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Abstract. This paper presents an approach to intrinsic and extrinsic
camera parameter calibration from a series of photographs or from video.
For the reliable and accurate estimation of camera parameters it is com-
mon to use specially designed calibration patterns. However, using a
single pattern, a globally consistent calibration is only possible from po-
sitions and viewing directions from where this single pattern is visible.
To overcome this problem, the presented approach uses multiple coded
patterns that can be distributed over a large area. A connection graph
representing visible patterns in multiple views is generated, which is used
to estimate globally consistent camera parameters for the complete scene.
The approach is evaluated on synthetic and real-world ground truth ex-
amples. Furthermore, the approach is applied to calibrate the stereo-
cameras of a robotic head on a moving platform.[1]

1 Introduction

Camera parameter estimation is the task of finding the intrinsic and extrinsic
camera parameters, which describe the projection of the 3D scene onto the 2D
image plane of the camera. From one calibrated camera the line of sight for a
given pixel can be computed; in combination with stereo algorithms two cali-
brated cameras can be used in combination with stereo algorithms to estimate
the depth for a given pixel [2]. Furthermore, camera calibration is required for
a number of computer vision applications in areas such as augmented reality,
robot navigation, or special effects generation.

A common method for camera calibration is the usage of a calibration object
or calibration pattern for which the geometry is known. The knowledge of the
geometry of the pattern provides points in 3D space, while the corresponding
2D points are extracted from the image. With these extracted 2D-3D correspon-
dences the camera parameters can be estimated. Popular approaches for camera
calibration were presented by Tsai [3, 4] and Zhang [5, 6], both using calibration
patterns.

To compute the intrinsic parameters of the camera Zhang uses at least two
images of the pattern from different orientations. Tsai on the other hand uses
only a single image of a calibration pattern to estimate the extrinsic and intrinsic
camera parameters in a two stage approach. In both approaches the calibration
pattern consists of squares arranged in a grid. The corners of the squares are



the 3D points used for calibration. Thus, four 3D points for each square are
obtained. However, finding the correct 2D position of the corner points in the
image can be difficult and error-prone considering the noise and blur present in
the images.

Tsai and Zhang both use a single pattern for camera parameter estimation.
However, if multiple cameras or if cameras in a larger environment have to be
calibrated, the problem arises that this may not be possible with a single pattern,
since only cameras that see the pattern can be calibrated.

If the task is to calibrate multiple cameras in a scene, one possibility is
to use the approach of Ueshiba and Tomita [7]. This approach uses a single
calibration pattern, which is placed at three or more locations, where a separate
set of images is taken for each location. Another possibility is to use multi-
camera self-calibration [8]. In this approach, instead of calibration patterns, a
single laser pointer is moved in the calibration volume. Tracking the position
of the laser pointer in each image of each camera allows to self-calibrate the
cameras. However, both approaches require static cameras and, thus, can not
handle multiple images of a single moving camera.

If the task is to calibrate a moving camera in the scene, self-calibration can be
employed. This approach does not require a special calibration object. Intrinsic
camera parameters are computed from multiple uncalibrated images taken by the
camera. The movement of the camera provides enough constraints for computing
the intrinsic parameters [9, 10]. However, camera self-calibration is a complex and
difficult task, where degenerate cases can occur.

Fig. 1: The suggested approach allows
camera calibration from images that
have a partial overlap. Each one of the
shown images contains two calibration
patterns where one of these patterns is
also visible in the next image.

For the application of augmented
reality, Fiala et al. [11, 12] developed
a system called ARTag that employs
multiple coded markers to calibrate the
camera. This system consists of a set of
different markers and algorithms to de-
tect the orientation and the position of
the markers in the image. The goal is
to augment the image/video with ren-
dered 3D virtual content by detecting
the relative position and orientation of
several markers to each other.

In this paper, we present an ap-
proach for performing camera calibra-
tion from a series of images or from a
video with multiple patterns. We neither restrict our approach to require a pat-
tern to be visible in all views nor a camera to see all patterns. In contrast to
existing work, the approach is very general and works with one or multiple mov-
ing or static cameras.

