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Abstract. The recent resurgence of stereoscopic 3D films has triggered
a high demand for post-processing tools for stereoscopic image sequences.
Camera motion estimation, also known as structure-from-motion (SfM)
or match-moving, is an essential step in the post-processing pipeline.
In order to ensure a high accuracy of the estimated camera parame-
ters, a bundle adjustment algorithm should be employed. We present
a new stereo camera model for bundle adjustment. It is designed to be
applicable to a wide range of cameras employed in today’s movie produc-
tions. In addition, we describe how the model can be integrated efficiently
into the sparse bundle adjustment framework, enabling the processing of
stereoscopic image sequences with traditional efficiency and improved
accuracy. Our camera model is validated by synthetic experiments, on
rendered sequences, and on a variety of real-world video sequences.

1 Introduction

In computer vision, stereo image sequences have been employed for a large num-
ber of applications over the past decades. However, the largest body of work
can be found on robot or autonomous vehicle navigation and motion estimation.
Implicated by this predominant area of application, stereo processing pipelines
usually have to face restrictive real-time requirements. Furthermore, there are
limits on the amount of data the algorithms are allowed to accumulate and
process. These requirements influence the types of algorithms employed.

Recently, however, the revival of 3D films using modern stereo 3D (S3D) tech-
nology has entailed the creation of an unprecedented amount of high-resolution
stereo image data. Today’s movies are often augmented with virtual objects, and
sometimes even the major part of the movie is computer generated. In order to
composite the virtual objects with a real image sequence, the camera parameters
of the real camera have to be estimated to render the virtual object with the
corresponding virtual camera. Thus, reliable and accurate camera motion esti-
mation for S3D sequences is a crucial part in movie post-processing and essential
for the creation of convincing special effects. Given the amount of computation
involved, post-processing is inherently done off-line and does not shy away from
computationally expensive algorithms.

Considering the increase in demand, some commercially available match-
moving packages already incorporate solvers for stereo cameras. However, the



employed algorithms are not published and an academic paper presenting a
solution to high quality camera motion estimation for stereo cameras is (to the
best of our knowledge) not yet available.

We present an approach allowing reliable and accurate camera motion es-
timation for stereo sequences. In contrast to existing real-time approaches, we
employ a large number of automatically extracted feature points and optimize
the camera parameters with the gold-standard method: bundle adjustment. As
known from literature, the näıve implementation of bundle adjustment is com-
putationally expensive beyond feasability and can be sped up by employing the
sparse matrix structure of the Jacobian. The contributions of this paper are:

– An extended camera model for stereo cameras is presented. The model offers
great flexibility in terms of its parameters and therefore can be employed
for a variety of different cameras, ranging from entry-level consumer 3D
camcorders using a 3D conversion lens with a static camera geometry to
professional cameras used in movie productions.

– It is shown how the additional constraints introduced by the camera model
can be incorporated into the sparse bundle adjustment framework.

The approach is validated on a variety of data sets, from fully synthetic
experiments to challenging real-world image sequences.

This paper is organized as follows: Related work will be reviewed in the next
section, followed by a brief summary of camera motion estimation in Sec. 3.
Sec. 4 introduces our new camera model for stereoscopic bundle adjustment,
and the incorporation into bundle adjustment is described in Sec. 5. The results
of our new approach are shown in Sec. 6, followed by the conclusion.

2 Related Work

Structure-from-Motion A general introduction to bundle adjustment can be
found in [1, 2]. Of late, research has been done towards processing data of multi-
ple independently moving cameras [3], or entire community photo collections [4],
demonstrating orthogonal approaches. Multi-camera systems either assume a
static and calibrated camera setup on a moving platform [5, 6] or obtain the cal-
ibration by averaging parameters of the independent reconstructions [7]. There
exist alternative approaches to SfM, but either the stereo rig is assumed to be cal-
ibrated and no bundle adjustment is used [8], or the bundle adjustment remains
unaffected by the changes to the reconstruction pipeline [9]. To a certain extent,
constraints arising from stereo geometry have been included in bundle adjust-
ment [10], but the model is incorporated into the algorithm by simply adding
soft constraints and without addressing the sparse structure of the problem.
Self-Calibration The problem of self-calibration for an uncalibrated stereo rig
with an unknown motion has been explicitly modelled for two pairs of stereo
images [11], even with varying vergence angles [12], but the focus of these papers
is rather on obtaining a one-time calibration of these two stereo pairs instead of
the optimization over a complete image sequence.



