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Figure 1: Given an input query 3D object without materials (left) our approach automatically assigns materials (center) using database
information and suggests alternatives to the user (insets) which can be selected interactively to improve the automatic assignment (right).

Abstract

The material found on 3D objects and their parts in our everyday
surroundings is highly correlated with the geometric shape of the
parts and their relation to other parts of the same object. This work
proposes to model this context-dependent correlation by learning it
from a database containing several hundreds of objects and their ma-
terials. Given a part-based 3D object without materials, the learned
model can be used to fully automatically assign plausible material
parameters, including diffuse color, specularity, gloss, and trans-
parency. Further, we propose a user interface that provides material
suggestions. This user-interface can be used, for example, to refine
the automatic suggestion. Once a refinement has been made, the
model incorporates this information, and the automatic assignment is
incrementally improved. Results are given for objects with different
numbers of parts and with different topological complexity. A user
study validates that our method significantly simplifies and acceler-
ates the material assignment task compared to other approaches.
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1 Introduction

Assigning materials to parts of a 3D object is a difficult and time
consuming task that is performed by specially trained color & light-
ing artists in movie or game productions. The chosen palette of
materials strongly influences the overall appearance of the 3D scene
and is essential to allow the object to fit into an environment. There
is a wide range of different materials, e. g., for a car there is the
specular metallic paint work, the diffuse rubber material on the tire,
the aluminium of the rim, the fabrics and leather used in the interior,
etc. The compositing of materials is also important, as for example
all screws on a tire should not just be metallic, but are likely to be of

the same metallic material. Furthermore, materials are influenced
by their context, e. g., for a part of a car’s interior, leather or wood
are far more likely materials than for a part of the car’s engine.

Despite these observations, current content creation packages assign
materials using a tedious manual process, involving the adjustment
of rarely intuitive parameters, or by selecting pre-defined materials
from a database using a keyword search. Even an experienced artist
requires approximately 45 minutes to assign appropriate materials
to all 130 parts of the car shown in Fig. 1.

In this work, we propose an approach to computationally model
the relation of shape and material by learning it from a database of
hundreds of multi-component 3D objects with materials. This model
can then be used to automatically assign materials to 3D objects or
can be employed in a user-interface to provide a ranked list of the
most likely materials (see Fig. 1).

The paper comprises the following contributions:

• A model of the relation between materials and shape as well
as context, called the material memex,

• Automatic assignment of materials using this model.
• A novel interface to guide a user when assigning materials by

providing ranked material suggestions.
• A user study of task performance when using conventional

slider or text interfaces compared to our interface.

The rest of the paper is structured as follows. The next section
discusses related work. Section 3 introduces the proposed material
memex. Section 4 presents two applications of the material memex:
automatic material assignment and ranked material suggestion. Re-
sults are given in Section 5, and the paper ends with a discussion
and conclusion.

2 Related Work

Material Assignment. Exploiting the relations of materials and
shapes so far received only limited attention in the computer vision
community, and even less interest from computer graphics. For
editing and assigning material, different material design interfaces
are employed. In most commercial 3D modelling tools it is still
common to directly modify the parameters of the analytic reflectance
model such as Phong [1975]. Ngan et al. [2006] propose an interface
for BRDF selection that displays material variations with several
preview images. There are also special solutions [Kautz et al. 2007;
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Pellacini and Lawrence 2007] to edit spatially-varying material
representations. Kerr and Pellacini [2010] have performed a user-
study to evaluate material design interfaces with either physical
sliders, perceptual sliders, or preview image navigation.

Texture Transfer. Closely related to our approach are texture
transfer methods [Mertens et al. 2006; Lu et al. 2007]. These ap-
proaches model the statistical relationship between local geometric
properties, such as curvature and local statistics of reflectance. Using
this relation, a texture synthesis on a new object produces shape-
dependent textures that capture, e. g., weathering. Our approach
is different, as it is neither considering the statistics of local shape
descriptors nor the statistics of reflectance. Instead, we work on
high-level structure, such as spatial arrangement, shape, and mate-
rial similarities to capture the global organization instead of local
statistics. Chajdas et al. [2010] propose a system that assists a user
to assign textures in large virtual environments. A user-provided
texture assignment is automatically propagated to similar surfaces
in the environment. Textures can also be re-targeted to different sur-
face sizes [Lefebvre et al. 2010]. In contrast, our approach focuses
on material properties that are extracted from a database, such as
diffuse color, specularity, glossiness, and transparency. We assume
that a material is constant for a part of an object and ignore spatially
varying properties typically stored in textures.

