term that
imposes constancy on the grey values, and a smoothness term that regularizes the
often non-unique (local) solution of the data term by an additional smoothness
assumption.

2.1 Data term

Due to possible occlusions or unpredictable reflection properties of the object’s
surfaces, the equality from Eq. (1) can usually not be satisfied perfectly in reality.
However, we can fulfill the demand: ‖I1(x, y)− I2(x + u(x, y), y)‖2 → min. The
energy functional E(u(x, y)), based on the grey value constancy assumptions,
can be written as:

E(u(x, y)) =
∫∫

Ω

‖I1(x, y)− I2(x + u(x, y), y)‖2
dS . (4)
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2.2 Smoothness term

The smoothness term is derived from the assumption that the neighboring re-
gions belong to the same object and thus these regions have similar disparity.
The main role of the smoothness term is the redistribution of the computed
information and the elimination of local disparity outliers. In case that reliable
information from the data term is not available, the smoothness term helps to
fill the problematic region with disparities calculated from neighboring regions.

In this paper, we use 3 different regularizers: Tichonovm, Charbonnier, and
Perona-Malik regularization. Tichonov regularization assumes overall smooth-
ness and does not adapt to semantically important image or flow structures
(Horn and Schunck [15]). Charbonnier’s and Perona-Malik’s flow-driven regu-
larization assumes piecewise smoothness and respects discontinuities in the flow
field (see, e.g., [16,17,18,19]). For all three regularizers, the smoothness term in
general form is given by

Ψ(|∇u(x, y)|2) . (5)

Thus, we can rewrite the energy functional (4) as follows:

E(u(x, y)) =
∫∫

Ω

‖I1(x, y)− I2(x + u(x, y), y)‖2 + ϕ · Ψ(|∇u(x, y)|2) dS, (6)

where ϕ is a weighting factor for the smoothness term. In case of the Tichonov
regularizer the smoothness term is given by

Ψ(s2) = s2 , (7)

for the Charbonnier regularizer by

Ψ(s2) = 2λ2

√
1 +

s2

λ2
− 2λ2 , (8)

and for the Perona-Malik regularizer by

Ψ(s2) = λ2ln(λ2 + s2)− λ2ln(λ2) . (9)

2.3 Euler-Lagrange equation

The goal of the variational method is to find a function u(x, y), which mini-
mizes the energy functional E(u(x, y)). In other words, having constructed the
energy functional, we should minimize it in order to find the best solution for
the disparity field. Moreover, if the constructed functional is strictly convex, it
will have a unique solution that minimizes it.

The Euler-Lagrange equation is an equation satisfied by the unknown func-
tion u(x, y) that minimizes the functional E(u(x, y)) =

∫∫
Ω

F (x, y, u, ux, uy) dS,
where ux = ∂u

∂x , uy = ∂u
∂y and F is a given function which has continuous first

order partial derivatives. The Euler-Lagrange equation then is the partial differ-
ential equation:

Fu −
∂

∂x
Fux −

∂

∂y
Fuy = 0 . (10)
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For the energy functional (6) the Euler-Lagrange equation for each pixel (x, y)>

is given by

I2x(x + u, y)(I1(x, y)− I2(x + u, y)) + ϕ · div(Ψ ′(|∇u|2) · ∇u) = 0 . (11)

In order to minimize our energy functional, we solve the resulting system
of differential equations with homogeneous Neumann boundary conditions [20].
This step is done via discrete numerical schemes. The Euler-Lagrange equa-
tions are discretized, linearized with the Eq. (3), and approximated via finite-
differences schemes. In the end, we arrive at a linear (in case of Tichonov regular-
izer) or non-linear (in case of Charbonnier or Perona-Malik regularizers) system
of equations.

3 Multigrid

In general, large equation systems arising from finite difference approximations
of elliptic boundary problems are solved with iterations methods, like the Jacobi
or Gauss-Seidel method [21,22].

However, such methods converge very slowly for equation systems that are
only coupled via a small local neighborhood because numerous iterations are
needed to exchange data between unknowns that are coupled indirectly. This
leads to efficient computation of high-frequency components, while the lower-
frequency components remain almost unchanged. Multigrid methods effectively
handle this problem by starting from a fine grid but then perform correction
steps that compute the error on a coarser grid and propagate this information
back to the finer grid. Thus, lower frequency components of the error reappear
as higher ones on the coarser grid and allow an efficient attenuation with basic
iterative methods.

