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oriented software development 

Siar Sarferaz and Wolfgang Hesse, Universität Marburg/Lahn, Germany 

Abstract: 

In this article we present a method for estimating the effort of software projects following an evolutionary, 
object-oriented development paradigm. Effort calculation is based on decomposing systems into 
manageable building blocks (components, subystems, classes), and assessing the complexity for all their 
associated development cycles. Most terms of the complexity calculation formulae carry coefficients 
which represent their individual weights ranging from factors for particular features up to general 
influence factors of the project environment. These coefficients can continuously be improved by 
statistical regression analysis.  

Outstanding features of the method are its flexibility (allowing estimations for project portions of any 
size) and its capability to deal with dynamic adjustments which might become necessary due to changed 
plans during project progress. This capability reflects the evolutionary character of software development 
and, in particular, implies revision, use and evaluation activities.  

1  Introduction  

Estimating the effort and costs for software projects has turned out to be an important 
competition factor in the market of individual software development - mostly due to the 
increasing proportion of  fixed-price projects demanded by the customers. Many empirical 
investigations have shown that time and cost budgets are frequently exceeded  (cf. e.g. [Gen 
91] and [Vas 99]) mostly due to too optimistic estimations. Thus an as precise as possible cost 
estimation is a decisive prerequisite for economical and successful software project 
management.  

However, due to many factors of uncertainty reliable cost estimation is a very difficult task. 
As an immaterial and always changeable product, software is hardly to be quantified. 
Estimating the development effort implies taking care of many product-specific influence 
factors (like product complexity and quality) as well as process-specific ones (like use of 
methods and tools, quality of teams and organisation), which altogether increase the 
difficulties.  

There are several cost estimation methods some of  which have been widely disseminated and 
experienced (as, e.g. Function Point [Alb79] or COCOMO [Boe 81]). Most of them follow 
the basic principle of "Break down - sum up": The functionality of the intended system is 
broken down to smaller better manageable units (e.g. called "functions"), the complexity of 
which is estimated and then summed up and modified by one or several factors representing 
general system and project characteristics.  Only very few methods are suited for object 
oriented (OO-) software development. For example, H. Sneed with his Object Point method 
tries to apply the basic idea of Function Points to the "OO world" [Sne 96]. Besides its well-
acknowledged benefits we see three major deficits of this method: 

(1) Like the Function Point method it relies on a variety of subjective assessments which are 
weighted by numerical coefficients given by the method in a sometimes arbitrary and 
doubtful way.  

(2) Some of its calculation methods (as e.g. the treatment of quality influence factors) are 
hardly to understand and would require some revisions to be used in practice.  
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(3) There are no provisions for dynamic assessments and estimation adaption according to the 
growing knowledge and possible changes during project progress.  

Traditional cost estimation methods were based on the then popular paradigms of functional 
decomposition and phase-driven development. Object-oriented methods have emphasised the 
ideas of data-based decomposition, reuse and component-driven development. Thus we have 
based our method on a process model (called EOS, cf. [Hes 96], [Hes 97a,b]) which  follows 
the basic principles of object orientation through all stages of development, hierarchical 
system architecture, component-based development cycles, software evolution through use 
and revision and which emphasises a recursive and orthogonal process structure. This 
structure offers high flexibility for modular system development, use and reuse of already 
existing components as well as for project management but it requires rather sophisticated 
planning, coordinating and estimating procedures and instruments. 

In the following sections we start with a short summary of our process modelling approach 
(section 2) and then present the CEOS method in three steps corresponding to the EOS levels 
of software development: class level, component level, system level (section 3). In the fourth 
section implementation issues are addressed and some conclusions for further work are 
drawn. 

2 EOS - a component-based approach to software process modelling  

In contrast to most traditional, waterfall-like software life cycle models (and even many 
process models for OO development as, for example, Rational's Unified Process [JBR 99]), 
the EOS model does not emphasise a phase-driven but a component-oriented development 
approach (cf. fig. 1). Among others, this approach has the following implications:  

-  The principal criterion for structuring software development processes is no longer their 
phases (cf. the upper part of fig. 1) but a hierarchy of system building blocks (in EOS 
called components, classes and subsystems) representing a static view on the system 
architecture (cf. the lower part of fig. 1).  

