Software Desigh &

Programming Techniques

Domain-Specific Languages

Prof. Dr-Ing. Klaus Ostermann
Sebastian Erdweg, Msc.

Domain-Specific Languages

» 5.1 Goal of domain-specific languages (DSLs)
» 5.2 Case Study: State Machines

» 5.3 Styles of DSLs

» 5.4 Sugar]

» 5.5 Summary: DSLs

5.1 Goal of domain-specific languages (DSLs)

» Programming languages have fixed, built-in features
» These are generally useful features
» We speak of general-purpose languages (GPL)

class Menultem { // classes

void draw(Graphics g) { // methods

}
}

class CheckMenultem extends Menultem { // inheritance
}

MenuItem i = new CheckMenultem(“Activate?”); // objects

General-purpose vs. domain-specific

» General-purpose languages are often inadequate

» Using classes, methods, inheritance, and objects,
how do you describe:

> A State maChIne that state machine BankATl\/y
implements an ATM?

service

Out of #

Service

in(card)

> An XML document that <book title="Sweetness and Power">
represents bOOkS? <author name="Sidney W. Mintz" />

<editions>
<edition year="1985" />
<edition year="1986" />

</editions>
</book>
> An SQL query that SELECT e.DepartmentName, COUNT (*) as EmployeeCount
. f FROM [dbo] . [DimEmployee] AS e
draWS StatIStICS on WHERE e.Gender Py C e.SickLeaveHours 40
GROUP BY e.DepartmentName

employees’ absence?

Goal of Domain-specific languages (DSLs)

Narrow the gap between

a problem domain
and
its implementation

» Problem domains are
» the domain an application targets (e.g., banking or telephone relaying)
» all domains needed in the realization of the application (e.g., SQL)

» The implementation should be close to the domains to improve
» conceptual proximity (thinking)
» representational proximity (reading/writing)

5.2 Case Study: State Machines

» To illustrate the inadequacy of general-purpose languages,
let us implement a state machine in Java

state machine Bank ATl\zy

service Idle

fixed

Out of
Service done

in(card)

Active]

How do we
do that?

State machines in Java

» Represent the domain

class StateMachine {
int current;
// State x State -> Event[]
String[][][] transitions;

void step(String event) {
for (int i = 0; 1 < transitions[current].length; i++)

for (String expected : transitions[current][i])
if (expected.equals(event)) {
current = 1i;
return;

State machines in Java

state machine Bank ATW

service m in(card)
k
Service done

» Represent the domain application

int idle = 0;
int cos =1

i~

int active 2; "
Why is
String[][][] transitions = new String[3][3]; this bad??
transitions[idle] [oos] = new String[] {“service”}
transitions[idle] [active] = new String[] {“in-card”}
transitions[oos] [idle] = new String[] {“fixed”}
transitions[active] [idle] = new String[] {“cancel”, “done”}

StateMachine atm = new StateMachine (idle, transitions);

Evaluation

» The concepts of the state machine (states, events, transitions) are
encoded and not directly represented:

State machine V'L

state integer
event string
transition lookup table

» This violates conceptual proximity (thinking)
» This also violates representational proximity (reading/writing)

» State machines have nothing to do with array syntax,
yet array syntax dominates the representation

Conceptual proximity

The concepts of a domain and their encoding
should be proximal

» No big gap between domain concepts and encoding
» Domain knowledge can be directly translated into programs

» No need for adapting our mindset to think about the encoding
rather than the domain concepts

Y

|4

‘D
‘B
C
‘A

10

Conceptual proximity

The concepts of a domain and their encoding
should be proximal

» For example, in previous state machine, transitions are not proximal to
their encoding within a lookup table:

» How to figure out whether a state has an outgoing transition?

int state = ..
for (int i = 0; 1 < transitions[state].length; i++)
if (transitions[state][i] !'= null &&
transitions[state] [i] .length > 0)
return true;
return false;

» Transitions are not directly represented
» Complicated translation of our domain knowledge necessary

11

State machines in Java

» Another try: Represent the domain

class StateMachine {
State current;

void step(String event) {
current = current.step (event) ;

}

class State {
private int label;
Map<String,State> transitions;

State step(String event) ({
return transitions.get (event)

}

12

State machines in Java

» Represent the domain application

State idle =
State oos =
State active =

new State(0) ;
new State (1) ;
new State(2);
Map<String,State> idleTrans = new ..
idleTrans.put(“service”, oos);
idelTrans.put (“in-card”, active);
idle.setTransitions (idleTrans) ;

Map<String,State> oosTrans =
oosTrans.put (“fixed”, idle);
oos.setTransitions (oosTrans) ;

new ..

