
Software and Systems Modeling (SoSyM) Vol. 2. No. 4, pp. 240-247 (2003)

Expert's Voice

Dinosaur Meets Archaeopteryx?

or: Is there an Alternative for Rational's Unified Process?

Wolfgang Hesse

c/o FB Mathematik und Informatik, Universität Marburg,
Hans Meerwein-Str., D-35032 Marburg
email: hesse@informatik.uni-marburg.de

Abstract

 Since 1999, Rational's Unified Process (RUP) is being offered as a guideline for software
projects using the Unified Modeling Language (UML). RUP has been advertised to be
iterativeand incremental, use case-driven and architecture-centric. These claims are discussed
while RUP core concepts like phase, iteration, discipline (formerly: workflow) and milestone
are reviewed in more detail. It turns out that the RUP constitutes a considerable step towards a
broad dissemination of software process modelling ideas but some of the RUP definitions and
structures lack clear structure and are too complex and overloaded for practical use.

 Among others, I see the following particular problems: (1) phases do still dominate the process
and iteration structure, (2) the term "software architecture" is not clearly defined and its role is
still underestimated, (3) RUP "disciplines" are a partly redundant concept complicating the
process more than supporting it, (4) powerful and transparent structuring principles like
recursion and orthogonality do not get the attention they deserve. As an alternative, our model
for Evolutionary, Object-oriented Software development (EOS) is contrasted with the RUP.

1 Introduction: The RUP and its core concepts

In the 1990'ties Rational company aimed to unify the various, then existing methodologies for object-
oriented analysis and design into a "Unified Method". This project was realised in two steps: (1)
designing and publishing the "Unified Modeling Language" (UML) as a notation for any kind of
software modelling results [UML 99], (2) complementing UML by a paradigmatic, idealised process
description - the RUP - which is well documented by two books ([JBR 99], [Kru 99], in the Web
[RUP 99] and by further presentations of its authors and other people.

By the RUP approach, its authors claim to "enhance team productivity" and to "give project managers
control over schedules and deliverables". Furthermore, the RUP is advertised as being "iterative and
incremental, use case-driven and architecture-centric". In the following section, these claims shall be
discussed - some of them in more detail. In general, it is argued that RUP suffers from its oversize and
its over-sophistication. A primary goal of the RUP is to support software engineers working with
UML. In a former paper, K.D. Schewe has called UML a "modern dinosaur" [Sce 00]. Having
struggled through the vast jungle of RUP documents, guidelines and tools, readers might get the
impression that the dinosaur UML has got an equally oversized (and even less viable) companion - the
archaeopteryx RUP.

The RUP still does (as did the famous waterfall models) decompose the software life cycle into phases
which may be subject to several iterations, consisting of activities which are interwoven with so-called
disciplines and which are terminated by milestones. In the following section these RUP core concepts
are discussed and it will be argued that

- phases should no longer be the primary concept for structuring projects - at least not for those
which follow modern development paradigms like object oriented, component-based, incremental
or evolutionary development,

- accordingly, milestones have to be replaced by a more refined concept, associated with the
termination of certain activities rather than to the termination of "phases",

- iterations should indeed play an important role in the process model but rather be linked to
architectural units (the software building blocks or artefacts) than to phases,

- disciplines (which replaced the former workflows) are an overloaded, partly redundant concept and
overlap the phases in a fuzzy and over-sophisticated way.

Major reasons for these problems seem to be that the RUP authors still stick to phases as the
dominating process structure and that - despite of their own claims - they underestimate the software
architecture. Another source is their monolithic view on the software process ignoring its recursive
(fractal) and orthogonal structure. Furthermore, certain roles (stakeholders) and their associated (sub-)
processes such as quality assurance, user evaluation and feedback are not dealt with in an appropriate
manner. Summing up, the RUP - at least in its present form - falls short of achieving its own goals, in
particular to give more and better support to both software developers and managers.

