
A Principled Approach to Grid Middleware

– Status Report on the Minimum intrusion Grid –

Jost Berthold1, Jonas Bardino2, and Brian Vinter2

1 Department of Computer Science, University of Copenhagen, Denmark
berthold@diku.dk

2 eScience Center, University of Copenhagen, Denmark
{bardino,vinter}@nbi.dk

Abstract. This paper provides an overview of MiG, a Grid middleware
for advanced job execution, data storage and group collaboration in an
integrated, yet lightweight solution using standard software.
In contrast to most other Grid middlewares, MiG is developed with a
particular focus on usability and minimal system requirements, applying
strict principles to keep the middleware free of legacy burdens and overly
complicated design. We provide an overview of MiG and describe its
features in view of the Grid vision and its relation to more recent cloud
computing trends.

1 Introduction

The Grid computing vision of Foster and Kesselman [9] in the late ’90s promised
to substantially facilitate access to remote computing and storage resources.
However, today’s Grid middlewares in practical use only provide a somewhat
reduced model. “The Grid” falls short on expectations. Today’s large-scale Grid
systems demand considerable expertise from the user, maintenance is staff-
intensive, and they tend to seclude their user base to a few privileged scientists.
As a consequence, potential users turn away from Grid solutions today, and in-
creasingly spend subsidies on dedicated hardware (for instance, GPGPUs). We
argue that the reason for this disappointing reality is excessive middleware com-
plexity and inapt prioritisation in its development. The Minimum intrusion Grid
(MiG) started in 2004 [18] to address a number of shortcomings in existing Grid
middlewares, and follows a principled approach free of inherited legacy burdens.
First, MiG’s principle is to minimise requirements for both users and resource
providers in a Grid. Second, MiG offers more than a simple “job-shop” system: it
provides a complete working environment with not just computational power but
also storage, collaboration software (Wiki, forum and version control repository)
and an integrated web portal that can even encapsulate whole workflows. In this
paper, we give an overview of MiG, discuss its design principles and realisation,
and present its advanced features for group collaboration and resource sharing.
We argue for a revival of the Grid vision in view of the current cloud computing
trend. Presenting the advanced key features of MiG, we point out that the Grid
vision goes far beyond cloud ideas, and how a principled Grid middleware can
be realised in a flexible and user-friendly manner.

Y.Xiang et al. (Eds.), ICA3PP 2011, Part 1, LNCS 7016, pp.410–419, 2011.
c© 2011, Springer-Verlag Berlin/Heidelberg
Preprint. The original publication is available at www.springerlink.com.



2 Background and Motivation

2.1 Grid Vision and Grid Practice

When the term of Grid computing was coined in the late ’90s by Foster and
Kesselman [9], Grid was envisioned as much easier to use than conventional
large-scale computing. The Grid promised transparency and single entry points
to powerful parallel computing resources (computational Grids) and storage
(data Grids), organised in easily managed abstract entities (Virtual Organisa-
tions). However, implemented Grid systems exposed a continuously decreasing
ambition, towards a substantially reduced model for the sake of reliability and
system management. And yet, using one of the existing Grid middlewares (for
instance, NorduGrid ARC [6], gLite [10] or EGI [5]) which inherit code base and
paradigms from the Globus Toolkit [8] still has a number of problems:

– Even simple Grid system services are very complex to administrate. As a
survey of Grid middleware support mailing lists shows, middleware configu-
ration is extremely intricate and requires considerable internal knowledge.

– A common practical problem is to reliably provide special software packages
for particular users. The usual solution, manual installation and maintenance
of all software on all computing resources, is error-prone, cumbersome, and
totally unsatisfactory against the original Grid ideas.

– Despite it being the key feature of Grid systems, granting and obtaining
access to Grid resources usually involves manual work and human factors.
As a result, Grid users are more often than not privileged scientists who rely
on good administrator contacts and support to suit their computing needs.

– Virtual Organisations should improve this but often create middleware in-
compatibilities by proprietary X.509 certificate extensions. More important,
implementations of virtual organisations merely provide administrative group-
ing, not working environments and collaboration support.

Reasons for this unfortunate development include, among others, the inherent
danger of large-scale multinational projects to produce overly complex architec-
tures and to focus on aspects of minor interest to users. For instance, large parts
of the ARC [6] middleware deal with monitoring, accounting and user roles for
access control. In contrast, ARC’s solution for providing software on computing
resources has remained strikingly ad-hoc after years in production. The primary
focus of a useful Grid middleware should be ease of use for resource users and
resource providers, and maximised resource usage (including harvesting spare
cycles). Besides, Grid should go beyond a mere “job shop”. Users should profit
from advanced middleware features tailored to better collaboration.