The approach is easy to apply in practice, as a user only has to distribute the
calibration patterns in the scene such that in each view some of them are visible
(see Fig. 1 for an example). The patterns are coded so that they can be identified



in different images. It is not necessary for all patterns to be visible in all views;
a few patterns per view are sufficient as long as relative position and orientation
between every pattern or camera can be computed. Instead of using the corners
of the squares on the pattern as 2D points, we use the centers of gravity of the
projected squares. This has the advantage of a more reliable detection. However,
the center of gravity does not always coincide with the geometric center of the
squares under perspective projection. Therefore, these 2D points must be refined
after an initial parameter estimation of cameras and patterns, in order to achieve
a camera calibration with high accuracy.

2 Camera Calibration

Fig. 2: Calibration pattern used in our
approach. The L-shaped marker is
used to detect the orientation of the
pattern, while in the last row a pat-
tern identifier is encoded binary (here
pattern no. 27 = 110112 is shown).

This chapter describes our approach to
estimate the intrinsic and extrinsic pa-
rameters of multiple cameras (either
static or moving) using multiple coded
patterns.

Tsai and Zhang are using the cor-
ners of the squares on the calibration
patterns as points. Finding those cor-
ner points becomes less accurate with
smaller size of the pattern in the image.
Hence, we use the centers of gravity as
initial 2D points, as they are easier to
detect. In order to extract enough 2D-
3D correspondences for camera parame-
ter estimation, the patterns used in our
approach consist of eight rows of squares
with twelve squares in a row, arranged
in a grid (see Fig. 2). To detect the orientation of the pattern, we use an L-
shaped marker in one corner of the pattern, which replaces three squares. To be
able to distinguish different patterns, we use an identifier for each pattern. The
identifier is coded in the last row of the pattern. It is a binary coded number with
squares representing 0s and rectangles representing 1s. The rectangles are twice
as long and half as thick as the squares resulting in the same surface area as
the squares. The grid of squares, including the coded identifier and the marker,
are surrounded by a frame. Using such a calibration pattern, provides enough
2D-3D correspondences for the estimation process.

2.1 Pattern Identification and Point Extraction

To identify the patterns and extract 2D points, we proceed as follows. First, we
threshold an image with a specified threshold t resulting in a binary image. Color
images are converted to gray-scale before thresholding. In the binary image we
perform a region analysis, where a single region consists of all pixels having the



same value (black or white) and being 4-connected. Patterns are then identified
in the image as regions having a given number of neighbor regions The L-shaped
marker is then identified as the second biggest neighbor region within the pat-
tern. Knowing the orientation of the pattern, we are able to identify the last row
of the pattern. In order to distinguish squares from rectangles, which encode the
pattern identifier, we compute the standard deviation of all 2D pixel positions
in the region. In practice, this is already enough to distinguish squares from
rectangles since the standard deviation for the rectangles will be significantly
bigger than the one of the squares. Thereby, the expected standard deviation of
the squares is known from looking at the second last row of the pattern, which
only contains squares.

Finally, the initial 2D points for the parameter estimation are computed as
the mean of the pixel positions of each region. Note that the mean of the pixel
positions of a region corresponds to the center of gravity of the projected square.
Although the center of gravity is the same as the geometric center for a square
or a rectangle in 2D, this does not hold for projected squares or rectangles
in 3D space. However, the center of gravity is a good approximation of the
geometric center and our algorithm does work well with these measurements.
Nevertheless, once camera parameters are estimated, the measured 2D points
can be compensated with the current camera parameters in order to refine the
camera parameters.

2.2 Connection Graph Generation
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Fig. 3: Connection graph. Edges
between camera nodes (G,H,
and I) and pattern nodes (A
– F ) represent the ability to
estimate camera parameters. A
path from node A to node E in-
dicates the possibility to com-
pute position and orientation of
these two patterns relative to
each other, while this is not pos-
sible for nodes E and F .

By distinguishing different patterns in the im-
ages, we can generate a connection graph.
This graph is an abstract representation of the
connections between camera views and visible
patterns. In the graph cameras and patterns
are represented by nodes (see Fig. 3). A cam-
era node is connected to a pattern node by an
edge, if the pattern represented by its node is
visible in the view of the camera represented
by its node. The edge means position and ori-
entation of a camera with respect to a pattern
can be estimated.

Our approach uses the following two ideas.
On the one hand, if two patterns are visible
in one image, the position and orientation be-
tween those patterns can be estimated (see
section 2.3: single view alignment). On the
other hand, if one pattern is visible in two dif-
ferent views, the position and orientation be-
tween the two cameras can be estimated (see
section 2.3: multiple view alignment).