Data-driven Content Creation. Supporting artists or casual users
to effectively create content has recently received much interest. Our
approach is inspired by other data-driven 3D content creation tools,
e. g., for 3D modeling [Chaudhuri et al. 2011], hand-drawings [Lee
et al. 2011], furniture arrangement [Yu et al. 2011], image color
themes [Wang et al. 2010], or segmentation and labeling of ob-
jects [Kalogerakis et al. 2010]. Fisher et al. [2010; 2011] use a
database of objects to search for a suitable object that fits into a
given spatial context. They employ the Visual Memex Model from
Malisiewicz and Efros [2009] that stores associations between en-
tities instead of categorizing them. The Material Memex model
presented in this paper also adopts this methodology but applies
it in the application domain of material assignment. Furthermore,
because our approach estimates the materials of several parts of
an object simultaneously, a more complex probabilistic framework
must be employed.

3 Material Memex

Input to our approach is a multi-component 3D object where parts
have no assigned material. Output is a suggestion for a suitable
material for each part. The part-material relation is learned from a
database of multi-component 3D objects.

We follow the memex model recently popularized by Malisiewicz
and Efros [2009], which is based on Vannevar Bush’s [1945] early
concept of a memory extender (memex). The memex does not
structure information using categories, but rather stores associations
between entities. As most entities have no strong pairwise associa-
tions, the memex is typically a sparse representation. Malisiewicz
and Efros show that this category-free memex model outperforms
category-based approaches on the challenge to detect an object in a
2D image using only contextual cues [Torralba 2003].

Similarly, we propose to store associations between parts and mate-
rials of database objects in a material memex to generate a suitable
material suggestion for a user-provided query object. Using the
sparse memex representation, the approach can efficiently compute
a likelihood value for each possible material for a part of the input
query object. The computed likelihood value can be used, for ex-
ample, to display a ranking of the best-fitting materials for a part of

the query object to the user. The likelihood value depends on the
shape similarity between parts, i. e., the probability for a candidate
material is high if there are parts in the database that have a shape
similar to the query part and a material similar to the candidate
material. Furthermore, the likelihood value depends on the context
of the part. In this paper, the context information is captured by
the pairwise spatial relation between two parts that are in physical
contact. The probability for a candidate material is high if there are
two parts in the database which are in physical contact and have
similar materials and a similar spatial relationship as the query part
and one of its contextual parts in the query object. Additionally, it
is very likely that parts with similar shape in the query object have
similar materials. For larger databases and query objects with many
parts, the sparse memex representation, which can be built once
during pre-processing, is the key ingredient making it possible to
return material suggestions at interactive speed.

In contrast to previous work, in our application the context is not
fully defined, i. e., in our case the probability for a candidate material
depends on materials of contextual parts in the query objects, which
are also unknown. Consequently, the problem addressed in this
paper has many unknown variables and the globally best solution
must be estimated by maximizing the joint probability distribution
of all variables simultaneously.

Overview In the following, we want to assemble a probabilistic
factor graph that represents the joint probability distribution for all
the unknown materials of the query object. The individual probabil-
ity distributions for the material of each part are then inferred by the
marginal distributions, which can be calculated with the sum-product
algorithm (belief propagation).

The structure of the probabilistic factor graph depends on the query
object and the potentials of the individual factors are dependent on
the query object and all the objects in the database. In order to
determine the structure of the factor graph, we need to determine
which parts are in context and are consequently influencing each
other. In this paper we assume, for the sake of lower computational
complexity, that parts only influence each other if they are in physical
contact.

The following paragraphs will introduce the entities required to
analyze the input data in order to create the factor graph. First, we
describe what our approach expects as input, the decomposition of
objects into parts, and the contact analysis. Afterwards, measures
for the spatial relation between parts, for shape similarity, and for
material similarity are introduced. The defined measures will allow
us to create a sparse memex graph for the query and a sparse memex
graph for the database objects. The query memex graph will directly
lead to the structure of the probabilistic factor graph and the database
memex graph is required to efficiently compute the potentials of the
individual factors.