Instead of designing always bigger, more sophisticated and hypertrophic process models I recommend
to adopt a different view and not to neglect more than 30 years of Software Engineering experience.
This experience has taught us to build large and complex software systems as compositions of
recursively defined, self-similar and (to a certain degree) self-contained units - like classes, modules or
components. Why do we not structure software processes in an analogous way and decompose them
into smaller, self-similar subprocesses resulting in a fractal process structure (cf. also [Stö 01])?

This is the basic idea behind our model for Evolutionary, Object-oriented Software development
(short: EOS, cf. [Hes 96], [Hes 97]) which will be summarised in section 3. In this model, the software
development process is viewed as a composition of cyclic, (mostly) concurrent, fractal subprocesses
which all follow a unique pattern and - together with accompanying processes like project manage-
ment or quality assurance - form a unique, generic, scalable and widely applicable scheme for any
kind of Software Engineering projects.

2 Seven theses on Rational's Unified Process

In this section, I present my critical arguments on the RUP as seven theses - accompanied by
explanatory remarks and proposed alternatives. As a whole, these theses are to give a condensed but
thorough and systematic analysis of the RUP from a pragmatic point of view. Since the various aspects
of software processes are interrelated in many ways, the corresponding theses cannot be completely
independent from one another – but I try to focus on one particular aspect by each thesis:

- Thesis 1 deals with the time dimension of software processes – in particular with the role of phases,

- Thesis 2 is concentrated on the software architecture and its relevance for the RUP,

- Thesis 3 addresses the importance of iterations and the question where they should be anchored,

- Thesis 4 investigates one of the most prominent RUP constructs, the so-called "disciplines" (former
"workflows"),

- Thesis 5 contains general observations on concepts for mastering complexity such as recursion and
orthogonality and their use (or ignorance) in the RUP,

- Thesis 6 focuses on the usefulness of the RUP for project management and

- Thesis 7 considers the organisation of software processes as a whole and in particular RUP's attitude
towards the users and their involvement.

Of course, such an analysis can never be complete but I try to concentrate on those aspects that seem
most important and in particular on those where a constructive alternative is at hand.

Thesis 1: The RUP still maintains a phase-like software life cycle model which is no longer adequate
to support most contemporary (in particular: component-based) development approaches.

Remarks: According to the RUP descriptions, the software development process is decomposed into
phases which form the basis for further definitions of iterations, activities etc. In the RUP phases
have been given new names: inception, elaboration, construction and transition. Instead, well-
known phases of traditional life cycle models like analysis, design, implementation and test have
been converted to so-called workflows (later renamed into disciplines). Their co-existence is a relict
from Jacobson's Objectory process [Jac 93] where the management process was distinguished from
the development process by different phase identifiers. However, such a terminological distinction
is rather confusing and has not proven to be helpful.

 Phases are a well-established concept of traditional life cycles (in particular: the waterfall-like
ones) but obviously their role becomes less important if software systems are no longer treated as
monolithic blocks but are to be built from several sub-products or components which co-evolve in
an asynchronous and independent way. This holds true for most modern development paradigms
like the object oriented, component-based, incremental or evolutionary approaches. Thus phases
should no longer play the prominent role they have played in the first decades of Software
Engineering.

Alternative: Instead of sticking to waterfall-like phases, a modern process model should be based on a
truly "architecture centric" structure. This means: activities and iterations should be linked to
architectural units rather than to phases (see below, thesis 3).

Thesis 2: In contrast to its authors' claims, RUP is not an "architecture centric" process but it relies
on a diffuse view on software architecture and is still dominated by phase structure.

Remarks: As we have seen, the RUP is decomposed into phases and these in turn into iterations.
Neither of them refer to the software architecture. RUP disciplines overlap with phases and are
associated with "models" - which serve for making the RUP "architecture centric" according to its
author's claims. However, models do not constitute the architecture but "… are vehicles for
visualizing, specifying, constructing, and documenting architecture." [JBR 99]. On the other hand, the
UML authors define architecture as "the organisational structure of a system. An architecture can be
recursively decomposed into parts that interact through interfaces, relationships that connect parts, and
constraints for assembling parts." [UML 99]. In this sense the RUP activities are not centred on the
architecture but are model-building steps eventually resulting in an "architecture".