For the example shown in Fig. 3, this means relative positions and orienta-
tions between these nodes can be estimated, as there is an edge between each
pattern node A, B, C, and D and the camera node G. By looking at the edges of
the transitive closure of the connection graph, it is possible to determine if it is
also possible to estimate the relative transformation between two camera nodes
in the graph. For the example shown in Fig. 3 it is possible to relate camera
nodes G and H, but not H and I.

2.3 Camera Parameter Estimation

Having generated the connection graph, we will now show how positions and
orientations of cameras and patterns in the scene are estimated. For simplicity,
in the following we will describe the problems as if the scene is observed by
multiple static cameras. However, a single moving camera or multiple moving
cameras can be handled in the same way by just generating a new virtual static
camera for each point in time.

The estimation of the camera parameters is done in six steps (compare Fig. 4):

1. Estimation of position and orientation between a single pattern and the
camera using Tsai’s approach,

2. Alignment of all patterns visible in one image,
3. Estimation of positions and orientations between all patterns in an image

and the camera,
4. Alignment of all cameras and all patterns,
5. Estimation of positions and orientations between all patterns and all cam-

eras, and
6. Refinement of 2D points and re-estimation of camera parameters (optional)
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Â
(2)
k

Â
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Fig. 4: Algorithm overview.

In our approach, camera view k is represented by its projection matrix Ak:

Ak =

fk 0 px, k

0 fk py, k

0 0 1

 [ I |0 ]
[
Rk −Rk C

¯ k

0> 1

]
= Kk [ I |0 ]

[
Rk −Rk C

¯ k

0> 1

]
, (1)

with the 3 × 3 calibration matrix Kk, the 3 × 3 rotation matrix Rk, and the 3-
vector C

¯ k. The calibration matrix Kk contains the intrinsic camera parameters,



where fk is the focal length and px,k and py,k are the principal point offsets in
x- and y-direction, respectively. The rotation matrix is composed of consecutive
rotations around the y-, x- and z-axis with Euler angles ϕ, ϑ, and ρ: R = Rz(ρ) ·
Rx(ϑ) ·Ry(ϕ). The camera center is represented by C

¯ k. A pattern i is represented
by a 4×4 transformation matrix Bi =

[
Si −Si D

¯ i

0> 1

]
, with 3-vector D

¯ i representing
the pattern center and 3×3 rotation matrix Si composed of consecutive rotations
around the y-, x- and z-axis with Euler angles α, β, and γ. The projection of a 3D
point P of pattern i given in homogeneous coordinates in the pattern coordinate
system is then given by

p = Kk [ I |0 ]
[
Rk −Rk C

¯ k

0> 1

] [
Si −Si D¯ i

0> 1

]
P, (2)

where p is the corresponding 2D point in the image plane of camera k given in
homogeneous coordinates.

Radial distortion is modeled as follows. Let (xu, yu)> be the undistorted posi-
tion of the projection of the 3D point P

¯
. The distorted position of the projection

of P
¯
is then modeled as xd =

(
1+κ3r

2
u +κ5r

4
u

)
xu and yd =

(
1+κ3r

2
u +κ5r

4
u

)
yu,

where ru is the distance of (xu, yu)> from the principal point (px, py)>. Here,
(1 +κ3r

2
u +κ5r

4
u) is an approximation of the real radial distortion function with

a Taylor series and κ3 and κ5 are the parameters describing the lens distortion.
For the sake of clarity, we are denoting the resulting cameras matrices Ak

and pattern transformations Bi of the m-th processing step with an additional
index: A(m)

k and B
(m)
i (compare Fig. 4).

Tsai Calibration Having identified all patterns i in a camera view k, we use
Tsai’s approach [4] to estimate the position and orientation of the camera Â(1)

i,k rel-
ative to the pattern i. To be able to estimate the parameters, we have to provide
2D-3D correspondences between the image and the pattern. The (measured) 2D
points p̃i of pattern i are given by the 2D-3D point extraction (see section 2.1).
Here we use the centers of gravity of the found regions. The corresponding 3D
points Pi in the pattern coordinate system are given by the known structure of
the pattern. Since our calibration pattern is planar, we assume for the sake of
simplicity and without loss of generality that all 3D points lie in the x-y-plane
and that the geometric center of the whole pattern lies at the origin. During this
first processing step we define that the local coordinate system of the pattern
coincides with the world coordinate system. Thus, we have: B̂(1)

i,k = I ∀ k.
Since we assume that the pattern lies in the x-y-plane around the origin,

Tsai’s algorithm provides estimated parameters Â(1)
i,k for the location and orien-

tation of camera k with respect to pattern i by minimizing the cost function:

argmin
Â
(1)
i,k

∑
i,j,k

d
(
p̃j,k, Â

(1)
i,kB

(1)
i,kPj

)2 ∀ i, k, (3)

where d(x,y) is the Euclidean distance between homogeneous points x and y.