Input. Input to the approach is a multi-component 3D object Ŝ that
has no assigned material, which is called the query object. Further-
more, there is a database of multi-component objects with assigned
materials. This database is defined by the set of objects S . This set
should be large, e. g., in our experiments we used 276 objects. The
individual database objects Sm ∈ S are given as polygonal meshes
where each face is labelled with a material of the Phong [1975]
reflection model. We use Phong in our implementation as it is a
widespread reflection model for 3D objects from Internet reposi-
tories, such as Google 3D Warehouse, Turbosquid, Dosch 3D, etc.
Uniform scaling is applied to all 3D objects in the database as well
as the query shape. This ensures that all objects have the same size
(measured on the dominant eigenvector of the covariance matrix
of the mesh vertices). As we are not employing a category-based



learning approach, neither the objects, polygons, or materials of the
database require any manual annotations.

Decomposition Into Parts. The material memex stores associ-
ations between parts of objects. Before these associations can be
computed, all objects must be decomposed into their parts, i. e., it
must be defined which faces of an object’s polygonal mesh belong to
a particular part. For decomposition, we assume that the designers of
the query and database objects have initially created the object from
multiple parts. If this part information is still available, it is used
for decomposition. However, for approximately 90 percent of our
models the part information is lost, as it is typically not stored in the
file formats utilized by the Internet repositories. In these cases, we
recover the part information by searching for connected components
in the polygonal mesh. For the database shapes it is also ensured
that all polygons in the connected mesh component have the same
material.

Let P := {P1, . . . ,Pk, . . . ,PK} be the set of parts that is created by
the decomposition of all objects of the database into parts. As this
set comprises all parts of the database, K is the number of all parts
in the complete database. Every part Pk in the database has a unique
material Mk. Note that in contrast to common practice in computer
graphics, in the mathematical description used throughout this sec-
tion, materials are not shared across different parts even if they are
identical, i. e., every part has one material and every material has
one part. Consequently, there is a set of known database materials
M := {M1, . . . ,Mk, . . . ,MK} which has the same cardinality as the
set of parts. The query object Ŝ is decomposed in exactly the same
way, resulting in a set of parts P̂ := {P̂1, . . . , P̂n, . . . , P̂N}.

Contact Analysis For the query object Ŝ and each database object
Sm ∈ S a contact analysis is performed. The contact analysis of the
query object will be later used to generate the query memex graph
(which in turn captures the structure of the probabilistic factor graph).
The contact analysis of the database objects is performed to compare
the spatial context of a part in the query object to a spatial context
of a part in the database, as will be explained in detail later.

During contact analysis we compute whether the two parts, Pi and Pj ,
of an object are in physical contact, i. e., are (almost) touching each
other. To this end, both parts are resampled to a point cloud. The
individual sampling points are placed on the polygonal surface mesh
such that their distance is roughly equal (blue noise sampling). We
define the minimal spatial distance dmin

i, j as the smallest Euclidean
distance between any sampled point from part Pi to any sampled
point from part Pj . We define two parts Pi and Pj to be in contact if
their minimal spatial distance dmin

i, j is smaller than 0.01 percent of
the total object size.

In the following, we describe three associations between parts that
are required to build the material memex: spatial relation similarity
for part pairings, shape similarity, and material similarity.
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,
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Figure 2: Prerequisites to build a material memex graph. The
query object (top) and a database object (bottom) are decomposed
into parts. We defined several associations between parts: spatial
relation similarity ρdis, shape similarity ρpart and ρshp, and material
similarity ρmat.

Spatial Relationship of Parts Besides the structural information
produced by the contact analysis, spatial relation similarity for part
pairings is another important cue to determine whether a context in
the query object and in the database object is similar. The Euclidean
distances di, j between the centers of mass of parts Pi and Pj is used
to capture their spatial relationship.

In our approach, we have made the design decision to rely solely on
Euclidean distances between parts to capture their spatial relation-
ship.

The advantage of using the Euclidean distances between parts instead
of a more complex spatial relation measure is that the Euclidean
distance is invariant to joint rotational and translational transforma-
tion of the two involved parts. Consequently, the measure is not
dependent on the choice of the local coordinate system, which is
typically not consistent for the parts of the 3D objects. However, the
measure is not scale-invariant, which is why we initially scale all
objects to have the same size.

