
Bridging the gap between
Use Case Analysis and Class Structure Design

by Formal Concept Analysis

Stephan Düwel & Wolfgang Hesse

Abstract
The early stages of software development are increasingly supported by object-

oriented analysis and design (OOA/OOD) techniques. Recent methodologies suggest to
combine Jacobson’s use case analysis with modelling techniques for class/object
structure, object behaviour and process interaction. However, the choice and definition
of objects and classes in the domain space is not supported by either of these techniques
but left to the intuition of the analyst(s). Formal Concept Analysis (FCA) is a
mathematical theory which offers support for analysing and visualising conceptual
relationships by lattice diagrams. It is shown how FCA can successfully be applied to
bridge the gap between the mentioned techniques: It starts with an analysis of the formal
context given by use cases and the relevant "things" involved in these cases. It produces
a lattice visualised by a line diagram which is used as a design and decision aid for
building an appropriate class/object structure. This structure is a prerequisite for further
modelling steps, e.g. modelling of processes by sequence diagrams.

The article comprises an outline of the covered OOA and OOD steps, a short intro-
duction to the basic notions of FCA and a presentation of our approach including a dem-
onstration example.

1 Introduction: Motivation and goals
During the last decade, a large variety of object-oriented analysis and design

(OOA/OOD) techniques has been developed, supported by notations and tools and been
applied in academic and industrial software development projects. Traditional tech-
niques were typically based on two or three relatively independent models which repre-
sented different views of the system to be developed: a data view, a functional view and
– if treated separately – a process or behavioural view. Designing and constructing a
uniform system from such heterogeneous models often resulted in severe re-structuring
problems and sometimes even in project failures.

Object-oriented software development techniques – and particularly the OOA tech-
niques – promised a solution for this unsatisfying situation. They all share the paradigm
of an encompassing, persistent class structure model which is built during the analysis
stages and (with some modifications and enhancements) maintained through the whole
system life cycle often including its operational stages. This model is intended to "map"
or "mirror" the relevant ingredients of the application domain including their relation-
ships and behaviour. Various methodologies following this paradigm have been pub-
lished and experienced including those of Booch [Booc 94], Jacobson [JCJ+ 92], Shlaer

Modellierung 2000

and Mellor [ShMe 91], Coad and Yourdon [CoYo 90], Rumbaugh [RBP+ 91], Martin
and Odell [MaOd 92]. At the moment, a certain convergence of these methods and
techniques can be expected from the evolving Unified Modeling Language [BJR 97]
marketed by Rational Company.

Integrating data and functional aspects in a joint class structure model serving both
analysis and design purposes is a big step towards a fully-supported object-oriented
development process. However, such a model is still incomplete with several respects:

- it does not cover important aspects like process modelling in-the-large or object
behaviour over time,

- it leaves the fundamental question how to define and delimit classes and objects to
the intuition of the analyst(s).

Most OO methodologies have
answered the first open question by
including additional notations and
diagram types for modelling the
uncovered aspects. Among these are
use cases and use case diagrams
introduced by Jacobson, interaction,
event trace or sequence diagrams used
by Jacobson, Rumbaugh and in UML
and state charts adopted from D. Harel
for UML. In fig. 1 we have listed the
considered methodologies (including
UML) and the diagram techniques they
recommend.

In particular, use cases are now becoming very popular as a means for analysing
sample processes in the application domain. Of course, such an analysis normally yields
valuable insights and results also concerning the second of the above mentioned ques-
tions (how to find the class and object structure). But it does not offer any systematic
procedure or formalism to support this step which we consider crucial for the whole fur-
ther development process. Objects and classes fall from heaven or “are there just for the
picking” [Meye 88] to form the basis for most subsequent modelling steps.

We believe that this important step deserves more attention and more formal support
which has to focus on a conceptual analysis of the application domain. We agree with
authors like Booch, Martin/Odell or Rumbaugh who start with ‘concepts’ when writing
about object oriented software development. This is a strong argument for using Formal
Concept Analysis (FCA) in the class and object definition steps of object-oriented analy-
sis. FCA is a mathematical theory which offers support for analysing and visualising
conceptual relationships by lattice diagrams.