Stereo Navigation, Ego-motion Estimation, Visual Odometry Stereo
rigs used in robot or autonomous vehicle navigation and motion estimation are
usually assumed to be calibrated. Due to runtime constraints, the problem of mo-
tion estimation is often reduced to estimating the parameters of an inter-frame
motion model given two distinct sets of 3D points, and then feeding the results
to a Kalman filter to achieve robustness (see [13–16], for example). Optimized
feature selection and tracking, especially multi-frame tracking, is used in [17]
to achieve robustness for tracking features over longer sequences. There are at-
tempts at using bundle adjustment in visual odometry, thereby incorporating
the data produced by a calibrated stereo rig directly [18–20], but, in contrast
to these approaches, we do not assume the calibration of the stereo rig to be
known. A reduced order bundle adjustment is used in [21], but the processing
and parametrization of the input data are again tailored to meet the real-time
requirements of the system. In [22], a correlation-based approach to ego-motion
and scene structure estimation from stereo sequences is presented. The approach
is different from bundle adjustment and the transformation between left and
right frames is assumed to be constant.
Uncalibrated Stereo Various approaches exist to obtain the epipolar geometry
of an uncalibrated stereo rig [23–27], but these methods only consider a single
pair of images and there is no further optimization. Visual servoing [28–30] and
man-machine interaction [31] sometimes rely upon uncalibrated stereo cameras,
but the cameras are static and the algorithms avoid explicit 3D reconstructions.
For a moving stereo rig, restrictive assumptions on the scene structure have
to be made [32]. Quasi-Euclidean epipolar rectification [33] has recently been
adapted to work on uncalibrated stereo sequences [34], even with non-linear
optimization [35], but the scene representation differs from bundle adjustment.
Optical Flow, Three-Dimensional Scene Flow While camera setups in
optical flow applications frequently employ two [36, 37] or more cameras [38],
research in this area is more geared towards recovering the non-rigid scene mo-
tion [39], whereupon the cameras are assumed to be calibrated. Optical flow can
be adapted for ego-motion estimation [40], but the method uses rectified input
images and makes restrictive assumptions on the scene structure.
Commercial Products Several commercial products feature tools for stereo-
scopic tracking and stereo solving (PFTrackTMand SynthEyesTM, for example),
but the corresponding algorithms have not been published.

3 Structure-from-Motion

Given a sequence of K images Ik, SfM refers to the procedure of deriving a cam-
era matrix Ak for every image (representing the camera motion), and a set of J
3D object points Pj = (Px, Py, Pz, 1)> (representing the static scene structure).
The 2D feature point corresponding to Pj in image Ik is denoted by pj, k.

Traditionally, the SfM pipeline consists of several steps. At first, the 2D fea-
ture points are detected and tracked, and outliers are eliminated using geometric
constraints (e.g., the fundamental matrix). In the next step, initial camera pa-



stereo frame k

frame k − 1
frame k + 1
stereo

stereo

Ik,R

Ik−1,R

Ik,L Ik+1,L

Ik−1,L

Ik+1,R

Pj

pj,k,L
pj,k+1,R

pj,k+1,L

pj,k−1,L

pj,k,R

pj,k−1,R

Fig. 1: Each stereo frame consists of a left camera image Ik, L and a right camera
image Ik, R. In contrast to monocular SfM, there are now two sets of corresponding 2D
feature points pj, k, L and pj, k, R for the set of 3D object points Pj .

rameters and 3D object points are established. To obtain initial values for the
intrinsic camera parameters, self-calibration is performed. These steps are not
described in this paper; details can be found in the literature [1]. As last step,
bundle adjustment is employed, which will be discussed in the following.

The goal of bundle adjustment is to minimize the reprojection error given by
the cost function

arg min
A,P

J∑
j=1

K∑
k=1

d(pj, k , Ak Pj)2 , (1)

where d(...) denotes the Euclidean distance. Thereby, the error is equally dis-
tributed over the whole scene. For numerical optimization of Eq. (1), the sparse
Levenberg-Marquardt (LM) algorithm is typically employed [1].

In the case of a stereo camera setup, the input consists of K stereo frames.
For convenience, the individual images are now denoted as Ik, L for the image of
the left camera, and Ik, R for the image of the right camera. Analogical, we get
separate projection matrices Ak, L and Ak, R, and we have to distinguish between
2D feature points pj, k, L and pj, k, R, respectively (see Fig.1).