To define a similarity measure of two spatial relations di, j and dk,l ,
it is assumed that due to noise the difference between two spatial
relations (that should be considered similar) obeys a Gaussian dis-
tribution with zero mean. This is motivated by the central limit
theorem. We define the similarity measure of two spatial relations
di, j and dk,l as

ρdis(di, j,dk,l) = exp(
−(di, j−dk,l)

2

2σ2
d

) , (1)

where σd denotes the standard deviation of spatial relations differ-
ence (di, j − dk,l) that should be considered similar. We chose σd
such that the resulting zero-mean Gaussian distribution captures the
smallest τσd = 3.0 percent of all spatial relation differences in the
complete database of parts. This spatial similarity measure is close
to 1.0 if the two spatial relations are very similar and close to 0.0 if
they are very different.

Shape Similarity. The similarity ρshp(Pi,Pj) between the parts Pi
and Pj is calculated using the approach by Chen et al. [2003]. In our
application, the scale invariance of their descriptor is undesirable.
We extend it by adding three entries to their descriptor vector that
represent each shape’s size in the x-, y- and z-directions measured in
the space spanned by the three eigenvectors of the covariance matrix
of the part’s sampling points.

We measure the dissimilarity between part Pi and part Pj using
the L1-distance |s(Pi)− s(Pj)| of the extended descriptor vectors.
Assuming a Gaussian distribution of the L1-distances that should be
considered similar, we define the shape similarity of parts to be

ρpart(Pi,Pj) = exp(
−|s(Pi)− s(Pj)|2

σp(Pi,Pj)2 ) . (2)

We chose the standard deviation σp(Pi,Pj) such that the resulting
zero-mean Gaussian distribution captures the smallest τσp = 1.0
percent of all L1-distances that involve either Pi or Pj in the complete
database. Due to this definition, the standard deviation σp(Pi,Pj)
is a function of Pi or Pj. This is required, as we have observed in
our experiments that the absolute value of the L1 distance depends
strongly on the involved parts Pi or Pj . This shape similarity measure
is close to 1.0 if the two parts are very similar and close to 0.0 if
they are very different.

Besides geometric shape similarity between parts, shape similarity
can also be computed between whole objects. In particular, we will



require a measure for the shape similarity ρshp(Ŝ,Sm) between the
query object Ŝ and an object in the database Sm, when computing
the potentials of the factor graph. When computing these potentials
we can weight the influence of a part higher if it belongs to an object
that is similar to the query object.

To compute ρshp(Ŝ,Sm), we again employ the approach of Chen et al.
but now rendering and comparing whole objects and not parts. The
only difference is that we extend the aligned descriptor created by
Chen et al.’s approach differently. When comparing objects we only
add a single entry, which is the number of parts of the object. This
is motivated by the fact that our approach works best if the query
and database objects have compatible complexity because the part
segmentation is more likely to be similar in this case. Adding the
number of parts in the shape similarity object has the result that parts
from objects with similar complexity are preferred when computing
the potentials of the factor graph.

Formally, we define the shape similarity of objects to be

ρshp(Ŝ,Sm) = exp(
−|s(Ŝ)− s(Sm)|2

σs(Ŝ,Sm)2
) . (3)

We choose the standard deviation σs(Ŝ,Sm) such that the resulting
zero-mean Gaussian distribution would capture the smallest 15 L1-
distances between Ŝ and all database shapes Sm ∈ S .

Material Similarity. The material similarity function between ma-
terial Mi and M j is denoted by ρmat(Mi,M j). We employ a custom
difference of Phong reflection parameters inspired by the percep-
tual re-parametrization by Pellacini et al. [2000]. In particular, the
specular color is parametrized by the third root of RGB color values
instead of using the RGB values directly. Further, we have a param-
eter for the glossiness of the material (where we define glossiness
to be exponent of the cosine function typically used to compute the
specular component). We divide Phong glossiness by an assumed
maximum of 300 and afterwards take the forth root to linearize its
perceptual influence. Consequently, our Phong material descriptor
vector contains eight elements: 3 for the diffuse color values in RGB
color space, 3 for the third root of specular color values in RGB color
space, 1 for the fourth root of the glossiness, and 1 for transparency.
All descriptor elements can take values in the range of 0.0 to 1.0.

The L1-distance |m(Mi)−m(M j)| between the material descrip-
tor vectors m(Mi) and m(M j) is used to measure the dissimilarity
between material Mi and part M j . Assuming again a Gaussian distri-
bution of the L1-distances, the material similarity function is

ρmat(Pi,Pj) = exp(
−|m(Mi)−m(M j)|2

σ2
m

) , (4)

where σm denotes the standard deviation over all L1-distances of
materials in the complete database that should be considered similar.
We chose σm such that it captures the smallest τσm = 1.0 percent of
all L1-distances in the complete database.