2.2 The Cloud Vision – a Better Grid?

Far more recent, yet substantially related to Grid, is the fashion of cloud comput-
ing – alas, a cloudy subject with a range of definitions. A restrictive one comes

Berthold, Bardino, Vinter. A Principled Approach to Grid Middleware. In: ICA3PP 2011, LNCS
7016. c© 2011, Springer. Preprint. The original publication is available at www.springerlink.com.



from Berkeley, limiting the term to flexible virtualised infrastructure provision-
ing (IaaS) [2]. In line with this is the widespread understanding of “cloud” as
providing full user control over an entire virtual machine (as opposed to running
jobs in a pre-existing setup), fostered by Amazon’s “Elastic Cloud Computing”
(EC2) platform (the breakthrough in cloud computing of modern imprint in
late 2006). We favour a slightly broader definition by the National Institute
of Standards and Technology (NIST), which also subsumes software and plat-
form services, and emphasises that “configurable computing resources [..] can
be rapidly provisioned and released with minimal management effort or service
provider interaction.” [14]
Be it virtual hardware or a software setup, cloud computing is characterised by

minimal setup and maintenance effort, and user self-service. In essence, the goals
of convenience and resource usage are the same as in Grid, and when realised
merely through virtual machines, one can indeed argue that the cloud ideas are
a commercialised and reduced variant of the earlier academic Grid vision. The
main reduction lies in virtual organisations and group collaboration, an essential
goal of Grid but completely missing from cloud computing as of today.

3 Overview of the Minimum Intrusion Grid

3.1 System Architecture GRID
browser

script

XML-RPC

ssh

cURL

ssh

cURL

ssh
cURL

Resource

Resource

Resource

User

User

User

User
python

library

Fig. 1. Abstracted MiG Architecture

A bird’s eye perspective on the MiG
system (in Fig. 1) shows its central
motivation: to virtualise user access
to resources. The Grid system acts
as a gateway between users and re-
sources that provide storage or com-
puting capabilities.
This gateway itself can be composed of replicated server instances that coor-

dinate job execution and introduce failover safety. Users access the system via
different methods, all based on secured HTTP. Communication from resources
to a server uses secure HTTP as well, while a server uses SSH to address re-
sources. The HTTP interface provides job submission and management, server
file space, virtual organisations (VGrids) with shared file and web space, and
means to provide and manage resources and software.

3.2 MiG Design Principles and Rationale

MiG was developed with a principled approach to follow the original Grid vision,
and to address the issues observed in other Grid middlewares. This led to a
number of principles and goals, ranging from technical implementation principles
over architectural requirements to usability.

Non-intrusive Software Installation. The first and foremost design goal of MiG
is to reduce software complexity and to avoid legacy burdens of any kind. Re-
sources and users must be able to join and use the Grid with minimal software

Berthold, Bardino, Vinter. A Principled Approach to Grid Middleware. In: ICA3PP 2011, LNCS
7016. c© 2011, Springer. Preprint. The original publication is available at www.springerlink.com.



requirements. Experiences with other Grid middlewares show that large instal-
lations on the resource side create compatibility problems and – contrary to
the Grid philosophy – require more centralised administration and maintenance.
Likewise, new users may be unwilling or unable to install a large software.

Minimal Dependencies. Typical production Grid systems carry heavy burdens
of legacy code and suffer from incompatibilities. Use of many different languages
and tools complicates maintenance and hampers porting software to new plat-
forms. MiG was designed to reduce maintenance requirements, and to automate
maintenance operations whenever possible. This relates to the choice of imple-
mentation language as well as the tool requirements.
The distribution aspects of the entire system are based on secure HTTP com-

munication. For the user, MiG only requires an X.509 user certificate from a
trusted CA and a standards-compliant web browser (or other HTTP software).
MiG resources require secure HTTP (cURL [4]), SSH, and a standard shell –
system interfaces that can safely be assumed stable. Basing all functionality on
standard software and few commonly used protocols/ports maximises MiG fire-
wall compliance, and enables the server to update all software (scripts) on the
resource without manual intervention. The MiG server software is based on the
widespread Apache HTTP server and written in widely portable Python.