We propose to use FCA in order to bridge the gap between use case analysis and the
following steps which imply the determination of a class/object structure and the pro-
duction of state charts or sequence diagrams. Our technique starts with an analysis of the
formal context given by use cases and the relevant "things" involved in these cases. It
produces a lattice visualised by a line diagram which is to be used as a design and deci-
sion aid for building an appropriate class/object structure. This structure can then be
used as a stable basis for the further indicated analysis and modelling steps.

Fig. 1: OO methodologies and their techniques

Use Case Analysis and Class Structure Design

In the following sections, we present our approach in more detail. First, we closer
examine the covered OOA and OOD steps and the contributions of some well-known
methodologies to support these steps (section 2). Then the basic notions of FCA are
introduced and exemplified (section 3). In the following section (no. 4) the application
of FCA to an example is demonstrated. It is then shown how the insights and results of
such an analysis can be used to build and refine a class structure model for the given
domain. The article ends with an outlook and general conclusions (section 5).

2 Object-oriented system analysis:
From use cases to class and object structures

In the early nineties, I. Jacobson has introduced use case analysis as a starting step
primarily to be performed in the early stages of system or domain analysis. According to
Jacobson, a use case is a “special, behaviorally related sequence of transactions ... a user
will perform .. in a dialogue with the system” [JCJ+ 92, p. 127]. The resulting use case
model is a part of the requirement model and forms the basis for most subsequent mod-
els including the analysis model, the design model and the implementation model
[JCJ+ 92, p. 123]. Later Jacobson states that “this transformation from use cases into
objects forms one of the most important parts” of his methodology [JCJ+ 92, p. 142]. It
is done by a “partition of functionalities”. But there is no systematic procedure or guide-
line how to derive the objects or classes from use cases. “... Most entity objects are
found early and are obvious. These ‘obvious’ entity objects are often identified in the
problem domain object model. Others can be harder to find. Entities usually correspond
to some concept in real life, outside the system, although this is not always the case. ...”
[JCJ+ 92, p. 184]. We agree that the indicated transformation is very important but we
do not believe that the given support is adequate.

In an earlier paper ([DüHe 98]), we have reported on a case study which aimed to de-
termine class and object candidates from use cases by means of Formal Concept Analy-
sis. In principle, it turned out that all resulting concepts are candidates for classes or
class components (attributes or operations) from which the analyst has to choose his or
her classes and to decide which ones to treat as classes or as class components. In this
paper, we are revisiting the same example but we want to shift the focus to the different
perspectives the analyst has to adopt during the early analysis stages and what he or she
can learn from reading FCA line diagrams from different sides to support his or her
choices and decisions.

We find it quite an interesting observation that just a "non-OO" technique like use
case analysis has become so popular as a starting point to OO analysis. It shows that dif-
ferent perspectives are vital for a thorough analysis and that practicable methods have to
involve "perspective changes", for example, from a functional view (represented by use
case diagrams) to a data view (represented by class structure diagrams).

As a first conclusion, we can sum up some observations on use case-based method-
ologies:

- Use cases are a natural entry point to system analysis since they help to concentrate
on the goals and the functional aspects of the application system.

Modellierung 2000

- The step from a use case to a class structure model implies a change of perspective
from a functional to a data view (not unlike the one implied in some earlier "struc-
tured" techniques).

We propose to postpone the decision about the class candidates until a better insight
– based on both the functional and the data view – is achieved. In a first step we exam-
ine the full system functionality by use cases and look for involved "things". These
"things" are candidates for entity objects or their attributes. This data-centred view will
be complemented by functionally decomposing the uses cases down to the level of oper-
ations which then can be assigned to classes. These steps are supported by FCA and in
particular by the resulting line diagrams which illuminate the obtained analysis results.

3 Formal Concept Analysis: a short introduction
Formal Concept Analysis (FCA) starts with a set G of formal things (German: Ge-

genstände) and a set M of formal features (German: Merkmale). In most original papers
on FCA usually formal things and formal features are called (formal) objects and (for-
mal) attributes. We have chosen the above terms to avoid any mix-up with OO termi-
nology. Sometimes we will use the term "thing" (without prefix "formal") for denoting
"real world things". Formal things and formal features are connected by a binary relation
I ⊆ G × M, called incidence relation. This relation indicates whether a formal thing has
a formal feature. The triple (G,M,I) is called a formal context. It can be visualised in a
table. Table 1 gives an example of a formal context. In this example the authors and
UML are the formal things, their proposed notation techniques are the formal features
and the relation is given by the marks in the table.