Single View Alignment Having an estimate Â(1)
i,k of the position and orienta-

tion of the camera k with respect to every visible pattern i in the image, we are
now able to compute parameters B̂(2)

i,k for all patterns in the image. Since there
is only one camera view for each image in reality, the different estimated camera
parameters Â(1)

i,k are in fact resulting from different positions of the patterns in
the scene. Therefore, we align the different estimated cameras to a single refer-
ence camera with R = I,C

¯
= 0> for every camera view k. From the different

camera parameters

Â
(1)
i,k = K̂

(1)
i,k [ I |0 ]

[
R̂
(1)
i,k −R̂

(1)
i,k Ĉ

¯
(1)

i,k

0> 1

]
(4)

we now compute estimates of the positions of the patterns B̂
(2)
i,k in 3D space

relative to a reference camera Â
(2)
k for all patterns i in all views k. This is done

by setting

B̂
(2)
i,k :=

[
R̂
(1)
i,k −R̂

(1)
i,k Ĉ

¯
(1)

i,k

0> 1

]
∀ i, k and Â

(2)
k :=

1
nk

∑
i

K̂
(1)
i,k [ I |0 ] ∀ k, (5)

with nk denoting the number of patterns visible in view k. Note that we simply
average the intrinsic parameters K̂(1)

i,k from Tsai’s estimations to get an estimate

of the intrinsic parameters of the reference camera Â
(2)
k .

For the single view alignment, we have Â
(1)
i,kB

(1)
i,kP = p(1) ≈ p(2) = Â

(2)
k B̂

(2)
i,kP,

as can be verified by Eq. (2). Here, p(1) and p(2) are only approximately equal
due to the parameter averaging in Eq. (5).

Single View Bundle Adjustment After the single view alignment we per-
form a bundle adjustment for every camera view k. The bundle adjustment
minimizes the reprojection error. The reprojection error is the sum of distances
between the measured 2D points p̃j,k in the image plane and the projections
of corresponding estimated 3D world points B̂i,kPj (both represented in homo-
geneous coordinates). Bundle adjustment uses non-linear Levenberg-Marquardt
optimization (Â(2)

k and B̂
(2)
i,k are used for the initialization of Â(3)

k and B̂
(3)
i,k ):

argmin
Â
(3)
k , B̂

(3)
i,k

∑
i,j

d
(
p̃j,k, Â

(3)
k B̂

(3)
i,kPj

)2 ∀ k . (6)

Multiple View Alignment After having estimated camera parameters Â
(3)
k

and pattern parameters B̂(3)
i,k for every single image k with the single view bundle

adjustment, we now estimate globally consistent camera and pattern parame-
ters Â

(4)
k and B̂

(4)
i , respectively. Using the generated connection graph, we are

able to select two images k and k′ that have at least one pattern i in common.



Consistent parameters are computed for these two images by fixating the camera
and pattern parameters of one image (Â(4)

k := Â
(3)
k , B̂

(4)
i := B̂

(3)
i,k ) and transform

the camera and pattern parameters of the other image in the following way:
Tk,k′ := B̂

(3)
i,k

(
B̂
(3)
i,k′

)−1 is a transformation to align views k and k′ where pat-

tern i is the link between those views. The equation Â
(4)
k′ := Â

(3)
k′ T−1

k,k′ transforms

the camera of view k′ and the equation B̂
(4)
i := Tk,k′ B̂

(3)
i,k′ aligns all patterns of

view k′. However, we only transform pattern that have not already been aligned
before. Using the connection graph we align all views by consecutively aligning
one unaligned view with all views that have already been processed. In addition,
using the connection graph we are able to detect constellations where the views
cannot be aligned.