Alternative: An "architecture centric" approach (which deserves this name) would associate acti-
vities, iterations (cycles), revisions, quality checks, management actions etc. rather with the objects
of software development, i.e. architectural units like components, modules, subsystems, prototypes,
.. than with phases. Such an approach is taken by the EOS model sketched in the following section.
It helps to avoid well-known management problems with phases (phase overlaps, coordination of
iterations, milestone definition etc.). Furthermore, it is meant to encourage the developers to
identify themselves with their (sub-) product(s) and thus supports their creativity and self-
organisation [D-L 87].

Thesis 3: The RUP does well in introducing iterations in the software development process, but there
is much less need for phase iterations than for development cycles centred on (sub-) products.

Remarks: Iterations and development cycles are indeed an important issue for any process model
aiming for practical use. But before just adding repetition loops to the phases of a waterfall model
we have to analyse why iterations are used at all: Is it the demand for repeating an unsatisfactory
phase or rather the defects or insufficiencies of a (sub-) product (like a component or module) that
cause a need for repetition? Of course, both cases do occur. But while the first case - at least from
the project management point of view - can be handled by just prolonging a phase, the second
requires much more action and re-planning. Assume that severe defects require a re-design of a
whole component. Before the re-design is started, an analysis of the observed problems and of
possible ways for revision is required. Thus the defects lead to a whole (sub-) product re-
development cycle rather than to just an iteration of a single phase. Such a cycle requires profound
management action and in extreme cases it may even lead to a complete revision of the project
plan.

Alternative: Iterations should clearly be foreseen in a modern software process model but they should
be bound to architectural units like components, subsystems or modules rather than to phases. This
key feature of the EOS model (cf. section 3) reflects the demand for self-contained development
and re-use of components in a natural way. For example, in order to adapt a class or component for
re-use one has to start a re-development cycle on that product. Normally, such a cycle comprises all
activities ranging from analysis over (re-) design, implementation and test and use of that product.

Thesis 4: The RUP concept of disciplines adds unnecessary complexity to the process. The former so-
called "core workflows" were misnamed and are just activities of the same or a similar kind. They
overlap with phases in a confusing way and do not contribute to a clear, transparent process
structure.

Remarks: The RUP authors have repeatedly decided to rename their former "process components" -
first into "workflows", then into "disciplines". This terminological confusion reflects their
difficulties to motivate and explain this concept. In former papers, I have shown that the term
"workflow" was inadequate - at least for the 5 former "core workflows" [Hes 01] - a view which
eventually seems to be shared by the authors as the renaming shows.

 In particular, the RUP documents list five core disciplines: Requirements capture (now
unfortunately re-renamed to "requirements" - which is neither a phase nor a discipline from a
linguistic point of view!) - analysis & design - implementation - test - deployment. Obviously, the
RUP authors have observed that they represent overlapping process components and thus are no
longer to be treated as "phases". But the term "core workflows" suggested that there is e.g. a "flow"
of analysis activities somehow crossing the phase boundaries and eventually resulting in the
analysis model (and corresponding for design, implementation etc. "flows").

 If we look at the central graphical illustration of the RUP (the "RUP panorama", cf. fig. 1) we
observe that the indicated five disciplines have their peak intensity in corresponding phases:
"Requirements" in the inception and elaboration phase, "Analysis & design" in the elaboration
phase etc.

Fig. 1: RUP phases, disciplines an iterations

 Not surprisingly, we find an almost 1:1 mapping between phases and disciplines - but with the
latter somewhat frayed at their ends. What justifies the doubling of terms for the phases and
(almost) corresponding disciplines? And what is it that analysis & design activities have in
common in the elaboration and construction phase? Is it really a "workflow" going from the
analysis of one component to that of another? No! In most cases it is just the same kind of activity
which is applied to different components. Thus the "core workflows" or "disciplines" turn out to be
simple activity types - not to be confused with certain activity sequences which deserve an extra
process construct (cf. the EOS development cycles below).