Map<String,State> activeTrans = new ..
activeTrans.put (“cancel”, idle);
activeTrans.put (“done”, idle);

active.setTransitions (activeTrans) ;

state machine Bank ATI\.y

service in(card)

k
done

Qut of
Service

Why is
this bad?

StateMachine atm = new StateMachine (idle) ;

Evaluation

» The concepts of the state machine (states, events, transitions) are
encoded directly:

State machine Java

state object of class State
event string
transition maps event to state

» This conforms to conceptual proximity (thinking)
» How to figure out whether a state has an outgoing transition?

State state = ..
return !state.transitions.isEmpty ()

» But it violates representational proximity (reading/writing)

14

Representational proximity

The concepts of a domain and their
representation should be proximal

» No big gap between domain representation and program representation
» No indirect translation of domain representation

» Domain knowledge can be directly represented in code (write)
» Code can be directly read as domain knowledge (read)

A— A
@
-0

15

Representational proximity

The concepts of a domain and their
representation should be proximal

» The first state machine violates representational proximity:
» Array syntax dominates the representation of the state machine
» A state and its transformations are separated

int idle = 0;
int oos =1
int active

" e

2;

String[][][] transitions = new String[3][3];
transitions[idle] [oos] = new String[] {“service”}
transitions[idle] [active] = new String[] {“in-card”}
transitions[oos] [idle] = new String[] {“fixed”}
transitions[active] [idle] = new String[] {“cancel”, “done”}

StateMachine atm = new StateMachine(idle, transitions);

16

Representational proximity

The concepts of a domain and their
representation should be proximal

» The second state machine violates representational proximity:
» Collection syntax for Map dominates the representation
» A state and its transformations are separated

State idle = new State(0);
State oos = new State(l) ;
State active = new State(2);

Map<String,State> idleTrans = new ..
idleTrans.put(“service”, oos);
idelTrans.put(“in-card”, active);
idle.setTransitions (idleTrans) ;

StateMachine atm = new StateMachine (idle) ;

17

Goal of Domain-specific languages (DSLs)

Narrow the gap between

a problem domain
and
its implementation

» The implementation should be close to the domains to improve
» conceptual proximity (thinking)
» representational proximity (reading/writing)

18

5.3 Styles of DSLs

» DSLs come in different flavors
» Internal/external to a general-purpose language
» External DSLs come with their own interpreter/compiler
» Standalone implementation
» Independent of GPL
» Hard to use multiple external DSLs together
» only sequential composition

e

» Internal DSLs are implemented as part of a GPL

» Applying multiple internal DSLs corresponds to
using different parts of a GPL

» deep integration of DSLs possible

GPL

=

» We focus on internal DSLs

19

Internal DSL by pure embedding

» The state-machine DSL from before is an internal DSL
» Implemented as a library in the GPL
» This form of implementation is called pure embedding

» In fact, many DSLs are implemented as libraries or APIs
» SQL: API in java.sqgl
» XML: JDOM encoding in org. jdom2
» regular expressions: library java.util.Regex
> ...

» Conversely, many libraries represent DSLs
» java.net.HttpURLConnection implements HTTP DSL
» java.io.* implements File I/O DSL
> ...