- Components and subsystems are the central structural units of the system architecture 
which are not only used to group smaller units (e.g. classes) to larger logical units but also 
for organisational reasons as e.g. delegation of a component to a particular person or to a 
small team responsible for its development and maintenance, planning of associated 
activities or storage and support for retrieval in a component library. Subsystems are 
(normally non-disjoint) collections of classes grouped together for joint execution during 
test and system integration.  

- Each building block has its own development cycle consisting of four main activities 
called analysis, design, implementation and operational use (cf. fig. 2).   

- In contrast to traditional waterfall models, new building blocks may be formed - and 
corresponding development cycles are enacted - at any stage of the development. A new 
development cycle may interrupt an already existing one or it is evolving in parallel. 
Concurrent development cycles are coordinated by project management with the help of 
revision points. Thus the traditional phase structure dominating one overall, system-wide 
development process is replaced by a collection of concurrent, individual development 
cycles for all building blocks under construction. 

For further details cf. [Hes 96], [Hes 97a/b].  
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Fig. 1: Two approaches to structure the software process 

 

According to the hierarchy of software building blocks, three levels of granularity can be 
distinguished which are also important for the following cost estimation procedures: (a) the 
system level, (b) the component level and (c) the class level.  

 

Fig. 2: Structure of an EOS development cycle 

Phase oriented vs ...

... Component oriented process structure

Ph1   ....Ph2 Ph3

S

X1 X2 X3

K21 K22

Building
block

Phase /
Activity

Legend:

Analysis

Design Implementation

Operational use



4 

3  The cost estimation model: General assumptions  

In this section we present our CEOS (Cost estimation for EOS project) method. It is based on 
a proposal of P. Nesi and T. Querci for estimating the development effort of object oriented  
systems [N-Q 98]. Some basic assumptions of this approach are: 

- The effort needed for developing a piece of software depends on its complexity in a linear 
way.  

- The complexity of a software building block depends on the complexity of its ingredients 
(e.g. smaller, contained building blocks or other structural units) which can be weighted 
by individual coefficients.  

- The quality of an estimate depends on the fitness and preciseness of the used coefficients. 
These can continuously be improved by using "real life" data from earlier projects and 
statistical regression analysis techniques [R-A 99]. In a running project, data gathered 
from terminated phases or activities can be used to improve the current estimates.  

- Particular coefficients can be defined and used for tailoring estimates to certain segments 
or iterations of a development cycle. 

- For detailed calculations, a basic metric (denoted „m” in the sequel - for quantifying the 
program complexity) is required. This can e.g. be the well-known LOC (Lines Of Code) 
metric or the  McCabe metric.  In the sequel we use a variant of the McCabe metric:  

  MCC = |E| - |N| + 1,  

 where |N| is the number of nodes and |E| is the number of edges in a flow diagram 
corresponding to the control structure of the program.  

We distinguish metrics for the definition complexity and the application complexity of classes 
and their attributes. For example, the application complexity is used in the metrics for 
inheritance, association and aggregation relationships. The (definition) complexity of a class 
to be developed is calculated from the complexity of its attributes and operations which may 
involve the application complexity of other (used) classes. The application complexity value 
is always less than the corresponding definition complexity value.  

In order to facilitate the presentation, we start with two preliminary assumptions:   

(1) For each building block, the corresponding development cycle is executed exactly once.  

(2) We are interested in total estimates covering the effort for all activities of a development 
cycle.  

These assumptions will be leveraged in later sections.  

4 Metrics for the sub-class layer 

The following table (fig. 3) lists the metrics which are introduced in this section. 

 



5 

MICm
App = ∑

+

=

1

1
)(

n

i
i

App
m AAC   and MBCm

App = ∑
=

+
NMLA

i
i

App
m mAAC

1
)(  

 Metric Name Metric Name 

Attributes Operations 

ACm
App Attribute Application Complexity MCm

App Method Application Complexity 

ACm
Def Attribute Definition Complexity MCm

Def Method Definition Complexity 

  MBCm
App Method Body Complexity (Application) 

  MBCm
Def Method Body Complexity (Definition) 

  MICm
App Method Interface Complexity (Application)

  MICm
Def Method Interface Complexity (Definition) 

  NMLA Number of Method Local Attributes 

 

Fig. 3: Metrics for the sub-class layer 

4.1 Attribute metrics 

We define know the metrics ACm
App and ACm

Def to measure the complexity of attributes. The 
letter „m” stands for a basic metric, the abbreviations  „App” and „Def” refer to application 
and  definition complexity, respectively. 

Let A : ClassA be an attribute  of  type „ClassA“. 