Fault Tolerance. Failing machines or processes within the Grid should not stop
users or resources from using the Grid. If a resource crashes, the middleware
should be responsible for recovering and repeating any lost jobs. The MiG de-
sign includes a concept of distributed communicating servers, where all data are
replicated several times for failover safety, while keeping clear responsibilities for
consistency. Jobs are replicated and quickly rescheduled by servers upon failure.

Anonymity of users and resources. Job submission in most Grid systems in-
volves direct communication between the submitting client and potential execu-
tion resources. In such a design, a resource provider can theoretically monitor
Grid usage of all users by their incoming execution requests. In the MiG de-
sign, the mediating servers can completely shield users and resources from one
another if desired (but with server audit logs to trace any abuse). Assuming
sufficient job throughput, it is not possible for a resource owner to identify the
user who submitted a particular job. Likewise, resources can be provided in an
anonymised fashion. This is particularly desirable in industrial Grid usage where
the same resources might provide services for competing companies.

Straightforward Comfortable Usage. In analogy to the system related principle
of minimal intrusion, a Grid system should support the user in a straightforward
manner. The MiG middleware helps beginners by hiding complex features and
providing reasonable defaults for any optional feature.

Advanced Support for Group Collaboration. It has been stated [7] that the
essence of Grid is collaboration in virtual organisations, so a Grid middleware
should provide appropriate tools especially for this task. MiG provides a wide
range of user-controlled collaborative structures and tools, to truly enable col-
laborating virtual organisations and improve the overall Grid usability.

Berthold, Bardino, Vinter. A Principled Approach to Grid Middleware. In: ICA3PP 2011, LNCS
7016. c© 2011, Springer. Preprint. The original publication is available at www.springerlink.com.



(a) Job Management (b) File Browser

(c) Job Submission Interface (d) Simple Built-in Editor

Fig. 2. MiG Browser Interface Screenshots

3.3 Browser-Based Interface

The central user interface to a MiG system is the web browser. Users are authen-
ticated and authorised by an X.509 certificate installed in their browser, and can
then access all functionality through a single portal. The MiG design carefully
avoids transferring any temporary “proxy” credentials to servers or resources.
As Figure 2 illustrates, users should experience MiG as a multiuser worksta-

tion with a system account and pre-installed software. The interface to submit-
ting and managing jobs is shown in Figures 2(a) and 2(c). Figures 2(b) and
2(d) demonstrate another essential component of the “workstation” view: the
user’s home directory on the server and how to manipulate files from within
the browser. Some folders are shared with other users (based on virtual organ-
isations), and are seamlessly integrated in the home directory; a custom icon
indicates the sharing. We will explain some key features shown in the menu on
the left in detail subsequently (VGrids, Resources, and Runtime Env.s).

3.4 How MiG Executes Grid Jobs

Efficient job execution by resources is the primary Grid functionality, realised
in MiG in a uniform, straightforward and server-centric manner. Contrary to
Globus based Grids, MiG job requests are submitted to a Grid job queue handled
by one or more MiG servers from start to finish. There is no direct communication
between the user and the resource where the job ends up executing and the user
can safely go offline as soon as the job is queued.

Berthold, Bardino, Vinter. A Principled Approach to Grid Middleware. In: ICA3PP 2011, LNCS
7016. c© 2011, Springer. Preprint. The original publication is available at www.springerlink.com.



Simple Job Specification. Figure 2(c) shows the simple graphical interface
with individual fields to specify requirements and actions for a Grid job. While
this HTML form is the default interface, users can also directly use the internal
job specification language mRSL, a simple line-delimited text format. Compared
with richer standards such as JSDL or RSL [1, 8], mRSL is simplistic but suffi-
cient. A job specification includes a list of commands to execute, input and out-
put files, and a range of other (optional) properties: hard resource requirements
like node and CPU count, soft requirements like memory and disk consumption
and wall-clock time limits, and a retry counter for failover scheduling.

Grid Job Scheduling in MiG. Production Grids typically have a long queue
of waiting jobs, as there are often more jobs than execution slots. In MiG, pend-
ing jobs are stored on servers until a resource becomes available. Resources
actively request jobs from a server (pull scheduling), and the server selects the
best-fitting job according to a configurable scheduling policy. This allows for
scheduling jobs across multiple physical resources to optimise throughput.
Scheduling in MiG is guided by the job’s software requirements, user-provided

memory and disk limits, node and CPU count, and by the execution history of
the resource. A number of scheduling algorithms are implemented and deliver
good throughput on average while preventing starvation. Apart from the classical
variants FIFO, Random and First-Fit, MiG implements a Best-Fit scheduler that
avoids occupying oversized resources, a Fair-Fit scheduler which additionally
prioritises jobs that have waited longer, and a scheduler based on a Vickrey
auction [3], which lays grounds for a pay-per-use “Grid economy” of resources.