20

Pure embedding

» Implement DSLs as libraries in the GPL
» Pro: No special language support needed
» Cons: Bound to syntax, static analysis, and IDE support of GPL

» Example: only Java compiler needed, but Java syntax dominates DSL

State idle = new State(0);
State oos = new State(l);
State active = new State(2);

Map<String,State> idleTrans = new ..
idleTrans.put(“service”, oos);
idelTrans.put (“in-card”, active);
idle.setTransitions (idleTrans) ;

Map<String,State> oosTrans = new ..
oosTrans.put (“fixed”, idle);
oos.setTransitions (oosTrans) ;

Map<String,State> activeTrans = new ..
activeTrans.put (“cancel”, idle) ;

Besides pure embedding

» Alternatives:
» Compiler extension
» Preprocessor
» Free to change the language
» syntax
» static analysis
» semantics (to some degree)

» But: hard to develop, maintain, use, and compose
» Require specific infrastructure
» Developers cannot use standard compiler
» need build scripts
» Developers cannot use standard IDE

22

5.4 Sugar]

» We want the advantages of pure embedding
» And the freedom of compiler extensions

» No external tools or build scripts
» Easy to use

» Customizable syntax

» Customizable static analysis

» Customizable IDE support

» Composable

Libraries

23

Languages in Libraries

T e Y

SQL Palrs Regex

-

import Pc .

im or+ HGIFS
import Re P

public cl public class Test {
private (String, Integer) p = ("12", 34);
prlvate}_

" .
(/US\-—I = 4 -t o b A , 7 U d 1 = 4 -t o b A o111 W 1 |\.¢~I\I \/ Lvl [B [\I/]*$/)),

24

Data serialization with XML

Task: serialize information about books using XML

<book title="Sweetness and Power">
<author name="Sidney W. Mintz" />
<editions>
<edition year="1985"
publisher="Viking Press" />
<edition year="1986"
publisher="Penguin Books" />
</editions>
</book>

25

Example: XML serialization

In Java using SAX
» No representational proximity

public void appendBook(ContentHandler ch) {
String title = "Sweetness and Power";
ch.startDocument();
AttributesImpl bookAttrs = new AttributesImpl();
bookAttrs.addAttribute("", "title", "title", "CDATA", title);
ch.startElement("", "book", "book", bookAttrs);
AttributesImpl authorAttrs = new AttributesImpl();
authorAttrs.addAttribute("", "name", "name", "CDATA", "Sidney W. Mintz”);
ch.startElement("", "author", "author", authorAttrs);
ch.endElement("", "author", "author");
ch.startElement("", "editions", "editions", new AttributesImpl());
AttributesImpl editionlAttrs = new AttributesImpl();
editionlAttrs.addAttribute("", "year", "year", "CDATA", "1985");
editionlAttrs.addAttribute("", "publisher", "publisher", "CDATA", "Viking");
ch.startElement("", "edition", "edition", editionlAttrs);
ch.endElement("", "edition", "edition");
ch.endElement("", "editions", "editions");
ch.endElement("", "book", "book");
ch.endDocument();

}

26

XML in Sugar)

import XML;

public void appendBook(ContentHandler ch) {
String title = "Sweetness and Power";

ch.<book title="{title}">
<author name="Sidney W. Mintz" />
<editions>
<edition year="1985" publisher="Viking Press" />
<edition year="1986" publisher="Penguin Books" />
</editions>
</book>;

27

Domain-Specific Languages: Sugar]

Sugar libraries

Syntax

ch.<book title="Sweetness and P
<author name="Sidney W. Mi
<editions>

<edition year="1985" pub
<edition year="1986" pub
</editions>
</book>

Desugaring

ch.startDocument();
AttributesImpl bookAttrs = new AttributesI

bookAttrs.addAttribute("", "title", "title
ch.startElement("", "book", "book", bookAt
AttributesImpl authorAttrs = new Attribute
authorAttrs.addAttribute("", "name", "name
ch.startElement("", "author", "author", au
ch.endElement("", "author", "author");

ch.startElement("", "editions", "editions"
AttributesImpl editionlAttrs = new Attribu
editionlAttrs.addAttribute("", "year", "ye

editionlAttrs.addAttribute("", "publisher"

28

" public sugar Pairs {

context-free syntax
(" JavaExpr "," JavaExpr ")" -> JavaExpr

import Patirs;

rules public class Test {
pair-desu private (String, Integer) p = ("12", 34);
[(~el 1

desugarings
pair-desugaring

private (String, Integer) p = ("12", 34);

private Pair<String, Integer> p = new Pair("12", 34);

29

State machines in Sugarl]