Definition I (Attribute Application Complexity): ACm
App = K, where K ∈  IR+ is a constant. 

Definition II (Attribute Definition Complexity): ACm
Def = CCm

App (ClassA) 

CCm
App is a metric for measuring the class definition complexity, which is defined below. 

Note that in the definition of CCm
App the metric ACm

App is used thus avoiding any circular 
definition.  

4.2  Operation metrics  

Let F (A1:C1, ..., An:Cn) : Cn+1 be  a method interface, where F is a method identifier, Ai are 
attribute identifiers and Ci are class identifiers. Further let An+1 be an (anonymous) attribute of 
type Cn+1, which stands for the return value of the method. 

Definition I (Method Application Complexity): MCm
App = MICm

App + MBCm
App, with 

 

 

NMLA stands for the number of locally defined attributes of a method. 

Definition II (Method Definition Complexity): MCm
Def = wMICm MICm

Def + wMBCm MBCm
Def 
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The metrics MICm
Def und MBCm

Def can be defined analogously to MICm
App and MBCm

App by 
replacing ACm

App with ACm
Def

. 

wMICm and wMBCm are coefficients to be determined by the statistical technique of robust 
regression (cf. below). 

5  Metrics for the class layer 

Each class is subject to a development cycle consisting of the activities analysis, design, 
implementation and operational use. According to the project progress along these activities 
more data become available which can be used for refined effort calculations. Therefore 
different metrics apply - corresponding to the time of estimation. Note that all given metrics 
refer to the total effort for the class development. 

 

Metric Name Metric Name 

Class layer  

CCm
App Class Application Complexity InCCm Inherited Class Complexity 

(implementation) 

CCm
Def Class Definition Complexity LCm Local Class Complexity (analysis) 

CCAm
App Class Application Complexity 

during Analysis activity 
LCCm Local Class Complexity (design) 

CCAm
Def Class Definition Complexity 

during Analysis activity 
LoCCm Local Class Complexity (implementation) 

CCDm
App Class Application Complexity 

during Design activity 
NDP Number of Direct Parents 

CCDm
Def Class Definition Complexity 

during Design activity 
NIC Number of Inherited Classes 

CCIm
App Class Application Complexity 

during Implementation activity 
NLA Number of Local Attributes 

CCIm
Def Class Definition Complexity 

during Implementation activity 
NLM Number of Local Methods 

CUm Class Usability NPuCA  Number of Public Class Attributes 

ICm Inherited Class Complexity 
(analysis) 

NPuCM   Number of Public Class Methods 

ICCm Inherited Class Complexity 
(design) 

  

 

Fig. 4: Metrics for the class layer 
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5.1  Analysis activity 

Definition I (Class Application Complexity during Analysis activity): 

CCAm
App =  NLA + NLM (number of local attributes and methods) 

Definition II (Class Definition Complexity during Analysis activity): 

CCAm
Def = LCm + ICm, with 

LCm = wNLAm NLA + wNLMm NLM and ICm = wNICm NIC. 

wNLAm, wNLMm and wNICm are coefficients for weighting the local and inherited elements, 
respectively.  

5.2  Design activity 

Let Ai, Mi and Ci be the i-th attribute, method or class, resp.. The complexity of a class 
depends on the complexity of its features, i.e. of its attributes and operation interfaces. For 
class definitions, the complexity of local features (LCC) and of inherited features (ICC) are 
considered. 

Definition I (Class Application Complexity during Design activity): 

 

Definition II (Class Definition Complexity during Design activity): 

CCDm
Def = LCCm + ICCm, with 

 

 

 

 

 

5.3  Implementation activity  

Let Ai, Mi and Ci be the i-th attribute, method or class, resp.. Again, the complexity of a class 
is derived from the complexity of its features, but now the implementation-specific values and 
coefficients are taken.  

Definition I (Class Application Complexity during Implementation activity): 

 

 

Definition II (Class Definition Complexity during Implementation activity): 
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5.4  Operational use activity  

Normally, no new calculations are done during operational use. The results of the estimations 
should be assessed (i.e. compared to the actual values) and documented. The coefficients 
should be validated and adjusted, if necessary. In case of a repeated development cycle, a new 
estimation of the next cycle is required (see below). 

5.5  Metrics for Reuse 

Reuse of classes is not for free but requires some effort, e.g. for understanding and adapting 
the reused code and documentation. Therefore we define a metric for class usability.  