3.5 Software Deployment

In order to run anything but trivial jobs on a Grid resource, one typically needs
special software. Requirements beyond the basic Grid system have to be be
negotiated between users and resources, typically realised in Grid systems by
the concept of Runtime Environments [12]. A runtime environment in MiG is a
data structure that describes system properties – for instance, a special numeric
software library, or special hardware – and specifies environment variables to
be used in job scripts that require them – for instance, a variable containing
necessary compiler flags, the install location, or the path to an executable tool.
When a resource provides this library, the owner adds the respective runtime
environment to the resource’s specification and assigns values to these environ-
ment variables. Any MiG user can define runtime environments, but they cannot
be modified (only deleted) after creation – redefinitions would cause inconsis-
tencies. And, well-understood, there is no guarantee that any resource in the
system implements a particular runtime environment.
Dedicated computing resources usually have their own native software package

management system, which only privileged users can use. Users often have to
manually intervene and ask a resource owner to install the necessary software,
a typical productivity bottleneck in today’s production Grids. To address this
issue, a mechanism was developed to automatically install software on-demand

Berthold, Bardino, Vinter. A Principled Approach to Grid Middleware. In: ICA3PP 2011, LNCS
7016. c© 2011, Springer. Preprint. The original publication is available at www.springerlink.com.



from a software catalogue hosted on the MiG servers. The software catalogue
in MiG uses the Zero Install [16] packaging system to support installation and
automatic maintenance of pre-packaged software on resources. When a resource
provides the ZeroInstall runtime environment, a job can install and use packaged
software in a secure and controlled way, instead of using a native installation.
Runtime environment specifications are automatically generated from Zero In-
stall package descriptions, making the entire process transparent to the user.

4 MiG Features Beyond the “Job-Shop”

4.1 VGrids: Virtual Organisations in MiG

In early 2000, Virtual Organisations (VOs) were stated by Foster [7] as the origi-
nal “Grid problem”, motivation for developing the Grid concept altogether. The
term Virtual Organisation describes dynamically evolving groups of users that
belong to distinct administrative domains, but want to share resources (com-
pute power, storage, software etc.) for a specific purpose. Flexible and dynamic
resource sharing across administrative domains is the core of Grid technology.

VGrid

User

Job 

Resource

Storage

Node

Execution

Node

1..**

1..*

*

participates

participates
O

w
n
e
r

M
e
m

b
e
r im

p
le

m
e
n
ts

requires

executes

defines

submits

Owner

Sub-VGrid

1

*

*

* *

*

*

*
*

*

1 1

1..* *

* *

*

1..*

* *

Runtime

Environment

Fig. 3. MiG E/R Model

The MiG system models Virtual Organ-
isations as VGrids [11]. As the MiG E/R
model in Figure 3 shows, VGrids are hier-
archical and act as an organisational en-
tity to define the relationship between re-
sources and users, and among users. Since
the model relies on VGrids, it includes a
default VGrid which includes all users and
where any resource can (but does not have
to) participate by default.
All services are managed via VGrids: Jobs execute inside a VGrid where the

submitter is a member, execution nodes of a resource contribute compute power
to members of one or more particular VGrids, and storage nodes expose a speci-
fied directory on the resource to members of the VGrids that they have signed up
to. Each VGrid also provides a shared folder for members on the server. VGrids
are easy to create and manage using the MiG web interface. Furthermore, VGrid
operations (adding members or owners, creating sub-structures) are entirely user
controlled, enabling ad-hoc VGrid formation and efficient collaboration without
administrative hurdles. As we are going to see next, this VGrid concept allows
MiG to lift resource provisioning to user level, and VGrids can also provide cloud
storage services and advanced workflow integration.

4.2 Resource Management

Any MiG user can add a resource to the Grid through a simple HTML form, by
specifying its properties: hardware and software specifications (CPUs, memory,
disk size) and login details for the user account that executes the Grid jobs.
After submitting the form, the resource is added to the default VGrid.

Berthold, Bardino, Vinter. A Principled Approach to Grid Middleware. In: ICA3PP 2011, LNCS
7016. c© 2011, Springer. Preprint. The original publication is available at www.springerlink.com.