Database Memex Graph. For all parts in the database we extract
a Memex graph G = (V ,Ed∪Es∪Em) consisting of a set of nodes V
and the union of the three sets of edges Ed, Es, and Em. The set of
nodes V is equivalent to the set of parts P , i. e., each node represents
a part in the database (Fig. 3). The set of spatial context edges Ed
is determined by finding parts that are in contact (as defined during
the contact analysis). If two parts Pi and Pj, are in contact, their
index pair (i, j) is added to the set of edges Ed. Note, that only
parts from the same object in the database can be in contact. This
results in very sparse connectivity of nodes. In fact, the cardinality

Shape

Context

Material

MemexDatabase

Figure 3: A database of objects (top) and the database memex graph
that we extract (bottom) with spatial context, shape similarly, and
material similarity edges.

of Ed grows only linearly with the number of objects in the database.
Additionally, the graph contains a set of shape similarity edges Es.
If two parts Pi and Pj , are of similar shape, i.e., their shape similarity
function ρpart(Pi,Pj) is above a user defined threshold, their index
pair (i, j) is added to the set of edges Es. The third type of edges are
material similarity edges that are added to the set Em if the material
similarity ρmat(Mi,M j) is above a user-defined threshold.

Query Memex Graph. Similarly, a graph Ĝ = (V̂ , Êd ∪ Ês) for
the query object Ŝ is generated. The set of nodes V̂ is defined by
the set of parts P̂ in the query object. The set of spatial context
edges Êd and the set of part similarity edges Ês is generated in
exactly the same way as for the database objects. Obviously, in
contrast to the database memex graph, the query memex graph has
no material similarity edges because the materials of the query object
are unknown. In contrast to the database memex graph, the query
memex graph cannot be computed in a pre-processing step, but
rather only once the query object is defined.

Context edge

Query memex graph Factor graph

Part node Pairwise factor Ψd and Ψs

Shape
similarity

 edge

Unary
factor ΦP1 P2

P3 P4

M1 M2

M3 M4
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Figure 4: Converting the memex graph of the query object into a
factor graph for probabilistic inference.

Probabilistic Factor Graph. Using the information stored in the
query and database memex graphs, we can generate a factor graph
for probabilistic inference to find an optimal material assignment
for each part of the query object. The structure of the factor graph
is directly given by the query memex graph Ĝ = (V̂ , Êd ∪ Ês) as
described in the following. For each node V̂ in the query memex
graph a random element vertex in the factor graph is created. This
random element represents the unknown material M̂n of part P̂n (see
Fig. 4). In total, N random element vertices are created. Furthermore,
the factor graph contains unary and pairwise factors.

For each unknown material M̂n, a unary factor is created and linked
to the corresponding random element vertex in the factor graph. We
define the unary potential of these factors to be

φ(M̂n) =
K

∑
k=1

ρmat(M̂n,Mk)ρpart(P̂n,Pk)ρshp(Ŝ,S(Pk)) , (5)

which depends on all parts Pk and their materials Mk in the database.
Our choice for the unary potential in Eq. 5 is motivated by the



intuitive assumption that the potential should be large if there is a
part Pk in the database that has a similar material as M̂n and similar
shape as P̂n. Furthermore, the contribution of a part Pk is weighted
by the shape similarity between the query object and the object S(Pk)
containing part Pk.

For each graph edge of the query memex graph in both sets Êd and
Ês a pairwise factor is created. This pairwise factor is linked to the
corresponding vertices in the factor graph, as illustrated in Fig. 4.

If (i, j) ∈ Êd, which means that it is a spatial context edge, the
pairwise potential of the factor is defined by

ψd(M̂i,M̂ j) =
1
|Ed| ∑

(u,v)∈Ed

[
ρmat(M̂i,Mu)ρmat(M̂ j,Mv)

ρpart(P̂i,Pu)ρpart(P̂j,Pv)

ρdis(di, j,du,v)ρshp(Ŝ,S(Pu))
]
. (6)

Otherwise, if (i, j) ∈ Ês, which means that it is a shape similarity
edge, the pairwise potential is simply

ψs(M̂i,M̂ j) =
(
1−ρmat(M̂i,M̂ j)

)
. (7)

The pairwise potential in Eq. 6 for spatial context edges is high if
the two parts of the query object P̂i and P̂j have similar materials,
similar shape, and a similar spatial relation as two parts Pu and Pv
from the database. The potential is weighted by the shape similarly
between the query object and the object S(Pu) containing part Pu
and Pv.