From a formal context, formal concepts are built: For every set A ⊆ G of formal
things AI = { m∈ M  (a,m)∈ I ∀ a∈ A }is the set of their common formal features and
for B ⊆ M we have BI = { g∈ G  (g,b)∈ I ∀ b∈ B } as the set of common formal things.
A pair (A,B) with A ⊆ G, B ⊆ M is called a formal concept if A = BI and B = AI.

If (A,B) is a formal concept, then A is called the extent of (A,B) and B the intent of
(A,B). The extent comprises all formal things that belong to the formal concept and the
intent consists of all formal features that the formal things of the formal concept share.
This is just a formalisation of how a concept is viewed in philosophy and how it is un-
derstood – among others – by Martin/Odell (cf. [MaOd 92]).

On the set of all formal concepts of a formal context we consider the sub-/super-con-
cept relation ≤: A formal concept (A,B) is called a sub-concept of another formal con-
cept (C,D) – denoted (A,B) ≤ (C,D) – if the condition A ⊆ C holds (the condition D ⊆ B
is equivalent). With this ordering relation, the set of all formal concepts of a formal con-
text forms a complete lattice called the concept lattice B(G,M,I) (cf. [GaWi 98]).

As a finite ordered set, a finite concept lattice can be visualised by a line diagram.
Fig. 2 shows the line diagram corresponding to the formal context in fig. 1. The nodes in
the line diagram represent the formal concepts. The sub-/super-concept ordering relation
is directly visualised by the edges: Each node is connected to its lower neighbours (with
respect to the sub-/super-concept order). Thus the paths descending from a node of a
formal concept lead to all nodes representing sub-concepts. For this reason the line dia-
gram is a directed acyclic graph, where the direction of the edges is represented by the
vertical arrangement of the start and end vertices.

Use Case Analysis and Class Structure Design

For every formal thing g∈ G there is a formal concept γg := ({g}II,{g}I) and dually for
every formal feature m∈ M µm := ({m}I,{m}II) is a formal concept. γg is the minimal
formal concept containing g in its extent and dually µm is the greatest formal concept
comprising m in its intent. This fact allows an abbreviated notation for line diagram. A
formal thing g is only annotated beneath the node representing γg. A formal feature m is
only marked above the node representing µm. The whole information of the formal con-
text is preserved in the line diagram. The formal features belonging to a formal thing g
are found by following all ascending paths beginning at the node marked "g". To find all
formal things characterised by a given formal feature, one has to proceed analogously on
all descending paths.

Fig. 2: Line diagram corresponding to fig. 1

For example, it can be read from fig. 2 that the node labelled Use case diagram rep-
resents the formal concept ({UML, Jacobson},{Use case diagram, Sequence diagram,
Class diagram, Statechart diagram}) and that this is a super-concept of ({UML},{Use
case diagram, Sequence diagram, Class diagram, Statechart diagram, Activity diagram,
Collaboration diagram, Deployment diagram, Component diagram}) (cf. the node la-
belled UML) (µ(Use case diagram) ≥ γ(UML)). Indeed the second concept is a lower
neighbour of the first.

But the structure of the line diagram even contains more information. In our example
all considered methods use class diagrams to model the static system structure and state-
charts to model dynamic aspects. Except for Coad/Yourdon all authors use sequence di-
agrams or collaboration diagrams to model dynamics. All three authors of the UML
gave up a little of their ideas: Jacobson lost his object diagram and his state transition
graph, Rumbaugh did not maintain the data flow diagrams and Booch abandoned his
timing diagrams. Apart from these dropped concepts the UML is a union of all mod-
elling concepts of the three authors where activity diagrams were added.