To employ this multigrid approach to non-linear problems, the Full Approx-
imation Scheme (FAS) is used. For completeness, in the next subsection a short
introduction to the FAS is given.

3.1 Full Approximation Scheme (FAS)

In the following equations the indices H and h indicate entities from a coarser
grid and a finer grid, respectively. For the sake of clarity, let us reformulate
Eq. (11) as

Lh uh = −fh . (12)

Here Lh is a non-linear operator and fh stands for the right hand side, which
in our particular case is equal to zero. Let ui

h denotes the approximate solution
after i iterations. Then the error is given by

ei
h = uh − ui

h . (13)

Substituting uh in equation (12) with uh from Eq. (13), we obtain

Lh(ui
h + ei

h) = −fh . (14)
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Now we substract Lhui
h from the left and right parts of the Eq. (14):

Lh(ui
h + ei

h)− Lhui
h = −fh − Lhui

h . (15)

Then we restrict the solution to the coarser grid. Here we have to introduce two
operators Ih

H and IH
h . Let IH

h denote the restriction operator from a fine grid h
to a coarse grid H and Ih

H the interpolation operator from a coarse grid H to a
fine grid h. For the coarser grid we get:

LH(IH
h ui

h + ei
H)− LHIH

h ui
h = −IH

h fh − IH
h Lhui

h . (16)

If we denote
fH = IH

h fh + IH
h Lhui

h − LHIH
h ui

h , (17)
then we can rewrite Eq. (16) in a short form: LH(IH

h ui
h + ei

H) = −fH (note the
similarity with Eq. (12)). Let ui

H denote the new approximation of the solution on
the coarse grid with ui

H = IH
h ui

h + ẽH , where ẽH is the new error approximation
after i iterations. From that follows:

ẽH = ui
H − IH

h ui
h . (18)

Now we interpolate the error to the finer grid ẽh = Ih
H ẽH and after that correct

the solution on the finer grid: ũh = ui
h+ẽh. The steps of the FAS are summarized

in Fig. 1. Note that only the error and the residual are transfered to the finer
grid, but not the solution, since only the error and the residual are smooth
functions.

ui
h
← Solve(Lhuh = −fh)

ui
h
← Solve(Lhũh = −fh)

ũh = ui
h

+ ẽh

ui
H ← Solve(LHuH = −fH ) coarser grid

ẽh = Ih
H ẽH

ẽH = ui
H − IH

h
ui

h
fH = IH

h
fh + IH

h
Lhui

h
− LHIH

h
ui

h

finer grid

Fig. 1. The steps of the full approximation scheme.

3.2 V-cycle and W-cycle

The main idea of the multigrid method is that on a coarse grid we are not obliged
to solve LH uH = −fH precisely. It is enough to perform a few iterations and
achieve an approximate solution ui

H . On each multigrid level, only a few iter-
ations must be performed to compute the high-frequency components, because
the lower-frequency components can be more efficiently computed on the coarser
grids. Therefore, in order to increase the computational efficiency, two types of
grid cycle are commonly used: V- and W-cycles. While the V-cycles make one
recursive call of a two-grid cycle per level, the more reliable W-cycles perform
two. The cycles are applied in a hierarchical way as depicted in Fig. 2.
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W-cyclesV-cycles
h

H

2H

4H

Fig. 2. V-cycles and W-cycles with two, tree and four levels.

3.3 Full Multigrid (FMG)

It is possible to significantly improve the convergence of the multigrid methods
to the correct solution by applying the full multigrid method (FMG), also known
as method of nested iterations. In contrast to the simple multigrid approach, the
FMG approach starts from a coarse grid and not from a fine grid. The schematic
view of the FMG method with W-cycles is shown in Fig. 3. The full multigrid
method combines the solution from coarser grids as initial approximations and
than applies V- and W-cycles for calculating the solution at finer grids. Details
about the FMG can be found in [5,6].

h

H

2H

4H

O-cyclesFMG: W-cycles

Fig. 3. Left:Full Multigrid (FMG) implementation with W-cycles per resolution
level, Right: O-cycles. Refinement steps are marked with red color. Each W- and
O-cycle is marked with a blue color.