The pairwise potential in Eq. 7 for shape similarity edges is high if
parts with similar shape in the query object have similar material.

As the number of parts and the cardinality of Ed grows linearly
with the number of objects in the database and only the database
memex can be precomputed, the computation time for the factors
at runtime also grows linearly. However, by defining a threshold on
shape similarity ρshp(Ŝ,S(Pu)) between the query and the database
objects in Eqs. 5 and 6 a constant computation time can be achieved
once the shape similarity is known. By applying the threshold, the
summation includes only those parts and edges that belong to similar
database objects, which is an approximately constant quantity (due
to our choice of the shape similarity of objects in Eq. 3).

Inference The factor graph defined in the previous paragraph rep-
resents the joint probability distribution of all the unknown materials
M̂n ∈ M̂ of the query object, which is given by

P(M̂ ) =
1
Z ∏

M̂n∈M̂

φ(M̂n) ∏
(i, j)∈Êd

ψd(M̂i,M̂ j)
α

∏
(i, j)∈Ês

ψs(M̂i,M̂ j)
β ,

(8)
where Z is a normalizing constant known as the partition function.
The exponents α = 1.0 and β = 20.0 are weighting parameters.
Note, that these exponents correspond to linear weighting multipliers
of the pairwise terms if the joint probability distribution is transferred
in the log-domain as is typically done during inference.

In theory, the unknown materials M̂n are continuous entities. How-
ever, for efficient inference using the factor graph, we define a dis-
crete set of candidate materials C . This set is derived from the set M
of all the materials in the database. We cluster the database mate-
rials using a maximum of D = 100 cluster centers. Afterwards, for
each cluster center, the database material Mn ∈M with the smallest
distance ρmat to the cluster center is added to the set C of candidate
materials. Consequently, the pairwise factors of the factor graph can

be represented as |C |× |C | matrices and the unary factors are |C |×1
vectors (see Fig 4).

The task is now to assign a candidate material from set C to each
random variable of the factor graph, i. e., to each material M̂n ∈
M̂ , so that the marginals P(M̂n) of the joint probability P(M̂ ) are
maximized:

argmax
M̂n

P(M̂n) = argmax
M̂n

 ∑
M̂ \M̂n

P(M̂ )

 ∀ M̂n ∈ M̂ (9)

These maxima can be approximated efficiently using the sum-
product algorithm (loopy belief propagation) on the factor graph
[Kschischang et al. 1998]. The required computation time can be
further reduced by using a GPU shader implementation with paral-
lel message updating. Our CPU implementation requires 4897 ms
for 50 iterations on a factor graph with 211 unary factors and 623
pairwise factors for 50 candidate materials. The parallel GPU imple-
mentation requires 158 ms for the same task on an NVIDIA Geforce
GTX 275.

4 Applications

In the following, we describe different applications that become
possible with the material memex model, such as automatic assign-
ment of materials to a 3D object or providing user assistance when
assigning materials.

4.1 Automatic Material Assignment

To automatically assign materials to a query shape without materials,
Eq. 9, i. e., the maximum marginal for each random variables M̂n,
needs to be solved, resulting in a set of materials that can be interac-
tively previewed. The entire material memex is pre-computed and
serialized to disk (10 hours for a database of 276 shapes). The most
time-consuming steps at run-time are computing the unary (Eq. 5)
and the pairwise factors (Eqs. 6 and 7) as well as executing the loopy
belief propagation. Fortunately, both steps can be performed using a
GPU: dependent on the size of the query object, computing factors
takes 500 to 3000 ms, and resp. 20 ms to 200 ms for the loopy belief
propagation. Please note, that pre-computation of the factors is not
possible as they depend on the choice of the query object.

Figure 5: The user interface for ranked material suggestion.