Different levels of resource trust can thus be modelled with different VGrids.
The default VGrid is open to anyone and thus has the lowest level of trust.
Resource owners configure which VGrids their resources should participate in
as an execution or/and storage resource. Respectively, VGrid owners need to
accept the resources into their VGrids before jobs can be executed (to prevent
job hijacking). The entire process requires no Grid administrator intervention.

4.3 Storage in MiG

One of the distinctive features of MiG in comparison to other Grid middlewares is
the concept of a central user home directory. This is part of the MiG philosophy
of the Grid being a virtual workstation: users store their files in their home
directory and reference them with relative file names in jobs, and each VGrid
provides shared file space which is only visible to VGrid members. The central
home directory can be accessed in the MiG web interface through a graphical file
manager with context menu and a simple text editor, as shown in Figure 2(d).
Optionally, it can even be securely mounted into a user’s local file system through
an SSHFS interface, to allow transparently working with MiG home files locally.

As useful and intuitive it may be to have files in a centralised MiG home
directory, space limitations and privacy policies may prevent users from storing
all data there. Jobs can specify external locations for input and output files
(via common protocols like HTTP(S), SCP, or (S)FTP), and classified data can
be stored in MiG in special VGrid-restricted storage nodes. For each VGrid in
which a storage node participates, a directory on the node is securely mounted
into the shared VGrid folder in the MiG servers’ file system via SSHFS.

4.4 Advanced VGrid features for Group Collaboration

Apart from being a fundamental concept to structure access levels and entities in
MiG, VGrids also provide advanced services for group collaboration and resource
sharing to their users. MiG servers host shared private folders and classical
collaboration software for every VGrid, including public and private web pages,
a wiki, a web forum, and a version control system. All this is integrated into the
server middleware and browser interface, again in view of the browser being the
primary desktop for all activities.

The VGrid web pages and shared folders can be used to realise specific work-
flows where conceptually similar Grid jobs are submitted frequently and require
a custom setup carried out by VGrid owners. As an example, consider a workflow
where scientific applications are implemented in a special-purpose language that
requires a custom compiler, but the compiled executables can be run on various
resources by means of a pre-packaged runtime library. In such a case, a VGrid
can be used to provide a dedicated compilation resource, and other resources
can use a runtime environment for execution – the whole compilation/execution
workflow can be encapsulated in custom HTML forms in the VGrid web space.

Berthold, Bardino, Vinter. A Principled Approach to Grid Middleware. In: ICA3PP 2011, LNCS
7016. c© 2011, Springer. Preprint. The original publication is available at www.springerlink.com.



We have successfully implemented this workflow encapsulation in two proto-
types: one for the McStas neutron raytracing simulator [13] and one for a gen-
eral Matlab setup using a license-limited Matlab compiler [17]. Both prototypes
expose the described workflow of compilation and iterated execution, followed
by a post-processing step in case of the McStas software.
To encapsulate the job workflow logics in the VGrid web pages using HTML

forms and javascript has clear advantages in usability: no additional authenti-
cation is required, and the easy interface for non-experts hides all uninteresting
boilerplate code for Grid operation. For the implementor, two other advantages
exist: Scientific expert software like the McStas compiler and post-processor is
sometimes complicated to set up. In our setup, maintenance can be reduced to
only a few dedicated resources that provide the special parts, and the compiled
McStas simulation code is ISO C99. The Matlab software setup is easy, but a
license is required; in our case only for the dedicated compilation resource.

5 Current Status and Future Directions

MiG started as a proof-of-concept implementation, but became an ongoing suc-
cess over the last years, thanks to its sage architecture. At the time of writing, our
group is operating a MiG installation connecting several compute clusters and
special resources based on Cell-based game console and Screen saver software.
The system is used for scientific projects in combinatorial genome research, bib-
liometric analysis, medical imaging, and for teaching purposes. MiG is actively
maintained, the latest additions include an improved browser interface, a re-
mote memory library to enable computing resources with limited memory and
disk [15], and running virtual machines as interactive Grid jobs.
Development is underway for improving the virtual machine support. One es-

sential ingredient is a light-weight VNC client that runs inside a browser (based
on javascript and websockets), to realise the MiG goal of minimal installation
requirements. Together with MiG’s browser-based interface and the storage re-
source concept realising cloud storage, the virtual machine support is the final
step towards cloud-style IaaS – virtualised resources – embedded in Grid.