Modellierung 2000

The formal context and the concept lattice represent two different views on the same
information. Usually a line diagram of the concept lattice is computed from the formal
context and further investigation of the context data is done with the help of the dia-
gram. The computation of a correct diagram can be done automatically but normally the
resulting diagram needs some manual re-arrangement in order to get a nice shape. The
vertical position of a node relative to its neighbours cannot be changed without chang-
ing the semantics of the diagram (Tools keep track of this.). But the horizontal arrange-
ment and the absolute distances can be arbitrarily chosen.

Sometimes another view turns out to be helpful: implications. An implication A → B
with two sets A,B ⊆ M of formal features states that every formal thing having all the
formal features of A also has all formal features of B. Such an implication can be read
from the line diagram this way: For every b∈ B the formal concept µb has a descending
path to the infimum ∧ {µa | a∈ A}. For example in fig. 2 we can see that every author
who proposes sequence diagrams and data flow diagrams also suggests the use of col-
laboration diagrams. Thus e.g. {Sequence diagram, Data flow diagram} → {Collabo-
ration diagram} holds. Correspondingly, an implication C → D with two sets C,D ⊆ G
of formal things holds if and only if every formal feature which belongs to all formal
things of C also belongs to all formal things of D.

This small example already shows how ‘knowledge’ can be represented in a struc-
tured way by means of FCA.

4 Example: The business of a wine distribution centre
By using the following example we will demonstrate how Formal Concept Analysis

(FCA) can be used to extract suitable class candidates from use case descriptions. These
build the basis for a class model and the sequence diagrams of the use cases. The chosen
example was presented in the FRISCO report ([FHL+ 98]). In one of our student pro-
jects it served for demonstrating the application of UML techniques. The results elabo-
rated by the students during this project (cf. [FGT 98]) were the basis for this article's
example. We applied FCA to the students' results.

The case study describes the development of a software system for 'Japan Wines,
Inc.' (JWI). JWI is a wine distribution centre which orders wine from wineries and de-
livers it to retail shops. Originally the business of JWI was described in 28 informal
statements. From these the students extracted eight use cases: Receive order, Process
order, Order missing products, Create delivery instructions, Process delivery results,
Process incoming deliveries, Determine inventory stock, Define maximal and minimal
stock quantity.

To illuminate the style of the use case descriptions we rephrase the first two of them.
The others are formulated in analogous manner (cf. [DüHe 98]).

„Receive order“
• The centre receives orders from customers by phone from 9:00 a.m. to 5:00 p.m..
• A received order is recorded on a form.
• An order may consist of many detailed items. Detailed items refer to single products.

Each detailed item is recorded in a line of the form.

Use Case Analysis and Class Structure Design

„Create delivery instructions“
• The centre produces a delivery instruction ticket for each delivery truck by gathering

the ordered items in the 'assigned ordered items' file, considering the destinations and
the total amount of the orders for each item.

In order to treat the use case descriptions
with FCA we perform an indexing. In profes-
sional projects this would be done with the
help of a domain expert. For each use case we
list all the involved "things". These "things" are
candidates for objects, classes and attributes in
the later class model. In terms of FCA we treat
the use cases as formal features and the real
"things" as formal things. The incidence rela-
tion points out whether a "thing" is involved in
a use case. If one use case U uses or extends
another use case V, all "things" occurring in V
are considered to be involved in U as well.
Correspondingly, in the formal context an
implication V → U between the formal fea-
tures V and U is introduced.

Performing the indexing for our example we
got the formal context in fig. 3. This formal
context reflects the indexing of the use cases.
Of course, such a result highly depends on the
choices of "things" by the developer.

"Things" that show up in a low position in
the resulting line diagram are relevant for many
use cases. These are "first class" class candidates. Now we consider the potential attri-
butes of these class candidates. If they have already been mentioned among the exam-
ined "things", they are usually in a position above their class. This is at least the case if
we assume that every use case which deals with an attribute has to access it via its class.
In the formal context, an implication from the class attributes to the class should hold.
This observation may be used to associate the right attributes to a class the developer
has chosen. However, if different use cases use different attributes of a class, these may
be wide spread over the line diagram.

In our case the preferred class candidates of the JWI system Detailed ordered item
and Product are in the lowest positions of the diagram. All use cases use at least one of
them. The attribute candidates Stock quantity, Minimal and Maximal stock quantity of
the class candidate Product show up just above Product.

