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Abstract. For real-time disparity estimation from stereo images the
coordinates of feature points are evaluated. This paper analyses the in-
fluence of camera noise on the accuracy of feature point coordinates of a
feature point detector similar to the Harris Detector, modified for dispar-
ity estimation. As a result the error variance of the horizontal coordinate
of each feature point and the variance of each corresponding disparity
value is calculated as a function of the image noise and the local inten-
sity distribution. Disparities with insufficient accuracy can be discarded
in order to ensure a given accuracy. The results of the error analysis are
confirmed by experimental results.

1 Introduction

Disparity estimation algorithms compute disparities from the coordinates of se-
lected corresponding feature points from images in standard stereo geometry.
For the use of these estimated disparities in computer vision systems it is desir-
able to specify their accuracy. Therefore, in this paper the error variance of a
disparity estimator is determined analytically and experimentally.

In previous work Luxen [1] measures the variance of feature point coordi-
nates, taking image noise into account. The result is a mean error variance of all
feature points in an image at a specific level of image noise. Local intensity distri-
butions at specific feature points are not taken into account. Rohr [2] introduces
an analytical model of a corner and calculates the feature point coordinates of
different feature detectors for this corner. Thus he characterizes the different
detectors but does not consider the errors of the coordinates due to camera
noise. Szeliski [3] has analytically calculated the accuracy of displacement esti-
mators like the KLT-Tracker [4]. The resulting covariance matrix describes the
variance of the displacement error for each displacement. Other approaches do
not estimate displacements but nevertheless apply similar covariance matrices
to describe the accuracy of feature point coordinates [5-8]. However, these re-
sults have not been analytically proven or evaluated in experiments. Thus, so far
the accuracy of feature point coordinates from image gradient based detectors
similar to the Harris Detector [9] has not been calculated analytically.



This paper analyses the influence of camera noise on the accuracy of a feature
point detector for disparity estimation. It is based on a modified Harris Detec-
tor [9]. The accuracy is defined by the error variance of the feature coordinate.
In a second step the error variance of the disparity estimation is derived.

In section 2 the feature detector considered in this paper is described. In
section 3 an error analysis for feature coordinates and disparity is presented.
Section 4 describes experiments for measuring the error variance of feature co-
ordinates. Conclusions are given in section 5.

2 Feature Point Detector

The feature detector considered in this paper is based on the Harris Detector [9].
In stereo vision only disparities in horizontal direction of the stereo image are
considered. Therefore, the process of feature detection is simplified so that only
gradients in direction of the x-axis are measured. This also results in a reduced
computational complexity.
For detection of feature points the following equation describes the edge
response function R for vertical edges:
R(‘Tv y) =

1
Y Lzy+ii|, o =[121] (1)

i=—1

where x and y are coordinates in the image. I, is an approximation of the
horizontal intensity gradient:

L(z,y)=—I(x —2,y) —2I(z — 1,y)+ 2l(z + 1,y) + I[(z + 2,y) (2)

A feature point is detected, if R(z,y) is greater than a predefined threshold T
and if R(Z,, Ym) is a local maximum in horizontal direction:

R(:Emaym) > TR
R(Imvym) > R(Im - lvym) (3)
R(@m, ym) > R(@m + 1, ym)

Estimation of subpel coordinates In horizontal direction a subpel coordinate
is estimated for every feature point. A parabola is fitted to the edge response
function (see figure 1):

1
R(z,y) =a+bx + 501“2 (4)

To achieve a compact notation the coordinate system is chosen so that x,, = 0.
The three parameters a, b, ¢ are calculated with:

1
R(-1,ym)=a—b+ 50
R(0,ym) = a (5)

1
R(+1,ym)=a+b+ ¢
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Fig. 1. Interpolation of R(x,y) with a parabola. The maximum defines the subpel
coordinate of the feature point xg.