Definition (Class Usability): Let Ai and Mi be the i-th attribute / method of a class. 

 

With this definition, we can now give a general definition for the complexity of a class 
CCm

Def (CCm
App can analogously be defined by replacing „Def“ with „App“). 

   constant, if C is a system-classe 

   CCAm
Def (C), if C is analysed 

CCm
Def (C)  = CCDm

Def (C), if C is designed 

   CCIm
Def (C), if C is implemented 

   CUm (C), if C is reused 

If class C is a specialisation of class S, S plays the role of a reused class and thus CUm (S) will 
be assigned to ICm (C) as the inheritance complexity of C. 

5.6  Example: Application of the metric CCDm
Def 

Now we illustrate the application of the CCDm
Def (Class Definition Complexity during Design 

activity) metric by a brief example. 

During the class design activity the static structure of classes and their relationships 
ismodelled and described by class diagrams. This information can be used to determinate the 
complexity of classes. As an example, we consider a simplified class diagram for a system 
managing bank accounts (fig. 5).  
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Fig. 5: A simple class diagram 

 
Now we apply the CCDm

Def metric on the class „Customer”. We assign to elementary types 
(like „Integer” or „String”) the complexity value K = 1. 

CCDm
Def (Customer)  = LCCm (Customer) + ICCm (Customer) 

LCCm (Customer) 

= wLACm ACm
Def

 (MyAccount) + wLMCm (MICm
Def (Customer) + MICm

Def (transfer)) 

= wLACm CCm
App

 (Account) 

 + wLMCm (ACm
Def (String) + ACm

Def (Account) + ACm
Def (Integer) + ACm

Def (Account)) 

= wLACm * 7 + wLMC *(1 + 7 + 1 + 7) = wLACm * 7 + wLMC * 16 

Here, for example, ACm
Def

 (MyAccount) = CCm
App

 (Account) = 7 is calculated by counting 
the two attributes and the 5 parameters of the methods - all being of elementary type. 

ICCm (Customer) 

= wICCm (CCDm
App (Person) + NIC (Person)) 

= wICCm (ACm
App (Name)+MICm

App (Person) + MICm
App (getName) + MICm

App (setName)+0) 

= wICCm (CCm
App (String) + ACm

App (String) + ACm
App (String)) + ACm

App (String)) 

= wICCm (1 + 1 + 1 + 1) = wICCm * 4 

CCDm
Def (Customer) = wLACm * 7 + wLMCm * 16 + wICCm * 4  

 

6  Metrics for the component and system layer 

The following table (fig. 6) summarises the metrics defined in this section. 

 

Person 

- Name: String 

+ Person(String) 
+ getName( ): String 
+ setName(String) 

Customer

- MyAccount: Account 

+ Customer(String, Account)
+ transfer(Integer, Account) 

Account 

- AccountNr: Integer 
- Credit: Integer 

+ Account(Integer, Integer)
+ getAccountNr( ): Integer
+ getCredit: Integer 
+ setCredit(Integer) 
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Metric Name Metric Name 

Component layer System layer 

NXC Number of Component Classes NSX Number of System Components 

XCm Component Complexity SCAm
 System Complexity during Analysis phase 

XCAm
 Component Complexity during 

Analysis activity 
SCAr System Complexity coarse Analysis 

XCAr
 Component Complexity coarse 

Analysis 
SCDm

 System Complexity during Design phase 

XCDm
 Component Complexity during 

Design activity 
SCIm

 System Complexity during Implementation 
phase 

XCIm
 Component Complexity during 

Implementation activity 
  

XUm Component Usability   

 

Fig.6 : Metrics for the Component and System layer 

6.1 Component metrics 

One of the characteristics of  the EOS method is its component-based process architecture. 
Components are collections of classes and as such have development cycles analogous to 
those of classes. Since the corresponding metrics have a similar structure, we restrict 
ourselves to compact definitions. 

Let Ci be the i-th class of a component X 

Definition (Component Complexity during Analysis / Design / Implementation activity): 

 

 

Again, particular coefficients wXYm are used for refinement and correction purposes on this 
level.  

If (e.g. in the early stages of a project) only the rough number NXC of classes contained in a 
component is known, a coarse estimation can be performed using the metric XCAr. 

Definition (Component Complexity coarse Analysis): XCAr = wX NXC 

For the operational use of components, similar considerations apply as in the class case.  