» Another try: Represent the domain

Syntactic representation

sugar SMSugar ({
context-free syntax

rules

desugarings

Semantic encoding

class StateMachine {
State current;

void step(String event) {
current = current.step (event) ;

}

class State {
private int label;
Map<String,State> transitions;

State step(String event) ({
return transitions.get (event)

}

30

State machines in Java

» Represent the domain application

import SMSugar;

statemachine atm {
idle {
service -> o00s
in-card -> active

oos {
fixed -> idle

}

active {
cancle -> idle
done -> idle

state machine Bank ATI\/y

in(card)

K
Service done

Language composition

We want DSLs for all problem domains
» the domain an application targets (e.g., banking or telephone relaying)
» all domains needed in the realization of the application (e.g., SQL)

» Many domains are involved in realistic software projects
» Need support for composing DSLs

32

XML Schema

SQL

MATLAB

33

Languages in Libraries

Teee

SQL Pairs Regex

import Pairs;
import Regex;

public class Test {
private (String, Boolean) homeDir =
("/Users/seba", "/Users/seba".matches(/A\/[a-zA-Z\/1*$/));

34

Domain-Specific Languages: Sugar]

Language composition in Sugar]

SDF Stratego
» scannerless parsing » term rewriting
» generalized: full CFG » higher-order rules

» grammar composition » rule composition

35

-~~~]
Sugar library composition

incremental parsing and grammar adaption

package foo;

import XML;
import SQL; |
import Regex; |

public class Test {
ks

36

Sugar] internals

package foo;

import XML;

import SQL;

&

import Regex;

333

public class Test

{
-

B Sugar] node
‘ Extension node

adapt current grammar

()
SDF
. J
()
Desugar Java
. J
()
Stratego
. J

adapt current desugaring

37

libraries are self-applicable

38

Self-applicability

book

title
author
name : "Sidney"

editions

}

"Sweethess"

desugar

desugar

<book
title="Sweetness">
<author
name="Sidney" />
<editions> ..
</editions>
</book>

DSLs can build on other DSLs

desugar

desugar

ch.startDocument();

AttributesImpl bookAttrs = new Attribute
bookAttrs.addAttribute("", "title", "tit
ch.startElement("", "book", "book", book
AttributesImpl authorAttrs = new Attribu
authorAttrs.addAttribute("", "name", "na
ch.startElement("", "author", "author",
ch.endElement("", "author", "author");
ch.startElement("", "editions", "edition
AttributesImpl editionlAttrs = new Attril
editionlAttrs.addAttribute("", "year", "
editionlAttrs.addAttribute("", "publishe
ch.startElement("", "edition", "edition"
ch.endElement("", "edition", "edition");
ch.endElement("", "editions", "editions"
ch.endElement("", "book", "book");
ch.endDocument();

39

Domain-Specific Languages: Sugar]

Metalevels and Sugar]

Sugarl] is

——> » object language Application

Sugar]

> » metalanguage _
extensions

.
.

libraries can affect both

40

XML Schema

<xsd:schema targetNamespace="11ib">
<xsd:element name="book" type="B
<xsd:complexType name="Book">
<xsd:choice maxOccurs="unbound
<xsd:element name="author" t desugar
<xsd:element name="editions"
</xsd:choice>
<xsd:attribute name="title" ty
</xsd:complexType>
</xsd:schema>

Book

validity
checker

import BookSchema;

ch.<book title="{title}">
<author name="Sidney W. Mintz" />
<editions>
<edition year="1985" publisher="Viking Press" />
<edit year="1986" publisher="Penguin Books" />
</editions>
</book>;

41

5.5 Summary: DSLs

Narrow the gap between

a problem domain
and
its implementation

» The implementation should be close to the domains to improve
» conceptual proximity (thinking)
» representational proximity (reading/writing)

» language composition to support multiple domains

42

Further reading

» Pure embedding of DSLs
» Hudak: Modular domain specific languages and tools
» We discuss this paper next week on Wednesday

» Sugarl: Library-based Syntactic Language Extensibility
» Paper and further documentation available online http://sugarj.org

» Try it out: Eclipse update from http://update.sugarj.org

» Interested in a thesis topic?
» Come talk to us!

43