 Note that the last arguments do not apply for the rest of the disciplines (business modelling, conf.
& change management, project management, environment) where I (more or less) share the RUP
point of view. However, at least two important "disciplines" - quality assurance and the use and
evaluation of all kinds of project results - have been forgotten (cf. thesis 7).

Alternative: Like workflows in other engineering disciplines, special activity sequences (for example,
consisting of analysis, design, implementation, test, and deployment) should be organised around
products and their components. Again, the architectural units of a software system are the natural
anchor points for such activity sequences. Since they normally are repeated, we call them
"development cycles" - they are exactly the architecture-based iterations considered above. Such
cycles have a clear starting and termination point and consist of determined activities with defined,
verifiable results like "analysis of component A", "design of module B" etc. All together they
constitute the fractal structure of the overall EOS software development process (cf. below).

Thesis 5: The RUP does not offer appropriate support for structuring complex software processes. It
ignores most powerful mechanisms of computer science for mastering complexity: hierarchy,
recursion and orthogonality.

Remarks: Many traditional life cycle models worked satisfactorily with normal-size projects (up to,
say, 10 person-years effort) but did not offer much help for very large and complex projects. One
of their major shortcomings was their monolithic view on the software process: "Phases" like
analysis, design, implementation, test always concerned the one, unique product - i.e. the software
system as a whole. This still holds true for the "new" RUP phases inception, elaboration etc. and it
leads to very complex activity and "discipline" structures.

 However, in order to master the complexity of very large software projects, their processes have to
be decomposed into smaller, manageable units - in analogy to forming component hierarchies

using the recursion principle for their definition. Why shouldn't we structure processes according to
the products they belong to? This is exactly the way proposed by the EOS model to master
complex software processes.

Alternative: Complex software development processes are decomposed into sub-processes in a
hierarchical, recursive way according to the (sub-) products they belong to: As soon as a
component is identified and conceived to encapsulate some piece of system functionality, its own
development processes is initiated starting with analysis and requirements capture (for that
component), followed by design, implementation etc. This schema applies to any further
component, possible sub-components, modules etc in an orthogonal way. For more details cf. the
EOS cycles described in [Hes 96] and [Hes 97].

Thesis 6: Project management is not given adequate support by the RUP - due to its lack of
transparency, scalability and structural flexibility. The RUP does not offer clear criteria for the
termination of tasks and phases and its milestone concept is too weak for complex coordination tasks.

Remarks: A process model meant to be applicable for projects of any size must be scalable. Due to
its one-dimensional phase structure RUP does not satisfactorily support this requirement. Further, a
practicable software process model has to offer clear evaluation criteria and control instruments to
software project managers. However, criteria like "use case model 10%-20% complete" or "use
case model at least 80% complete" (cf. [Kru 99], pp. 65/68) are not helpful for project managers in
real-life projects. As every experienced manager knows only 100% complete is a reliable status
information. While this normally cannot be stated (and verified) for one large, complex process
(for obvious reasons) it can be a very useful criterion for its many small component subprocesses.

 Therefore, particular management support is required for decomposing processes and co-ordinating
the resulting sub-processes. Milestones are a well-known management instrument adopted by the
RUP from the traditional life cycle models. Milestones are necessary and important - but should no
longer be associated with the completion of phases. Instead, more elaborated criteria and mecha-
nisms are needed for project control

Alternative: As a counterpart to the milestones of waterfall-like models EOS offers the revision
point concept which corresponds to its overall hierarchical, recursively defined process structure. A
revision point defines an (anticipated, planned) state for each (sub-) product (= component) under
development [Hes 96]. These states need not be synchronous for all components in work at a
certain point of time. E.g. revision point R1 may state component A to be in the state "design
completed", while component B still is in the state "analysis completed" etc. To define and maintain
a series of complex revision points requires considerable management effort but it helps clarifying
the inherently complex project structure and thus it is much more helpful than the over-simplifying
traditional milestones.