Multiple View Bundle Adjustment If all cameras and all patterns have been
aligned, we perform another bundle adjustment to minimize the reprojection
error of the patterns B̂

(5)
i in all camera views Â

(5)
k (similarly, Â(4)

k and B̂
(4)
i are

used to initialize of Â(5)
k and B̂

(5)
i ):

argmin
Â
(5)
k , B̂

(5)
i

∑
i,j,k

d
(
p̃j,k, Â

(5)
k B̂

(5)
i Pj

)2
. (7)

Refinement Since the center of gravity of the projected square does not back-
project to the geometric center of the square, 2D points are optionally refined.

Having computed globally consistent camera and pattern parameters Â
(5)
k

and B̂
(5)
i and knowing the size of the squares (or rectangles), we are able to

project the corners of the squares into the image plane. For each square we get
four points forming a quadrilateral. From these four corner points we can then
compute the projection of the geometric center ĉgeo and the projection of the
center of gravity ĉgrav of the square.

The projection of the geometric center is the projection of the intersection of
the diagonals of that quadrilateral. For the projection of the center of gravity of
the square we first compute the centers of gravity of all four possible triangles
of the quadrilateral. The center of gravity of a triangle is the arithmetic mean
of its corners. The four computed centers of gravity form another quadrilateral.
The projection of the center of gravity of the original quadrilateral is then the
intersection of the diagonals of the second quadrilateral.

We then update the initial 2D points p̃j, init with

p̃j, new := p̃j, init − ĉgrav + ĉgeo (8)

and repeat the multiple view bundle adjustment of section 2.3 with the refined
2D points. If necessary, the refinement of the 2D points together with the mul-
tiple view bundle adjustment can be iterated. However, we observed the largest
improvement to usually occur after the first iteration.



∆f ∆C RMSE of {ϕ, ϑ, ρ}
[mm] [mm] [rad]

0.00861 0.07769 1.8215E−04
0.06058 0.26194 9.3651E−04
0.01667 0.10513 7.0942E−04
0.00287 0.03357 2.5241E−04
0.00593 0.11377 1.1414E−04
0.00130 0.13067 1.1775E−04
0.00637 0.06130 9.9409E−05
0.00428 0.07432 8.3503E−04
0.05864 0.11363 1.1946E−03

RMSE for whole series of images
0.02936 0.12170 6.3581E−04

∆f ∆C RMSE of {ϕ, ϑ, ρ}
[mm] [mm] [rad]

0.00166 0.01962 1.7127E−04
0.01492 0.05603 7.9734E−04
0.00311 0.02640 6.3498E−04
0.00106 0.01355 2.2049E−04
0.00872 0.05367 1.1054E−04
0.00238 0.03902 1.2050E−04
0.00026 0.01868 1.0056E−04
0.00161 0.03465 6.7190E−04
0.06134 0.07239 1.1350E−03

RMSE for whole series of images
0.02852 0.10208 5.6700E−04

Table 1: The synthetic image sequence. Left: Comparison between estimated camera
parameters and ground truth without 2D point refinement. Right: Comparison be-
tween estimated camera parameters and ground truth with one iteration of 2D point
refinement.

3 Results

This section presents results of tests performed to evaluate our approach. In a
first test, we used synthetic data to be able to compare the estimated camera
parameters with the ground truth. In a second test, we took images from sev-
eral calibration patterns located on scale paper to compare estimated pattern
positions with measured pattern positions. Finally, we applied our method to
calibrate two cameras of a robotic head which can perform human-like move-
ments.

3.1 Synthetic Ground Truth Example

We rendered a series of 9 images of a scene in which we placed six calibration
patterns (see Fig. 5). Generating a synthetic series of images enabled us to
compare our estimation results with the ground truth (see Tab. 1). The rendered
virtual room had a size of approximately 16 square meters, which is important
to put the accuracy of results in Tab. 1 into relation. Compared to the overall
extend of the scene, the observed errors can be regarded as very low.

We performed camera parameter estimation using our approach. In the first
run we estimated camera and pattern parameters without refining the 2D points
obtained from Sec. 2.1. In a second run we then used the 2D point refinement
from Sec. 2.3. Although we found the estimation results using the initial 2D
points to be good, they could be improved by the 2D point refinement (an
improvement of approx. 3%, 16%, and 11% percent for focal length, camera
center and camera rotation, respectively). As expected, the first iteration of the
refinement resulted in the biggest improvements, while further iterations did not
improve the results significantly.



Fig. 5: The synthetic image sequence. Top row and left column: 5 out of 9 images
shown. The positions of the projections of the estimated patterns into the image planes
of the estimated cameras can be seen. Right bottom: Detail of one of the images. Due
to occlusion this pattern is not visible in the image, however, from the other images
the position of the pattern can be estimated accurately.