4.2 Ranked Material Suggestion

Besides assigning the top material to each part of a query shape, our
approach can also be used to present an ordered list of alternative
material assignments. In our prototype (see Fig. 5), after a fully-
automatic initial assignment, a user can freely select parts, and



Figure 6: Automatic material assignment: database of cars where the materials are assigned by a human designer (1st row), results of
automatic material assignment (2nd row). Results are generated by leaving out the particular query car from the database.

is presented a list of alternative material suggestions, ranked by
likelihood (Eq. 9). After selecting a suggestion as a part’s material,
this material becomes fixated, i. e., its random variable is removed
from the factor graph, and all neighbouring pairwise factors become
unary factors by keeping only the row (or column) of the pairwise
factor matrix that represented the fixated material. After fixation,
the inference is restarted, possibly changing other materials in the
query, e. g., after assigning a black rubber material to a tire of a car,
all other tires are very likely to be assigned the same material if they
are linked with a part similarity edge. To remove a shape’s material
fixation, the random variable is re-included in the factor graph and
the unary and pairwise factors are restored.

Furthermore, the user has the option to create a new material for
a selected part using a slider interface to control the parameters
of the perceptually parametrized Phong [Kerr and Pellacini 2010]
reflectance model (see Fig. 5). New materials are added to the set C
of candidate materials. Consequently, all unary factor vectors get an
additional element, and all pairwise factor matrices get an additional
row and column. The user can seamlessly repeat this procedure as
many times as required to achieve the desired goal.

5 Results

In this section, several results that are generated with the proposed
approach are presented. Similar results as well as a demonstration
of our interactive user-interface for material suggestion, are shown
in the supplemental video. All results shown in this section are
generated based on the same database that contains 276 objects with
known material that we collected from internet repositories. The full
database is shown in the supplemental video.

Figure 6 shows results of the fully automatic assignment of materials.
Six different car models are employed as query objects and the
automatic material assignment is run six times producing the six
results shown in the 2nd row of the figure. The car models have
a complexity of 120 to 250 parts. Fig. 6 also shows the manual
material assignment created by a designer. Creating such a manual
assignment for a single car takes approximately 45 minutes.

It can be observed that the difference in quality between the de-
signer and automatic material assignment is small. Almost all of the
resulting automatic material assignments look very plausible, e.g.,
all cars have specular body colors and diffuse dark rubber material
at the tires; the windows are transparent; also details, such as the
disk brake calipers, indicators, or head lights, have suitable mate-
rial assignments. However, there are also several wrong material
assignments, e.g., the hood cover of the convertible is transparent.
Such estimation errors are more likely to occur if parts with similar
shapes and spatial configurations are not observed in the database.
This is also illustrated in Fig. 7, where the query object is an unusual
aircraft and the most similar objects in the database are of quite

different objects. As there are no suitable pairwise associations in
the database, the material assignment does not look realistic.

Most similar DB objects

Query Result Reference

...

Figure 7: Failure case for automatic material assignment: database
(top), query object (left), our result (middle), reference (right).

Unary
factors

Pairwise
factors

Figure 8: Comparison of using only the unary factors during infer-
ence (left) vs. unary and pairwise factors (right).

Figure 8 is a comparison of a result where only the unary factors
(see Eq. 5) are employed for an automatic material assignment,
versus our approach of using unary factors and pairwise factors in a
probabilistic factor graph. In the result that uses only the unary term,
several wrong assignments are visible. Using context information
that is stored in the pairwise factors allows removing these artefacts.

Figure 9 shows several examples where the proposed user-interface
for ranked material suggestion is employed to refine an automatic
assignment. All shown refinements required a maximum of two
manual material selections from the ranked list to achieve the shown
results. It is evident that the approach works for a large range of
query objects with different complexity and topology. The supple-
mental video shows how a user employs our interface to generate
similar results. It also visualizes those database objects, which are
found to be most similar to the individual query objects.

Furthermore, the supplemental video demonstrates that shape simi-
larity edges and spatial context edges can cause other parts to change
their automatic material assignment when a user manually assigns
a material to a part. The spatial context edges typically influence
only other parts in the vicinity of the part. It can be observed that for
query objects with a smaller factor graph, material changes occur
more often. For very complex objects, where most random elements
of the factor graph have many connected edges, manual assignments
of a material typically do not influence the margins of the other parts
strongly enough to provoke a material change.



Figure 9: Material suggestion (left to right): query object without material, results of automatic material assignment, user interaction (arrows
indicate the clicked part , colored spheres show suggested materials ranked by likelihood), refined results after the user interaction.

Another application of our approach is shown in Figure 10. If
a single object is added to the database and the approach is run
on several query objects, all query objects will be given similar
material assignments. This can be employed, e. g., to indicate that
the resulting group belongs to the same team in a computer game.