Thesis 7: The RUP does not satisfactorily address the roles and interactions of various groups
concerned with the software process, in particular the role of the users and their feedback on the
process is almost neglected.

Remarks: Software processes are always focused on software development but they are much more
than that: They encompass the roles and activities of other people involved like project managers,
quality professionals, supporters, tool builders and, last not least, users. Every software process
which has to do with application should be paralleled by a use process [FRS 89]. This use process
implies testing (sub-) products, prototypes or other intermediate results and giving the necessary
feedback to the main process stakeholders. In the RUP, neither the use case analysis which is
limited to the very early project stages nor the "transition" phase focused on the very last stages do
satisfactorily address this important point.

Alternative: In the EOS model, the importance of the users' role and their activities is not only
reflected by including a "use and revision" activity in each development cycle but also by an extra

subprocess of the overall software process which covers - among other roles and their subprocesses
- the use and evaluation of all products resulting from the development activities (cf. also the
following section and fig. 3 below).

3 EOS - a practicable alternative for the RUP

In this section, I try to summarise the above arguments and simultaneously give a brief outline of the
main features of the EOS model. From my point of view, a generic (i.e. widely applicable) process
model has to follow a certain vision and has to offer some indispensable key features:

- Software development is a complex process which can best be managed by decomposing it into
smaller, self-similar subprocesses resulting in a fractal process structure. Instead of associating itera-
tions, activities, artefacts and milestones with phases as do the conventional life cycle models
(including the RUP), processes (and their phases) should be linked to the system structure and its main
architectural units (cf. fig. 2)

Phase oriented vs ...

... Component oriented process structure

Ph 1 Ph 2 Ph 3

S

C 1 C2 C3

M 21 M22

Building
block

Phase /
Activity

 Legend:

 Fig. 2: Two approaches to structure the software process

- All processes are structured in an analogous way by the four main process phases analysis, design,
implementation and operational use - depicted by the four arrows in the lower part of fig. 2. Treating
them as what they are - simple activity types - avoids the definition of dubious concepts like
workflows or disciplines. Instead of exposing a complex network of phases, iterations, disciplines and
activities as the RUP does, EOS can do with an adapted description of development cycles and their
associated process phases and activities on three refinement levels - the system (S.), component (C.)
and module (M.) level (cf. fig. 2, lower part). This feature makes the EOS approach a truly

architecture-centric approach and results in a process structure as scalable as our hierarchic system
decomposition structures are.

- In general, I prefer to define production processes in harmony with the structure of their resulting
products. Since during the last decades object orientation has proven to be a viable and efficient
product structure we should not hesitate to design the production processes in an analogous way: Any
software development process is designed around a piece of software to be developed, i.e. a piece of
the (evolving) software architecture. This view leads to a real OO process model - i.e. one which is
oriented at the objects of software development.

- Besides software development, there are several parallel (sub-) processes associated with other
important roles in the Software Engineering field (cf. the German V-model [Ver 99]). These are
summarised in our overall software process model which is composed of five subprocesses for
development, quality management, configuration management & support, use & evaluation and - last
not least - for project management (cf. fig. 3).

Use & evaluation

Conf. mgmt. & support

Quality mgmt.

Develop-
ment

Project mgmt.

SA SD SI SO

RP 1 RP 2 RP 3 RP 4

SA: System analysis
SD: System design
SI: System implementation
SO: System operational use

Rp i : Revision point no. i

Fig. 3: The overall structure of the software process

- Software project management is much more than to place milestones at the ends of project phases in
a one-dimensional way. It has to deal with the ambitious and difficult task of bringing order into the
fractal diversity, i.e. synchronising a multitude of concurrent processes and subprocesses. In the EOS
model, this is achieved by defining, controlling and maintaining so-called revision points. Instead of
dealing with dubious statements like "product x to y% complete" revision points offer the
facilities to define complex projects states like "system analysis complete", "component A
analysis & design complete", "component B analysis complete", "module C analysis, design
& implementation complete", etc. ([Hes 96], [Hes 01]).