3.4 O-cycle

The FMG method assumes that the information from a finer grid is necessary
to guide the solver on the coarser grid to the correct solution. This comes at
the cost of additional V- and W-cycles. In our experiments we found that these
additional V- and W-cycles are redundant for most input images and a similar
reconstruction quality can be obtain with less computational effort, which is
desirable for real-time applications. To achieve a similar reconstruction quality
compared to FMG constructed with V- or W-cycles, we introduce a new ap-
proach, based on what we call O-cycle (or null-cycle). The idea is to perform
significantly more iterations on the coarse grids, which have a low computational
cost since the image resolution is smaller, and thereby increase the likelihood of
convergence on the coarse grid. Once convergence on a coarse grid is obtained,
the algorithm processes the next finer grid and never returns to the coarser one.
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As illustrated in Fig. 3, the iteration number m now is dependend on the current
multigrid level. In particular, we have obtained good results for m = m1 · (np),
where p = {1, 2} and n ∈ [1, N ] with n = 1 for the finest grid and n = N for the
coarsest grid. The user parameter m1 defines the number of iterations on the
finest grid.

4 Multi-Level Adaptive Technique (MLAT)

In this section, a multi-level adaptive technique is described that reduces the
computational effort of the variational solver and at the same time retains a
high reconstruction quality. From a coarser to a finer grid, we usually only need
to refine the reconstruction at some regions of interest in the image. This means
that with a static grid we waste resources on grid nodes that do not improve the
resulting solution. Therefore, we employ a non-static grid structure.

The whole process starts on the coarsest grid. After finding a solution on
the coarsest grid using FAS and O-cycles, we use this solution to identify the
grid nodes that need refinement. Therefore, we evaluate the residual error of
the energy functional in Eq. (4) as well as the spatial gradient of the solution.
These two criteria are used to detect peculiarities of the solution. If either the
residual E(u(x, y)) > εE or the spatial gradient ||∇u(x, y)||2 > ε∇, the grid cell
is refined. Thereby, the thresholds εE and ε∇ are user-defined parameters.

As shown in Fig. 4, the number of nodes is always upsampled by to factor
of 2 when going from a coarser to a finer grid. Thereby, the area covered by a
finer grid cell, can only be a part of the area covered with a coarser grid cell.
For example, let us assume that the red arrow in Fig. 4 marks a local image
peculiarity. Then the algorithm will employ finer grids at this location.

Despite the irregular grid structure, the differential equations can still be
solved with a multigrid solver. This is done in a similar way as with regular
grids. As shown in Fig. 4, there are different types of nodes:
1. The nodes belonging only to the grid GH , which will not be refined and no

further calculation must be performed for them.
2. The nodes of GH belonging at the same time to Gh, which will be used for

gaining the solution correction with the FAS at nodes on the finer grid Gh.
3. The boundary nodes of the finer grid Gh. In order to connect the solutions

from both grids, these nodes are initialized from the coarser grid but are not
altered during optimization.

The multi-level grid adaptation can not only be used with O-cycles (which we
use for our real-time results), it can also be used with a classical FMG approach.
In the areas on the coarse grid GH , which are not covered with the fine grid Gh,
we need not only the error, but the whole solution. Therefore, even if we have a
linear problem (e.g., when using Tichonov regularizer in the smoothness term)
the FAS must be employed.

Let us consider the error of restriction, when coming from a finer grid to a
coarser one. Using Eq. (17), we can write

fH = IH
h fh + τH

h , (19)



Lecture Notes in Computer Science 9

Fig. 4. Irregular grids: left: nodes concentration near to the local image pecu-
liarity; right: structure of two grid levels Gh and GH : common nodes of Gh and
GH (red crosses); nodes which belong only to Gh (yellow rhombi); nodes which
belong only to GH (blue circles); boundary nodes of Gh (black squares).

where τH
h = IH

h Lhui
h−LHIH

h ui
h is the error of restriction or the transfer correc-

tion from the finer to a coarser grid. This transfer correction for the equation on
the coarser level provides a measure for the co-occurrence between the solutions
on the coarse and fine grid. When solving the equation LHuH = −FH on the
coarse grid GH , the term FH is given by Eq. (19), but in the areas where the
corresponding node on the fine grid Gh is not available, we assume that τH

h is
equal to zero.