3.2 Real-world Ground Truth Example

For a real-world example we printed seven calibration patterns and arranged
them on a paper with millimeter scale. Twelve images of this scene were taken.
Since we placed the pattern on the scale paper, in this example all patterns lay
in one plane. By using scale paper we were able to measure the corners of the
patterns. From the corner points we then computed the centers of the patterns.
After applying our camera calibration approach, we were able to compare the
estimated pattern positions to the measured ones (see Tab. 6b). The largest
absolute difference in Tab. 6b is 1.14 mm in relation to a 583 mm absolute
pattern distance (corresponding to a relative deviation of 0.2%).

3.3 Application Example

We applied our approach to the calibration of the stereo-cameras of a robotic
head. The cameras of the robotic head are able to move like human eyes and the
head of the robot is mounted on a rotating platform. Our goal was to calibrate
both cameras for different viewing directions. Because of the ability to look in
different direction with the cameras, it is impossible to calibrate the cameras
using a single pattern only.

With our method it was possible to calibrate the cameras. The result is shown
in Fig. 7. By distributing several calibration patterns in front of the robotic head
we managed to see at least one pattern in every image of the robot’s cameras.
Additionally, we found the calibration procedure to be very easy to apply, as
we did not have to pay attention to locate or align the calibration patterns in a
specific way with respect to each other.



(a) Image sequence: 3 out of
12 images shown. Patterns
placed on paper with mil-
limeter scale. Projections of
estimated patterns into the
camera images are overlaid.

— 876.94 354.41 368.27 477.54 823.98 829.50
876.94 — 714.22 711.34 399.43 285.58 333.02
354.41 714.22 — 568.29 382.47 559.94 807.66
368.27 711.34 568.29 — 380.13 784.79 540.83
477.54 399.43 382.47 380.13 — 406.04 425.21
823.98 285.58 559.94 784.79 406.04 — 582.95
829.50 333.02 807.66 540.83 425.21 582.95 —
— 876.63 354.20 368.03 477.58 823.16 829.40

876.63 — 713.65 711.24 399.09 285.16 332.37
354.20 713.65 — 567.77 382.19 559.11 806.94
368.03 711.24 567.78 — 380.14 784.00 541.16
477.58 399.09 382.19 380.14 — 405.20 424.76
823.16 285.16 559.11 784.00 405.20 — 581.81
829.40 332.37 806.94 541.16 424.76 581.81 —
— 0.30 0.21 0.23 0.04 0.82 0.11

0.30 — 0.58 0.10 0.34 0.42 0.65
0.21 0.58 — 0.51 0.28 0.83 0.72
0.23 0.10 0.51 — 0.01 0.80 0.33
0.04 0.34 0.28 0.01 — 0.83 0.44
0.82 0.42 0.83 0.80 0.83 — 1.14
0.11 0.65 0.72 0.33 0.44 1.14 —

(b) Evaluation results. All values are given in millime-
ters. Distance between pattern i and j is given in col-
umn i and row j. Top: Measured distances between
pattern centers. Middle: Distances between estimated
pattern positions. Bottom: Difference between top
and middle table.

Fig. 6: Real-world image sequence and evaluation results.

Fig. 7: Application example: This robotic head has two cameras as eyes. The images
at the left are two camera images taken with the eye-cameras (calibration patterns are
overlaid). The scene at the right shows all reconstructed calibration patterns in 3D
space.



4 Conclusion

In this paper we have presented an approach for calibrating multiple camera
views in a globally consistent coordinate frame. We make use of multiple cali-
bration patterns that can be distributed in the scene, which makes our approach
flexible and easy to use. Furthermore, it addresses shortcomings of single pat-
tern based calibration methods. Intrinsic and extrinsic camera parameters are
estimated as well as position and orientation of the calibration patterns. For reli-
able and accurate estimation results we have simplified the 2D point extraction.
After an initial parameter estimation the approximate 2D points are refined to
increase accuracy.

Our method has been evaluated on a synthetic and a real-world series of
images showing the high flexibility and accuracy of the method. Additionally,
the approach has been applied to calibrate the stereo-cameras of a robotic head.

Future work will address how to use several patterns without pattern identi-
fiers, as it should be possible to distinguish the patterns by their relative positions
in space.
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