4 Summary and outlook

In the theses of section 2, I have critically reviewed the overall structure of Rational's Unified Process
and some of its key features. In particular, the RUP concepts of phase, architecture, iteration, disci-
pline, milestone and the necessity of user involvement have been addressed. I have summarised my
alternatives in the outline of the EOS model in the previous section.

In this respect, the question arises to which degree a process model can or should be "unifying" at all.
One might argue that instead of prescribing a certain idealised process a process model should rather
offer the software engineers some sort of toolbox for designing their own, individually tailored
processes. This has led us to our multi-variant approach (cf. [H-N 99]) which might give some more
impulses for a more flexible RUP. The so-far reception of the RUP and reactions of its users show that
such flexibility is much needed. Recent RUP modifications and the trend to derive "lightweight"
processes confirm this demand.

In a current students project, we attempt to "implement" our EOS model using Rational's Process
Workbench and some basic structures and artifacts of the RUP. This project gives us much more
insight into the involved approaches, their common features and their diversities. We believe that
much more work is needed but there is a good chance to eventually arrive at a common view of
software process modelling - maybe not in the form of a unified process but rather in the form of a
unified box of instruments enabling us to build processes adapted to everybody's specific needs and
aims.

References:

[D-L 87] T. DeMarco, T. Lister: Peopleware - Productive projects and teams; Dorset House Publ.
Co. 1987.

[FRS 89] Ch. Floyd, F.-M. Reisin, G. Schmidt: STEPS to software development with users. In: C.
Ghezzi, J. McDermid (eds.): ESEC ‘89, Second European Software Eng. Conference,
LNCS 387, pp. 48-64. Springer 1989

[Hes 96] W. Hesse: Theory and practice of the software process - a field study and its implications
for project management; in: C. Montangero (Ed.): Software Process Technology, 5th
European Workshop, EWSPT 96. Springer LNCS 1149, pp. 241-256 (1996)

[Hes 97] W. Hesse: Improving the software process guided by the EOS model. In: Proc. SPI '97
European Conference on Software Process Improvement. Barcelona 1997

[H-N 99] W. Hesse, J. Noack : A Multi-Variant Approach to Software Process Modelling. In: M.
Jarke, A. Oberweis (Eds.): CAiSE’99, LNCS 1666, pp. 210-224 (1999)

[Hes 01] W. Hesse: RUP - A process model for working with UML? Critical Comments on the
Rational Unified Process - Book chapter in: K. Siau et al. (eds): Unified Modeling
Language. Idea Group Publ. 2001

[Jac 93] I. Jacobson: Object-Oriented Software Engineering - A Use Case Driven Approach.
Revised Printing, Addison-Wesley 1993

[JBR 99] I. Jacobson, G. Booch, J. Rumbaugh: The Unified Software Development Process.
Addison-Wesley 1999

[Kru 99] Ph. Kruchten: The Rational Unified Process (An Introduction). Addison Wesley 1999

[Roy 98] W. Royce: Software Project Management - A Unified Framework, Addison Wesley 1998

[RUP 03] Rational Unified Process- Product Overview. http://www.rational.com/products/rup as of
18th Aug. 2003

[Sce 00] K.D. Schewe: UML: A Modern Dinosaur? A Critical Analysis of the Unified Modelling
Language. In: H. Jakkola et al. (eds.) Information Modelling and Knowledge Bases XII.
Proc. 10th European-Japanese Conference , pp. 185-202, Vol 67, IOS Press 2001

[Stö 01] H.Störrle: "Describing Fractal Processes with UML". Proc PROFES - 3rd European
Workshop on Product Focused Software Process, Springer LNCS 2188 (2001)

[UML 03] Unified Modeling Language (UML) 1.5 Documentation. OMG documentformal/03-03-01.
Rational Software Corp., Santa Clara, CA 2003. http://www.rational.com/uml/resources/
documentation as of 18th Aug. 2003

[Ver 99] G. Versteegen: Das V-Modell '97 in der Praxis - Grundlagen, Erfahrungen, Werkzeuge.
dpunkt-Verlag 1999