It is not sufficient to examine just the lowest level of the line diagram. For example,
class candidates that are only interesting for single use cases show up at the same node
as the corresponding use case.

The line diagram shows the dependencies between the data and functional view of
our domain. Looking at the diagram from the supremum (top) side we can follow the

Fig. 3: Formal context of use cases

Modellierung 2000

refinement of the use cases representing the system functionality. Considering the dia-
gram from the infimum (bottom) side yields the data view.

Fig. 4: Line diagram of JWI system

This type of line diagram gives valuable hints for finding classes among the "things"
that have been chosen as relevant because it gives a ranking between them and a way to
associate attributes to classes. Furthermore, if two nodes in sub-/super-concept relatio-
nship are considered as class candidates, this relationship may be interpreted as an in-
heritance or uses relation between the resulting classes.

But beyond this point an examination of class operations is missing. The use cases
can be functionally decomposed step by step until the level of (class) operations is
reached. The resulting "sub-use cases" are included into the analysis as new formal fea-
tures. The formal context has to be extended correspondingly by marking the involved
"things". Furthermore, the detailed functional perspective may yield new relevant
"things" associated to the sub-use cases. To keep the formal context consistent, an im-
plication between the sub-use case and the original use case has to be added (cf. treat-
ment of uses relationships between use cases). From the new context a new line diagram
is computed. Once the level of class operations is reached the new line diagram shows
the data dependencies of the resulting operations.

One general problem in refinement processes is to decide where to stop the refine-
ment. Formulating criteria for that is particularly difficult in our situation because we
still do not have the final classes needed to decide whether a given sub-use case can be
treated as a class operation or not. But FCA gives us support to define such criteria. In
order to find potential operations to be associated to the class candidates, we examine
the implications between formal things. In our case an implication A → B with two sets

Use Case Analysis and Class Structure Design

A,B of formal things suggests that all operations which use all "things" in A also use all
"things" in B. A basis of such implications can be computed. The implications of this
basis are presented to the analysts in the form of questions and they have to decide if
this implication really holds within the application domain. If not, there has to be an op-
eration which is not yet included in the refinement and which separates the "things" of A
and B. This operation has to be considered within the refinement of that use case.

For example in fig. 4 the implication Delivery instruction → Assigned ordered items
file holds. Examination by the analysts shows that this implication does not correctly
reflect the "real world" situation. Therefore, the use case Create delivery instructions is
refined leading to three sub-use cases Create delivery instruction, Insert detailed or-
dered item, and Attach delivery instructions.

Fig. 5: Use case "Create delivery instructions" refined

By this refinement the "unnatural" implication is removed and three potential class
operations have been found.

The line diagram contains data as formal things and operations as formal features.
The incidence relation reflects which data is used in which operation. Lindig and
Snelting already examined this situation while looking for a modular structure of exist-
ing systems (cf. [LiSn 97]). As module candidates they considered not only formal con-
cepts, but also so-called "blocks" (cf. [GaWi 98]). In FCA a block relation of a formal
context (G,M,I) is defined as a binary relation J ⊆ G × M, satisfying:

 1) I ⊆ J
 2) ∀ g ∈ G : gJ is an intent of (G,M,I)
 ∀ m ∈ M : mJ is an extent of (G,M,I)
(G,M,J) forms a new formal context the formal concepts of which correspond to whole
intervals (named "blocks") of the original concept lattice. All block relations to a given
formal context can be automatically computed.

Analogously to Lindig/Snelting we aim to find additional class candidates by study-
ing block relations. In object-oriented analysis attributes and operations are grouped to

Create delivery instruction

Attach delivery instructions

Insert detailed ordered item

Modellierung 2000

classes. In FCA this corresponds to grouping formal things and formal features to for-
mal concepts. But within a formal concept each formal feature belongs to every formal
thing and vice versa. In our case this is too restrictive because we cannot expect each
class attribute to be involved in every class operation. Block relations can help us to
generalise this grouping. In the formal context table the formal concepts are visible as
maximal filled rectangles. According to a block relation incompletely filled rectangles
are completed by additional marks (see condition 1 above). But this "filling" must be
done carefully: The grouping of formal things to concept extents and of formal features
to concept intents must not be changed (condition 2).