Solved for a, b, c:
a = R(0, ym)
b= 3 (ROHL ) — R(-1 ) (6)
¢=R(=1,ym) —2R(0,Ym) + R(+1,ym)

In order to find the maximum of the parabola the derivation of equation 4 is set

to zero:
OR(z,y)

The null of equation 7 marks the subpel coordinate xg of the feature point:
b
o= ——
c
(8)

_1 R(—1,ym) — R(+1, ym)
2 R(—l, ym) - 2R(07 ym) + R(+17 ym)

3 Variance of the horizontal coordinate

To consider the influence of image noise on the subpel coordinates of feature
points, noisy intensity values I(z,y) with:

I(z,y) = I(z,y) + n(z,y) 9)



are considered. n(z,y) is white, mean free and Gaussian distributed noise with
a noise variance of o2. The gradient of the image noise is defined as:

na(z,y) = —n(r = 2,y) = 2n(z — Ly) + 2n(z + Ly) + n(z + 2,y)  (10)
Therefore, the measured image gradient is I (x,y):

=L(z,y) —n(x —2,y) —2n(z — 1,y) + 2n(z + 1,y) + n(x + 2,y)

’ﬂm(wﬂl)
11

The measured cornerness response function R(x,y) can be written as:

1

R(z,y) =
i=—1
) ) (12)
= Z I (z,y+i)o; + Z ng(x,y + 1)
i=—1 i=—1

I, can be positive or negative if the edge has a gradient in the positive or
in the negative direction. The influence of the image noise is the same in both
cases. Therefore only edges with positive gradients are considered in the following
calculations and it is assumed that I, is always positive:

1
> L(w,y+i)ai >0 (13)
i=—1
Generally, the intensity values are much larger than the image noise:
1 1
Z L (z,y +i)a; > Z ng(x,y + 1) (14)
i=—1 i=—1
With equations 13 and 14 R(x,y) can be written as:

1
+ Z ng(x,y + 1)

i=—1

1
Z L (z,y+ i)y

i=—1

R(xvy) =

R(z,y) Ry (z,y)

with:
1

Rn(ilf,y) = Z nx(I,y-i-i)Ozz' (16)

i=—1



R(x,y) is computed for every point-position. The calculation of the feature
point’s subpel coordinates is carried out according to equation 3 to 7. £y can be
calculated with equation 8:

2 R(—l, ym) - 2R(07 ym) + R(L ym)
and: ~ ~
G = l R(_laym)_R(luym)

"7 204 Ru(=1,ym) — 2Rn(0,ym) + Ru(1,ym) (18)

Ac

For a more compact notation Ac is introduced:
Ac = Rn(—l,ym) - 2Rn(07ym) + Rn(lvym) (19)

as well as the normalized value Ac’:
. (20)
c

¢ is a sum of intensity values and Ac is a sum of noise values. Therefore Ac’ is
a small value. With Ac and Ac’ equation 18 simplifies to:

1 R(=1,ym) — R(1, ym)

o= 2 c+ Ac (21)
T2 c(l + Ad)
Multiplication of nominator and denominator with (1 — Ac’) equals to:
LR(=1,ym) — R(L,ym) 1R(=1,ym)— R(1,ym
jO:_ ( 7y) 2( y)__ ( y) 2( y)'AC/ (22)
2 c(l = Ac#) 2 e(l— Acd#)
Since Ac’ is a small value it can be assumed that
1>> A% . (23)
With this assumption, equation 22 is simplified to:
LR(=1,ym) — R(L,ym) 1R(=1,ym)— R(1,ym
jom_(,y) (Liym)  LE(=Lym) = R ym) ., (24)
2 c 2 c
With equation 16:
ZTo Axg
~ R(=1,ym) — R(1,ym) Rn(-1 ym - Rn(laym)
o ( 2% * (25)

_ (R(_luym) _R(l ym) Rn( 1 ym) - R, (Lym)) AL
2¢



Az, is defined:

A,Ta _ (Rn(_luym) _Rn(luym)) (26)
2c
With Az, we can write:
T = 20 + Azxq — 29 A — Az, Al (27)

Az, Ac is the procduct of sums of noise values. Therefore it is very small. It
will be neglected in the following calculation:

To = xo + Axy — xo AL
N —

(28)
A:E()
Az describes the error of the undistorted coordinate xg:
Axg = Az — xo A (29)