Introducing x ∈ {L,R}, the cost function from Eq. (1) translates to

arg min
A,P

J∑
j=1

K∑
k=1

∑
x

d(pj, k, x , Ak, x Pj)2 . (2)

4 Camera Model

In this section, we first describe the camera model for our stereo bundle adjust-
ment for a metric camera. Bundle adjustment for monocular sequences is often
also performed with a projective camera model [1]. However, the representation



of the geometric constraints between the left and the right camera is not pos-
sible in the projective framework, because transformations in the local camera
coordinate system including rotations and translations cannot be parametrized
independently from the current projective camera matrix. Thus, we propose to
enforce the constraints introduced by our metric stereo camera model after an
update from projective to metric space has been performed (cp. [1, 41]).

The 3× 4 projection matrix A of a metric camera can be decomposed as

A = K [ I |0 ]
[
R −RC
0 1

]
, (3)

where C is the position of the camera center in world coordinate frame, R is
a rotation matrix representing the camera orientation, and K is a calibration
matrix comprising the intrinisc camera parameters, such as focal length. The
index k assigning a projection matrix to the corresponding image is omitted
throughout this chapter for the sake of readability.

Considering a standard stereo camera setup as employed in movie produc-
tions, our first observation is that the two cameras of the stereo system undergo
only dependent motion – if the left camera translates to the right, the right cam-
era will inherently have to follow that same translation. Now, in order to improve
over the conventional bundle adjustment algorithm, we exploit this dependency:
Instead of treating the left and the right camera as separate entities, we consider
them as instances of the same camera system. A change of parameters intro-
duced by the left camera will therefore influence the position and orientation of
the right camera, and vice versa.

Secondly, to benefit from the combined camera model, the total number of
parameters representing the camera over the whole image sequence has to be
reduced. Since modern stereo camera systems allow the point of convergence of
the two cameras to change during acquisition, the relative rotation between the
cameras can not always be assumed to be constant over the sequence. Therefore,
this constraint, which would reduce the number of parameters significantly, is
only optionally enforced (however, all our results enforce this constraint).

Assuming the relative position offset of the two camera centers to be unknown
but constant is a constraint we always enforce, because the baseline between the
cameras is usually not changed. As a matter of principle, there is some freedom
in the choice of the stereo system base position. We chose it to coincide with the
center of the left camera. The result are two different decompositions for the left
and the right camera that can be expressed as

AL = KL [ RL |0 ]
[
R −RC
0 1

]
, (4)

AR = KR [ RR | − RRCR ]
[
R −RC
0 1

]
, (5)

where subscripts L and R denote parameters that are exclusive to the left and
right camera respectively.
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Fig. 2: Our novel camera model for bundle adjustment. The camera geometry of every
stereo frame is given by a base frame (dashed lines), whose origin is aligned with the
center of the left camera. The orientation RL of the left camera is encoded independent
from the orientation of the base frame, allowing the position of the right camera to be
specified by a single parameter C (red arrow) for the whole sequence.

The rotation matrix of the left camera RL could be omitted for a static stereo
setup. However, if the point of camera convergence changes in a dynamic setup,
it is necessary to encode the orientation of the left camera separately from the
orientation of the stereo system. This is due to the fact that a rotation of the left
camera would otherwise inherently lead to a rotation of the coordinate frame in
which the relative translation of the right camera takes place (see Fig. 2).

Depending on the actual acquisition system in operation, parameters can be
chosen to be estimated for every frame, for a subset of frames, or for the whole
sequence. Furthermore, the intrinsic camera parameters can of course be treated
as shared between the two cameras, if this was the case at the time of recording.

5 Bundle Adjustment

To optimize Eq. (2), we extend the sparse LM algorithm [1].
First, we assemble a parameter vector q = ( b>, c>, d>, e>, f>, g> )>. The

designation of the corresponding subvector for all parameters of our camera
model can be found in Tab. 1, along with a listing of the number of parameters
and the number of the respective vector entries.

Most parameters can either be assumed to be variable for each frame or joined
(i.e., estimated conjointly) over the whole sequence. The intrinsic parameters can
also be shared for both cameras.