Fig. 6: Line diagram of a block relation context

Fig. 7: Blocks in the original line diagram

Use Case Analysis and Class Structure Design

In our sample case we did not yet find interesting class candidates this way. But
block relations turned out to be helpful in finding a coarse structure, i.e. packages or
components of the system. In the example a block relation of the formal context in fig. 3
yielded the following line diagram in fig. 6. The corresponding blocks of the original
concept lattice are marked in fig. 7.

The left block comprises everything about deliveries whereas the right block is con-
cerned with the internal stock management. The central (higher) block describes a com-
ponent with coordinates the activities of JWI in response to orders from retail shops.

5 Tool support
Currently we are developing a tool supporting the sketched analysis method. In this

tool all mathematical background is hidden from its user. The only structure presented
to him is the line diagram which he may interpret without knowing its exact mathema-
tical semantics.

The user only has to name and describe his use cases. The tool allows him to pick
words from the entered description and mark them as involved "things". Alternatively
he may type in these "things" independently or choose them from the list of already en-
tered "things". The tool stores these data in a formal context invisible to the user, com-
putes a line diagram of the corresponding concept lattice and displays it to the user.

Fig. 8: Use case dialog

Fig. 8 shows the dialog to enter use case data. The upper left list box shows all use
cases that were entered by using the edit box above. From this list a use case may be
selected for entering more details. The selected use case is shown in the middle boxes.

Modellierung 2000

The dialog elements referring to this use case are surrounded by a black line. There is an
edit field for the description and there are list boxes showing the uses or extends rela-
tionships together with the "things" involved in the use case. On the right hand side
there are the list box for all entered "things" and the corresponding edit box. In fig. 8 the
user has selected the term 'waiting ordered items' file from the use case description. He
now may edit it in the right edit box and insert the edited name into the list of all exam-
ined "things" and at the same time attach it to the selected use case. Used or extended
use cases may simply be picked from the list of use cases.

This way all identified use cases are specified as described in section 4. In our exam-
ple, the tool computed the following line diagram from the use case data:

Fig. 9: Automatically computed line diagram

The shown concept lattice is just the one of fig. 4. For the computation of the dia-
gram, our tool uses "The Formal Concept Analysis Library" developed by Frank Vogt in
Darmstadt (described in [Vogt 96]) with some modifications. The automatic drawing
can only guarantee the correctness of the diagram but not its beauty. For the second the
user is responsible. He may drag the diagram's vertices (a single one, all above or
beneath one) and the text and drop them in the position he likes. But the tool does not
allow him to destroy the vertical order of connected nodes.

Use Case Analysis and Class Structure Design

6 Conclusions
In this article we have demonstrated how Formal Concept Analysis can be used to

guide the transformation steps from a use case model to the class structure model during
the early stages of system analysis. For this transformation we profited from the line dia-
gram of FCA which enabled us to study the given application domain simultaneously
from two perspectives – combining a data and a functional view. In our experience, this
approach to "play" with class candidates and to try out different solutions for associating
classes and class components with each other is particularly promising.

However we are aware that this important and difficult task requires much detailed
work which cannot completely be automated, including negotiations and a thorough
discourse between domain experts and software developers – at least if certain quality
standards are to be achieved. As we have shown, Formal Concept Analysis, the resulting
line diagrams and the methods to refine and examine such diagrams can successfully be
applied to visualise complex situations and thereby facilitate the communication bet-
ween the people involved.

The tool we have developed allows the user to enter uses cases and their descriptions.
From the use case descriptions he may select words as involved "things". These words
can be modified to conform to system wide conventions. Furthermore "things" can be
entered independently from the use case descriptions and uses or extends relationships
between use cases may be defined. From this a line diagram is automatically computed
as described in section 4. It is the only mathematical structure shown to the user. Thus
he (or she) does not have to be familiar with the mathematical background because the
line diagram is readable without knowing anything about lattices. Using this tool the
additional effort spent for indexing of the use cases and for formatting the correspond-
ing line diagrams is soon compensated by the advantages of a transparent visualisation
and an eased communication. Currently we are working on a method to support the
comparison of different line diagrams to integrate views of different analysts.