6 Conclusions

Grid computing has come of age in the past years, yet its practical incarnations
somewhat fall short of the initial vision. We have presented MiG, a Grid mid-
dleware that follows rigid principles derived from the original Grid literature
and shortcomings observed in existing systems. The stated MiG principles prove
useful as a general touchstone for any Grid middleware, and the presentation of
MiG demonstrates that such a design is feasible and useful in practice. Especially
MiG’s advanced features for group collaboration, and in general its VGrid-centric
design, are key features for more flexibility and user self-service than usual job-
shop Grid systems can provide. The more recent trend of cloud computing has

Berthold, Bardino, Vinter. A Principled Approach to Grid Middleware. In: ICA3PP 2011, LNCS
7016. c© 2011, Springer. Preprint. The original publication is available at www.springerlink.com.



given important impulses to the Grid community, as it advances modern vir-
tualisation techniques and the idea of a consequently consumption-based Grid
economy. A principled Grid approach should incorporate modern virtualisation
techniques in its services, to realise a strict superset of the cloud vision in terms
of stability, user-friendliness, and self-managed virtual collaboration.
Availability. MiG is open source software released under GNU GPL-2. More

information and MiG code can be found at http://www.migrid.org.

References

1. Anjomshoaa, A., Brisard, F., Drescher, M., Fellows, D., Ly, A., McGough, S., Pul-
sipher, D., Savva, A.: Job Submission Description Language (JSDL) Specification,
V.1.0. Tech. Rep. GFD.136, Grid Forum (2008)

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
CACM 53, 50–58 (Apr 2010)

3. Brandt, F., Wei, G.: Vicious strategies for vickrey auctions. In: Müller, J.P., Andre,
E., Sen, S., Frasson, C. (eds.) Autonomous Agents 2001, Proceedings. ACM (2001)

4. cURL. Open Source Software, http://curl.haxx.se/
5. European Grid Infrastructure, http://www.egi.eu
6. Ellert, M., Grønager, M., Konstantinov, A., Kónya, B., Lindemann, J., Livenson, I.,

Nielsen, J.L., Niinimäki, M., Smirnova, O., Wäänänen, A.: Advanced resource con-
nector middleware for lightweight computational Grids. Future Generation Com-
puter Systems 23, 219–240 (2007)

7. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the Grid: Enabling scalable
virtual organizations. Intl. J. of High Perf. Computing Appl. 15(3), 200–222 (2001)

8. Foster, I.: Globus toolkit version 4: Software for service-oriented systems. J. of
Computer Science and Technology 21(4), 513–520 (2006)

9. Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann, San Francisco (1999)

10. gLite Grid Computing Middleware, http://glite.web.cern.ch/glite/
11. Karlsen, H.H., Vinter, B.: VGrids as an Implementation of Virtual Organizations

in Grid Computing. In: Enabling Technologies: Infrastructures for Collaborative
Enterprises (WETICE’06). IEEE Press, New York (2006)

12. Keahey, K., Doering, K., Foster, I.T.: From Sandbox to Playground: Dynamic
Virtual Environments in the Grid. In: Buyya, R. (ed.) Grid Computing (GRID
2004), Proceedings. IEEE Press, New York (2004)

13. Lefmann, K., Willendrup, P.: McStas, a Neutron Ray-trace Simulation Package,
http://neutron.risoe.dk

14. Mell, P., Grance, T.: The NIST Definition of Cloud Computing (Draft). Tech. Rep.
800-145, National Institute of Standards and Technology (NIST) (2011)

15. Rehr, M., Vinter, B.: The User-Level Remote Swap Library. In: High Performance
Computing and Communications (HPCC’10). IEEE Press, New York (2010)

16. T. Leonard et al.: Zero Install, a decentralised cross-distribution software installa-
tion system. Software under LGPL (2003–2011), http://www.0install.net

17. MathWorks: The Matlab CompilerTM, http://www.mathworks.com/products/

compiler
18. Vinter, B.: The Architecture of the Minimum intrusion Grid (MiG). In: Broenink,

J.F., Roebbers, H.W., Sunter, J.P.E., Welch, P.H., Wood, D.C. (eds.) Communi-
cating Process Architectures (CPA’05). IOS Press, Amsterdam (2005)

Berthold, Bardino, Vinter. A Principled Approach to Grid Middleware. In: ICA3PP 2011, LNCS
7016. c© 2011, Springer. Preprint. The original publication is available at www.springerlink.com.