It is also possible to restrict RL and RR in a way that makes them depend on
the vergence angle only. Dependent on the degrees of freedom for the convergence
point, this results in 1 or 2 degrees of freedom for the rotation matrices RL and
RR (cp. Tab.1).

For the sake of simplicity, we will assume a static stereo setup with joined
and shared intrinsic parameters henceforth, resulting in two single rotation ma-
trices RL and RR over the whole sequence, and a single calibration matrix K.
This would be the case in a stereo setup with a fixed convergence point, e.g., a
camcorder with a 3D conversion lens.



Model parameters # of parameters # of vector elements designation

base frame C, R 6 K b

left orientation RL 1-3 K, 1 (joined) c

right position CR 3 1 d

right orientation RR 1-3 K, 1 (joined), 0 (shared) e

left intrinsics KL 3 K, 1 (joined) f

right intrinsics KR 3 K, 1 (joined), 0 (shared) f

3D object points Pj 3 J g

Table 1: Stereo model parameters with their typical parameter count, the number
of elements in the associated vector, and the designation of the corresponding vector.
Example: For a sequence of K = 10 images, b contains 10 elements with 6 parameters
each, i.e., 60 entries in total. ’Joined’ indicates that the parameters are constant and
are jointly estimated over the whole sequence. ’Shared’ indicates that the respective
parameters of the right camera are estimated in combination with the corresponding
parameters of the left camera, so that there are no separate entries for these parameters
in the matrix J>J.

The least squares problem that is the core of bundle adjustment is tackled
by the sparse LM algorithm that solves the linear equation system

Jδ = ε (6)

with the Jacobian matrix J = ∂p/∂q, the residual vector ε, and the update
vector δ. The Jacobian matrix J has the block structure J = [ B C D E F G ], where
B = ∂p/∂b, C = ∂p/∂c, et cetera. In the case of a conventional bundle ad-
justment that allows to enforce joined intrinsic parameters over the sequence,
the Jacobian J only comprises the matrices B, F, and G. Depending on the pa-
rameter interdependencies, J usually has a lot of zero entries (cp. Fig. 3). The
measurement vector p is constructed by placing all the 2D feature points from
all camera images in a single column vector. For the purpose of illustration, we
assume them to be sorted by their affiliation to the left or right camera, then
their image index k, and finally their corresponding 3D object point index j.

The solution to Eq. (6) is obtained by multiplication with J>, thereby directly
evaluating J>J and J>ε, leaving the explicit construction of J unnecessary.

A comparison of the structure of J>J taken from our stereo bundle adjust-
ment and from a conventional bundle adjustment can be found in Fig. 4. As
becomes evident, we only introduce changes to one block in the structure, which
is the top left one.Although the structure in the block is no longer sparse, this
does not have any influence on the matrix inversion (J>J)−1, since other ele-
ments added on top during the sparse matrix inversion cause the sparse structure
of this block to break down anyway (cp. [1]). Furthermore, the size of this block
is significantly reduced due to the reduced number of parameters when using
stereo bundle adjustment with constant convergence point, leading to better
computational performance.
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Fig. 3: Block structure of the Jacobian
matrix J for a conventional bundle ad-
justment with joined intrinsic parameters
(left), and for our stereo bundle adjust-
ment (right). The individual block ma-
trices are set apart by different coloring.
The gray background on the right indi-
cates derivatives contributed by the right
camera.

Fig. 4: Structure of the matrix J>J used
in the solution of Eq. (6) for a con-
ventional bundle adjustment with joined
intrinsic parameters (left), and for our
stereo bundle adjustment (right). The
color indicates the contribution of the in-
dividual elements in the matrix multipli-
cation. The dashed square indicates the
relevant block for matrix inversion.
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Fig. 5: The setup used in the synthetic
experiments for the generation of the
ground truth camera and 3D object point
parameters.

RMSE unconst. joined stereo

translation 1.7274mm 0.6459mm 0.5964mm
rotation 0.0112 deg 0.0026 deg 0.0024 deg
focal length 1.3609mm 0.0975mm 0.0600mm

Avg. time 719ms 860ms 733ms

Table 2: Average translation, rotation,
and focal length error, and average time
per iteration for the rendered sequence
for an unconstrained bundle adjustment,
a bundle adjustment with joined focal
length, and our stereo bundle adjust-
ment.