A reused component is a collection of reused classes  - which leads us the following metric: 

Definition (Component Usability): 
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6.2  System metrics  

In a similar way, a system is viewed as a collection of components and its metrics is derived 
from their ones. Again we give a compact definition which is to be specialised according to 
the  activities of a system development cycle.  

Let Xi be the i-th component of a system S. 

Definition (System Complexity during Analysis / Design / Implementation phase): 

  

A first coarse estimation can be performed with the metric SCAr. 

Definition: (System Complexity coarse Analysis): SCAr = wS wQuality NSX 

In addition to the coefficients wSYm and wS, we consider a quality factor wQuality on this layer. 
This factor can, for example, be calculated with the help of a quality characteristics table 
similar to the one adopted by H. Sneed from [ISO 9126] for his Object Point method [Sne 96]. 

During the operational use of a system, no refinements of the calculations apply but 
estimation results should be assessed and documented, coefficients should be validated and 
adjusted, and the effort for a next cycle is to be estimated, if required. 

6.3  Determining the coefficients 

In order to keep the CEOS method flexible, we weighted the metrics with coefficients. 
Different coefficients may be used to reflect the particular work conditions of different 
companies and institutions. Coefficients are to be determined from earlier projects using the 
statistical technique of regression analysis. As real data frequently contain outliers, traditional 
methods, like Gauss's least square technique, would easily distort the results. To avoid this 
problem, new statistical techniques - called robust techniques - have been developed which 
provide quite good results even if a certain amount of data is unreliable.  For CEOS we chose 
the LMS (Least Median of Squares) method - one of the best possible methods from a 
theoretical point of view. In the following we present only the estimator for the LMS method. 

 

 

 

 

 

 

 

Fig. 8: LMS estimator 
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7  Extending the model to multiple cycles and partial estimates 

The metrics introduced so far were based on the assumptions of (a) unique and (b) always 
complete development cycles (cf. end of section 3). Both restrictions can now be dropped in a 
straightforward way - at least if the required statistical data are available. If an estimation for 
an incomplete cycle is required (e.g. in case of calculating the rest effort for an already started 
cycle) particular coefficients may be used which cast the total effort to a particular activity. 
Such coefficients can be determined from statistical data on the proportion of effort required 
for each particular activity. Since the size and hierarchy level of a building block essentially 
influence this proportion, statistical data should be gathered separately for the class, 
component and systems layers.  

If p development cycles are planned for a particular building block (with p > 1), this can be 
used for calculating proportional efforts for each particular cycle. The simplest way would be 
to assume a constant factor 1/p for each cycle, but other more sophisticated factors might be 
derived from statistical data collected during prior projects.  

8  Prototype Implementation and conclusions 

In the preceding sections, we have presented an effort calculation and  cost estimation method 
which is based on a component-oriented process model and architecture. A simple prototype 
has been implemented which explores the user interface and demonstrates some basic 
functions of the CEOS method. A complete implementation which supports all the presented 
calculations and which implies the use of statistical techniques will be the next major step in 
the ongoing CEOS project.  

We are aware that applying the CEOS method is not easy since it starts from a rather 
sophisticated process model and - at least if one expects precise results - it requires encom-
passing data collections and rather complex calculations. But on the other hand it offers the 
following advantages:  

•  It considers development cycles (instead of simple phases) and thus addresses modern 
software development paradigms like software evolution or component-based 
development. 

•  Cost estimations can be done for complete projects or for any of their parts. Parts are the 
building blocks defined according to the software architecture in form of components,  
classes or subsystems. Partial estimations can be done and used for time, budget or 
personnel planning on any level of detail.  

•  For any building block, the total effort for one development cycle or the partial effort for 
any particular activity can be calculated as well as the effort for several development 
cycles concerning the same building block. 

•  The CEOS method supports particular object-oriented techniques like inheritance or reuse 
of classes and components.  

•  Most calculation formulae contain coefficients which allow to tailor all estimations to the 
particular conditions and requirements of the institution concerned. Coefficients can be 
adapted to specific influence factors like quality requirements, personnel qualification, 
customer familiarity or tool support. Continuous adaptation of the coefficients according 
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to the most recent available statistical data make the method a valuable tool for dynamic 
project management and evolutionary software development.  

In a current Ph.D. project, the CEOS method is enhanced and further implemented  with the 
aim to extend an existing UML-oriented development tool („objectiF” of microTOOL GmbH) 
by a powerful management tool to be used in software  practice. 
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