It has been verified that experimentally that Az has a zero mean. With this
assumption the variance of the coordinate’s error 0% equals the root mean square
E[Az3):

04 = E[Az}] = [(A:ca — onc’)Q}

E
E [Ax,f — 2w9 Az, A + x%Ac’ﬂ (30)
E [Axaﬂ — E[200Az, Al + E [w%Ac’Q}

The terms of equation 30 are evaluated individually:

n _1 m) n 17 m 2
2c
(31)
1 2
- @E [(Rn(_luym) - Rn(laym)) ]
With equation 15:
1 1 1 2
21 _ N .
ElAz,"] = @E (lgl Nz (=1, Ym + 1)y izz_l nz(l,ym—l-l))
Evaluation of the square gives:
1 2 1
2 1 ) )
E|Az,”] = @E[ <Zzl e (=1, ym + z)ai> — 2i;1 N (=1, ym + 1)y
N N (32)

1 1 2
Z ng (1, ym + 9oy + (Z nm(l,ym—i—i)ai) }

i=—1 i=—1



With E[n(z,y1)n(z,y2)] = 0, for y1 # y2 and En(z1,y)n(ze,y)] = 0, for z1 #
Zo:

1 2
E ( Z ng(x,y + i)ai>

i=—1
1
=F Z n2(z,y +1i)a?
=1 (33)
1
- F Z (n2(:z:—2,y—|—i)+4n2(a:— Ly+i)+4n(x+ 1,y +1)
i=—1
+n?(z + 2,y + i)) af]
and
1 1
E Z ng(—1,y +4)a; - Z ng(l,y + i)y
i=—1 i=—1
1
=E| Y no(-Ly+i) n(ly+i)aj (34)
i=—1
1
=E () —4n*(0,y+1i)o]
i=—1

Equation 32 simplifies to:

1

i=—1

1
E[AIQQ] = @E

1
+ nz(lvym =+ Z))O[% -2 Z _4n2(05 Ym + 1)0%2
1=—1

1
+ > (RP(~Ly+i) +4n*(0,y + 1) + 4n*(2,y + 1)
1=—1

+n°(3,y + 1)) af}

(35)
For the expectation the terms n?(x, y) become the variance of the image noise o2 :

1 1 1
E[Az,?] = é lz 1002a? — 2 (Z —4o§a$> + > 1oa§a§] (36)

i=—1 i=—1 i=—1
Evaluation of the sums gives:

2 492 2
E[Az,?] = % 60 + 48 + 60] = CZ"

(37)



The second term in equation 30 can be expanded to:

E[2Az,20Ad] = E [2 (Rn(—Lym) - Rn(laym)) IO%}

- B [2 (Rn(_laym)zz_ Rn(laym))
o (Bu(=Lym) = 2Rn(0,ym) + Ru(L,ym) (38)
(Rt

=—5kE [(Rn(_la ym) - Rn(la ym))
(Rn(_lvym) - 2Rn(07ym) =+ Rn(lvym))]

A calculation similar to that from equation 31 to 36 leads to:

1 1
E[2Ax,x0Al] = x—g lz 100202 — Z 100721%2] :
c

i=—1 i=—1

[—2 (21: 4oia?> +2 (21: 40721%2)] (39)

i=—1 i=—1

=0
The third term in equation 30 can be expanded to:

2
Lo

2 2
E [a}Ac®] = 2B [(Ru(~1,ym) = 2Ra(0.ym) + Ru(Lym))?|  (40)
Once again, a calculation similar to that from equation 31 to 36 leads to:

2,.2
> [a:g Acﬂ} _ 1200379 (41)

c2

Insertion of equations 37, 39 and 41 in equation 30 leads to:

2 4202 1200223
94T T2 c?
42 + 12023
_ 2 0
B — (42)
42 + 120232
— 52 + 12023

" (R(=1,ym) = 2R(0,ym) + R(+1,ym))*
This equation will be used to calculate the error variance 0% of the feature point

coordinate. The disparity d is the distance between a feature point in the left
image and the corresponding feature point in the right image:

d = Tleft — Lright (43)



The variance 0%  of the disparity error Ad is:

2
E [Ad2] = U2Ad =L |:(Ax1eft - Awright) ]

=L [Aleeft] - B [2AxleftAxright} +E [Axiight}

The distortions of the feature point’s coordinates in the two images are statisti-
cally independent, therefore equation 44 simplifies to:

02Ad =E [Axfeft} +E [Axiight} (45)

_ 2 2
= Oleft T 9 Aright

The variance of the disparity error is given by the sum of the error variances of
the feature point coordinates.