5 Regularizer adaptation

We found in our experiments that the reconstruction results can be further im-
proved, if the applied regularizer for each pixel is changed locally within the
iteration process. For each pixel we always start with the Tichonov regularizer.
Based on thresholds for E(u(x, y)) and ||∇u(x, y)||2 the algorithm decides when
to switch to the Charbonnier or Perona-Malik regularizer. Furthermore, we adapt
the parameters λ and ϕ (see Eqs. (6), (8), and (9)). The choice for these param-
eters depends on the regularizer, the multi-grid level, as well as ||∇u(x, y)||2 and
E(u(x, y)). The best parameters for the actual situation are trained off-line by
Monte-Carlo simulation on stereo pictures which have a similar characteristic as
the test images, e.g., similar range of disparities, comparable image resolution,
and equivalent scene illumination conditions. Once these parameters are found
they are kept fixed during real-time experiments.
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6 Evaluation

To evaluate our novel multigrid variational solver with MLAT, we use the stan-
dard stereo data sets provided by the Middlebury Stereo evaluation website [23].
These datasets include stereo images as well as ground-truth disparity maps.
The resolution of the provided stereo images is approximately 450 × 375 pixels
and the disparities are in the range [0; 22] pixels.

The Middlebury stereo evaluation website provides a convenient and objec-
tive way to evaluate the accuracy of the reconstruction by the percentage of bad
pixels (see more details in [24]). As can be seen in Tab. 1, our approach is among
the most accurate methods. Furthermore, those methods, which have a higher
accuracy, are not marked to be real-time approaches like ours.

Tsukuba Venus Teddy Cones Average Percent
Algorithm nonocc all disc nonocc all disc nonocc all disc nonocc all disc of bad pixels
DoubleBP 0.83 1.24 4.49 0.10 0.35 1.46 1.41 4.13 4.73 1.71 7.02 5.16 2.72

CoopRegion 0.77 1.00 4.14 0.11 0.18 1.53 2.14 3.41 6.61 2.10 5.95 6.24 2.80
. . .

our method 1.33 3.13 6.94 0.27 1.07 3.16 1.30 2.30 3.87 2.31 3.43 6.90 3.00
. . .

MultiResGC 0.67 1.05 3.64 0.22 0.46 2.97 4.20 7.13 11.6 3.22 8.80 8.07 4.30
RealtimeBP 1.25 3.04 6.66 0.63 1.53 7.68 5.68 8.27 10.2 2.90 9.11 8.27 5.43

RealTimeGPU 1.34 3.27 7.17 1.02 1.90 12.4 3.90 8.65 10.4 4.37 10.8 12.3 6.46
Infection 6.34 7.81 22.8 2.70 3.66 26.0 12.8 18.3 33.5 10.7 16.6 30.1 15.9

Table 1. Excerpt from the evaluation table generated by the Middlebury stereo
evaluation webpage (error threshold = 2 pixels).

In Fig. 5 the corresponding results for the Tsukuba, Venus, Teddy, and Cones
scene are shown. The timings for our approach are given in Tab. 2, where we
compare the performance of FMG with V- and W-cycles or O-cycles. All speed
measurements are carried out using a standard desktop PC with a 2.83 GHz
Intel Pentium CPU executing C++ code.

Speed [fps]
Scene FMG:V-cycles FMG:W-cycles O-cycles

Tsukuba 0,6 1,3 2,15
Venus 1,15 1,85 3,75
Teddy 1 1,3 3,3
Cones 0,75 2,1 3,5

Table 2. Computational effort of our algorithm using FMG with V- and W-
cycles or O-cycles at the same reconstruction quality, as used in Tab. 1.

7 Future Work & Conclusion

In this paper, we have introduced a combination of multigrids and a multi-level
adaptive technique for the variational approach to reconstruct a disparity field.
Furthermore, a regularizer adaptation technique was proposed. This allows the
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Fig. 5. Top to bottom: Tsukuba, Venus, Teddy, and Cones scene; Left to right:
the right image of the stereo pair, solution disparity map, bad pixels (absolute
disparity error > 1.0 pixel), the finest MLAT grid.

variational solver to achieve a real-time performance even on a CPU. The gained
reconstruction quality is competitive to other state-of-the-art approaches that
require more computation time.

In future, we are going to develop and implement a parallel version of our
algorithm, which could be capable to run on multiple CPUs or a GPU with
stream processing technology. Another direction of future work is to extend our
method of 1-dimensional disparity estimation to the problem of 2-dimensional
optic flow reconstruction.
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