Figure 10: Material transfer from a single database object to mul-
tiple other objects: database object (center), query objects (inner
circle), query object with transferred materials (outer circle).

User study. The effectiveness of our approach is evaluated in a
user study. The first study shows that our interface significantly
improves human task performance in a material-assignment session
relative to other common user interfaces. The second study shows,
that the suggested approach produces better material assignments
than common user interfaces. Third, we show how simpler methods
for material assignment will likely fail to achieve the same quality
as our approach. Finally, a study of material assignment preference
over database size indicates that our database sizes are sufficient.

Sliders
Tags
Ours
Unary
RGB

Ti
m

e 
[m

in
]

a) b) c) d)

Pr
ef

er
en

ce
 [%

]10

0

1003.2

2.3

1.7

6.9

4.8

2.1

12
27

61

10 11

79

1 7
23

31 38

0

10 50 10
0

18
5

27
6

DB size [# Shapes]

Figure 11: Results of our study (Please see text).

First, we compare task performance in terms of completion time
achieved by users of our interface to two other common user inter-
faces. The first interface uses perceptual sliders and color pickers to
select the parameters of the Phong reflection model. In the second
interface, a user specifies one or multiple keywords by typing, and
the interface presents preview icons of all materials that partially
match one or multiple given keyword. The user selects the final ma-
terial by clicking an icon. The database of 86 materials was labelled
manually with keywords. Note that such keywords are typically
not available. In total, 24 subjects participated in the first study.
After a short tutorial, each subject performed 6 trial experiments. In
each, the participant was asked to assign materials to two objects
using three interfaces (sliders, keywords, or ours) in a random order.
The maximum time allowed to complete the task was 10 minutes.



A significant difference was found between all interfaces and an
improvement of 227 s (p < 10−15) comparing ours to the slider and
105 s (p < 10−8) when comparing ours to the keyword interface
(Fig. 11a). This suggests that our interface can save considerable
time and effort.

In a second study, 57 subjects were presented 10 random pairs of
images produced with the different approaches in the previous study
and had to choose the one with the better material assignment in a
two-answer forced choice (2AFC) task. Results from our method
were chosen to be preferred in 61 percent of all answers. Our
method is significantly better when comparing its score to sliders
(p < 10−15) and keyword tags (p < 10−9), see Fig. 11b.

In a third experiment, we compare our approach against two simpler
alternatives: a hypothetical method without a graphical model that
only uses unary potentials but no pairwise potentials and a method
that does not account for materials and uses only the diffuse RGB
color during inference. In a 2AFC task (20 subjects, 10 trials each),
we find a significant difference between our approach and simpler
alternatives (Fig.11c), suggesting that material assignment is context-
dependent (p < 10−7), and a suitable representation of materials is
crucial for plausible material assignment (p < 10−8).

The last experiment investigates the dependency of quality on
database size (Fig. 11d). Subjects were presented images of ob-
jects with our material assignment, but produced from databases of
increasing size. Again, subjects were asked to select the preferred
material composition when presented 320 random pairs from all four
database sizes in a 2AFC (details are given as supplemental material).
While there is a significant difference between databases with 10
(p < 10−15), 50 (p < 10−9), 100 (p = 0.0063) shapes, no significant
difference is found between 185 and 276 shapes (p = 0.042). This
indicates, but does not prove, that there is only a small effect when
increasing the database size beyond 185 exemplars, i. e., that the
database size used gives a good indication of the achievable quality.

6 Discussion and Conclusion

This paper proposed an approach to model the relation of shape
and material computationally by learning it from a database of 3D
objects with materials. It represents associations between database
parts, i. e., if two parts have similar shape, similar material, or if they
are in context. This information allows automatically assigning ma-
terials to other 3D objects and assists users when designing materials
by providing ranked material suggestions. Our current implemen-
tation employs the Phong reflection model which is widespread in
Internet 3D object repositories but is supposed to generalize to gen-
eral BRDFs using metric such as the one of Ngan et al. [2006]. Our
approach requires a decomposition of objects into parts. To this end,
we assume that the designers of the 3D objects have created them
from multiple parts. This assumption is often not true for natural
objects, e. g., animals or human bodies. Automatic segmentation al-
gorithms (e. g., [Kalogerakis et al. 2010]) would be required to make
such 3D models accessible for our framework. In future work, our
approach could extend to spatially varying materials (textures), but
would require cross-parametrization of query and database shapes.
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