6 Results

In this section we present the evaluation of our stereo bundle adjustment with
purely synthetic data, rendered sequences and real-world sequences. The latter
can also be found in the video accompanying this paper, which can be down-
loaded from http://www.mpi-inf.mpg.de/users/ckurz/papers/Kurz MIRAGE2011.mov.

Our setup for the synthetic experiments is sketched in Fig. 5. It consists of
a virtual stereo configuration composed of two cameras. The cameras execute a
circular motion around a set of 296 3D object points arranged in a regular grid
on the surface of a cube. The cube has an edge length of 100 mm, the radius of
the camera path is 300 mm, and the opening angle of the cameras is 30 degrees.

We generate a total of 40 stereo pairs per trial, providing 80 images per se-
quence. All the ground truth measurements for the 2D feature points contained
in these images are calculated from the known ground truth camera and 3D ob-
ject points parameters. In a last step before the reconstruction process, Gaussian
noise with a standard deviation σsyn is applied to the measurements.
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Fig. 6: Average translation, rotation, and focal length error for a given Gaussian er-
ror σsyn of the 2D feature points over 1000 trials. The setup sketched in Fig. 5 was
used for the generation of the ground truth parameters.
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Fig. 7: Average translation, rotation and focal length error for a given Gaussian er-
ror σsyn of the 2D feature points over 1000 trials, while 20 percent of the feature points
were additionally disturbed by a large offset. The setup sketched in Fig. 5 was used for
the generation of the ground truth parameters.

For each value of σsyn, we perform a total of 1000 trials for a conventional
bundle adjustment, a conventional bundle adjustment with joined focal length
over the sequence, and our novel stereo bundle adjustment, whereas a different
random disturbance is introduced in the measurements each time. For each re-
construction, a similarity transformation is estimated to register it to the ground
truth, and then the average absolute position and orientation error is calculated.
The results can be found in Fig. 6. Our stereo bundle adjustment clearly outper-
forms the conventional methods in terms of the translation and rotation error,
while being on par with the conventional bundle adjustment with joined focal
length for the error in the estimated focal length.

Furthermore, to simulate outliers, another test series was conducted. In this
series, 20 percent of the measurements were disturbed by an offset of up to
12 pixel in addition to the Gaussian noise. Since not all outliers can be removed
in the outlier elimination step, the results, which can be found in Fig. 7, differ.
Our stereo bundle adjustment clearly outperforms both competitors again.

The second step in the evaluation was to process a rendered sequence with
known ground truth parameters. Again, results were generated for a conventional
bundle adjustment, a conventional bundle adjustment with joined focal length,
and our stereo bundle adjustment (see Tab. 2). Our algorithm achieves the best
results. In addition, Fig. 8 shows two sample stereo frames from the rendered
sequence with a wireframe overlay using the estimated camera parameters. As
can also be seen in the supplemental video, the wireframe fits the true scene
geometry almost perfectly.



Fig. 8: This figure shows three exam-
ple stereo frames from a rendered indoor
sequence. The left images show the ac-
tual frames, whereas the right images the
same images augmented with the wire-
frame model of the scene placed using
the estimated camera parameters. The
results can also be found in the video ac-
companying this paper.

Fig. 9: Real-world sequence shot with a
HD camcorder with a 3D conversion lens.
The scene has been augmented by a green
cuboid to demonstrate the quality of the
estimated camera parameters.

The first real-world sequence (see Fig. 9) was captured with a Panasonic
HDC-SDT750 camcorder with a 3D conversion lens and depicts some pieces of
garden furniture. As can be seen by the overlay geometry, our stereo bundle
adjustment was able to obtain excellent results for the camera parameters. The
second sequence (see Fig. 10) depicts a flyover over Ehrenbreitstein Fortress
in the Upper Rhine valley from the documentary UNESCO World Heritage -
Upper Middle Rhine Valley (courtesy of cinovent entertainment). In the third
sequence (see Fig. 11), a scene at a train station from Grand Canyon Adventure
3D (courtesy of MacGillivray Freeman Films) is shown.

7 Conclusion and Future Work

We have presented a novel camera model for stereo cameras for use in bundle
adjustment. The model has the generality to accommodate a wide range of the
stereo cameras used in today’s movie productions, and can be incorporated effi-
ciently into the conventional sparse bundle adjustment algorithms. A multitude
of tests has been conducted, validating our model.

For future work, we will update the other stages of the SfM pipeline to make
full use of the additional information provided by stereoscopic image sequences.
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