4 Experimental Results

The following experiments have been carried out to evaluate the derivation from
the preceding chapter 3. An image sequence consisting of a static scene with
constant lighting is taken with a 3-Chip CCD camera (Sony DXC-D30WSP).
In order to determine the size of o2 the average intensity value at each pixel
from 1000 frames is calculated to produce a noise free image for the sequence.
By subtraction of the noise free image and the original images, difference images
containing only the camera noise can be obtained. A camera noise variance
of 02 = 4.8 which equals a PSNR of 41.3dB was measured for the sequence.
Figure 2 shows an example of an image from the sequence.

Using the feature detector described in section 2 feature points are detected in
every image of the sequence. Now, correspondences between the feature points in
the sequence are established. A correspondence is given, if a feature point in one
image is located at the coordinates z,y and in another image at the coordinates
rte,yte, with e < 0,5 pel If a feature point has correspondences in all images of
a sequence, the measured variance of its horizontal coordinate 6% is calculated.
This value can be compared with the results from the derivation in section 3.

Figure 3 shows the measured variances 6% over the variances 0% calculated
as described in section 3. The figure shows that the measured variances %
have nearly the same values as the calculated ones. Therefore the calculation is
confirmed by the experiment. Also the values lie in the same regions observed
by other researchers [1].

A second experiment with a synthetic image shows the dependence between
subpel position of a feature point and the error variance of its coordinate. The
image shown in figure 4 is used for this experiment. A feature detection in
this image results in feature points with subpel positions in the whole range
—0.5 < z¢p < 0.5 because the edge in the image is slightly slanted.



Fig. 2. Example image from the test sequence with a camera noise variance of o2 = 4.8

Because the image shown in figure 4 is noisefree, synthetic noise was added
the the images intensity values to generate 1000 noisy images with the original
image as basis. Now the same procedure to calculate 5% and 0% as described
with the real image is conducted.

Figure 5 shows the measured and the calculated noise variances of the feature
point’s coordinates 6% and % over the subpel coordinate. It can be observed
that the coordinate error variance of feature points at a full-pel position is smaller
than that for feature points at half-pel position. The variances vary by a factor
of about three. Also it can be observed that the calculated variances 0% match
the measured variances 6% which supports the correctness of the calculation.

5 Conclusions

A feature point detector using horizontal intensity gradients and offering subpel
accuracy was described in section 2. It was shown that typically most of the
feature points have an error variance of less than 0.01pel® for the horizontal
coordinate. An analysis of the error of the horizontal feature point coordinate
revealed the interrelationship between the image noise o2, the local image con-
tent, given by the local image intensity values I(z,y), and the variance of the
feature point’s horizontal coordinate error 2. A formula for the disparity error
variance based on the feature coordinate error variance has been derived. In an
experiment (section 4) it was shown that the results of the analytical derivation
match measured results obtained using synthetic images and images from a real
camera. A second experiment has shown that the coordinate error variance of
feature points at a full-pel position is smaller by a factor of three than that for
feature points at half-pel position.
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Fig. 3. Measured error variances % over analytically calculated error variances o for
each feature point in the image sequence taken with a real camera.

a) Original

image b) Detail

Fig. 4. Synthetic image used in the experiment. The edge is slightly slanted, so that
feature points with a range of subpel coordinates can be detected.

The calculation presented in this paper allows to benchmark feature points
and disparities during feature detection on their expected error variance. This is
a great advantage compared to methods that try to eliminate bad feature points
at a later stage in the process of disparity estimation.

In the future this work will be expanded to a feature detector that measures
gradients in all directions in the image, i.e. the feature detector of Harris et.

al.[9]
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