In this paper we have focussed one particular aspect of OO modelling and one parti-
cular use of FCA for this task. However other tasks within the OO analysis and model-
ling field might be considered as well, for example, process modelling, clustering of
classes and objects or modelling of states and transitions. Moreover there is a broad
application field of FCA for other related areas such as software design or re-engineer-
ing. For example, successful applications of FCA have been reported for the structuring
of class models (cf. [GMM+ 98], [SnTi 98]) and for modularization of already existing
systems (cf. [LiSn 97]). In the future, we envision a broad, complementary support of
many activities in the early stages of Software Engineering by Formal Concept Analysis
methods – in a field which traditionally had been reserved to the bare intuition of the
involved experts.

7 References
[BJR 97] G. Booch, I. Jacobson, J. Rumbaugh: UML 1.1 Notation Guide,

Rational Software Corporation, 1997, http://www.rational.com/uml
/resources/documentation/notation/index.jtmpl

Modellierung 2000

[Booc 94] G. Booch: Object-Oriented Analysis an Design with Applications,
Benjamin/Cummings 1994

[CoYo 90] P. Coad, E. Yourdon: Object-Oriented Analysis, Prentice Hall 1990

[DüHe 98] S. Düwel, W. Hesse: Identifying Candidate Objects During System
Analysis, Proc. CAiSE'98/IFIP 8.1 3rd Int. Workshop on Evaluation of
Modeling Methods in System Analysis and Design (EMMSAD'98),
Pisa 1998

[FGT 98] P. Franke, T. Graf, M. Trouvain: Fortgeschrittenenpraktikum
Informatik, "Einarbeitung in UML 1.1 anhand eines Fallbeispiels",
Philipps-Universität Marburg, http://www.mathematik.uni-marburg.de
/~hesse/uml/Welcome.html, 1998

[FHL+ 97] E. Falkenberg, W. Hesse, P. Lindgreen, B.E. Nilsson, J.L.H. Oei, C.
Rolland, R.K. Stamper, F.J.M. Van Assche, A.A. Verrijn-Stuart, K.
Voss: FRISCO - A Framework of Information System Concepts - The
FRISCO Report, ftp://ftp.leidenuniv.nl/pub/rul/fri-full.zip, 1997

[GaWi 98] B. Ganter, R. Wille: Formal Concept Analysis, Mathematical
Foundation, Springer 1998

[GMM+ 98] R. Godin, H. Mili, G.W. Mineau, R. Missaoui, A. Arfi, T.-T. Chau:
Design of Class Hierarchies based on Concept (Galois) Lattices,
Theory and Application of Object Systems (TAPOS), 4(2), pp. 117-
134, 1998

[JCJ+ 92] I. Jacobson, M. Christerson, P. Jonsson, G. Övergaard: Object-
Oriented Software Engineering - A Use Case Driven Approach, ACM-
Press, Addison-Wesley 1992

[LiSn 97] C. Lindig, G. Snelting: Assessing Modular Structure of Legacy Code
Based on Mathematical Concept Analysis. Proc. International
Conference on Software Engineering (ICSE 97), Boston, USA, pp.
349-359; 1997

[MaOd 92] J. Martin, J. Odell: Object-Oriented Analysis and Design, Prentice
Hall 1992

[Meye 88] B. Meyer: Object oriented software construction, Prentice Hall 1988

[RBP+ 91] Rumbaugh, J.; Blaha, M.; Premerlani, W.; Eddy, F.; Lorensen, W. :
Object oriented modelling and design, Prentice Hall, Englewood Cliffs
1991

[ShMe 91] S. Shlaer, S.J. Mellor: Object Lifecycles, Modeling the world in states,
Yourdon Press 1991

[SnTi 98] G. Snelting, F. Tip: Reengineering Class Hierarchies Using Concept
Analysis, Proc. ACM SIGSOFT Symposium on the Foundations of
Software Engineering, pp. 99-110, 1998

[Vogt 96] F. Vogt: Formale Begriffsanalyse mit C++, Datenstrukturen und
Algorithmen, Springer 1996

