Modular Domain-Specific Language Components in Scala

Christian Hofer
Aarhus University, Denmark
chmh@cs.au.dk

Klaus Ostermann
University of Marburg, Germany
kos@informatik.uni-marburg.de

Abstract

Programs in domain-specific embedded languages (DSEls) can be represented in the host language in different ways, for instance implicitly as libraries, or explicitly in the form of abstract syntax trees. Each of these representations has its own strengths and weaknesses. The implicit approach has good composability properties, whereas the explicit approach allows more freedom in making syntactic program transformations.

Traditional designs for DSEls fix the form of representation, which means that it is not possible to choose the best representation for a particular interpretation or transformation. We propose a new design for implementing DSEls in Scala which makes it easy to use different program representations at the same time. It enables the DSL implementor to define modular language components and to compose transformations and interpretations for them.

Categories and Subject Descriptors D.1.5 [Programming Techniques]: Object-oriented Programming; D.2.3 [Software Engineering]; Reusable Software—Reusable Libraries; D.3.2 [Programming Languages]: Language Classifications—Extensible Languages, Specialized Application Languages

General Terms Languages, Design

Keywords Embedded Languages, Domain-Specific Languages, Term Representation, Visitor Pattern, Scala

1. Introduction

The methodology of domain-specific embedded languages, where a domain-specific language (DSL) is embedded as a library into a typed host language, instead of creating a stand-alone DSL, is nowadays well-known. It goes back to Reynolds [25] and has been systematically described by Hudak [13]. It is ideal for prototyping a language for two reasons. Firstly, simple interpreters can be quickly derived and implemented from the denotational semantics of the DSL. Secondly, many parts of the host language can be directly reused: not only its syntax, but also some semantic features like its libraries and even its type system. Furthermore, it is easy to extend the DSL or compose and integrate several DSLs into the same host language, since DSL composition is the same as library composition.

Assume for example that we have three different DSLs: a language of regions, one of vectors, and a lambda calculus. We can simply compose these languages, if the concrete representations of their types in the host language match. Assuming Scala as our host language, we can then write a term like:

\[
\text{app}(\text{lam}(x: \text{Region}) \Rightarrow \text{union}(\text{vr}(x), \text{univ})), \\
\text{scale}(\text{circle}(3), \\
\text{add}(\text{vec}(1,2), \text{vec}(3,4))))
\]

This term applies a function which maps a region to its union with the universal region to a circle that is scaled by a vector.

However, the main advantage of this method is also its main disadvantage. It restricts the implementation to a fixed interpretation which has to be compositional, i.e., the meaning of an expression may only depend only on the meaning of its sub-expressions, not on their syntactic form or some context. In the above example, we could perform two optimizations. First, the union of any region with the universal region is itself the universal region, allowing us to replace the body of the lambda abstraction with \text{univ}. And second, we see that the parameter \(x \) is not used (or without the first optimization: only used once) in the body, allowing us to inline the application [1], reducing the whole term to \text{univ}. Optimizations like these are hard to implement using compositional interpretations [2, 12].

In order to perform analyses on the code or write a more efficient implementation (or even a compiler) of the language, the DSL backend can be replaced by an explicit representation of the abstract syntax tree (AST) [8]. Then, arbitrary traversals over the AST can be implemented for analysis and interpretation. However, this flexibility comes at a price: extending the DSL with new operations, or even composing it with other languages, requires adaptation of both the data structure and the tree traversals.

Recently, variants of the DSEL approach have been proposed that introduce a separation between language interface and implementation [2, 6, 12]. In this way, it is possible to define several (compositional) interpretations for the same language, e.g., partial evaluators or transformations to continuation-passing style [6]. Furthermore, the languages can still be extended and even composed with other languages in the sense of extending and composing the interpretations [12].

However, two challenges remain. Firstly, we can extend and compose languages in the sense of extending and composing their representations? Then we could use these representations as target domains for program transformations and in this way perform one or more program transformations before interpreting the program. Secondly, can we express non-compositional interpretations? We believe that a scalable approach to embedding DSLs should address these problems. We propose a design that extends techniques developed in recent studies of the visitor pattern [5, 20], expression problem [32], and our own work on polymorphic embedding [12]. More specifically, the design goals set forth in this paper are:

- The design should enable the composition of independently developed languages and their representations.

[Copyright notice will appear here once 'preprint' option is removed.]
Embedded languages are statically typed (uni-typed in the simple case such as the region DSL). A composed language should preserve the types of the individual languages.

It should be possible to apply different (kinds of) interpretations on the same language representation.

The target domain of the interpretation should be allowed to be the term representation (program transformation). It should be possible to compose several program transformations in this way before interpreting to another domain.

It should be possible to define compositional as well as non-compositional interpretations.

The language representations and their interpretations should be independent. That is, it should be possible to add new interpretations without having to change the language representation.

We choose Scala as the implementation language, as its combination of language features both allows for solving the expression problem and makes DSL embedding smooth [12, 32]. We will only show incomplete code examples for space reasons. In particular, we will not discuss infix operations in the paper. The complete source code with further examples can be downloaded at: http://www.cs.au.dk/~cmon/mds1csls/.

The central contributions of this paper are:

1. We show how to integrate extensible term representations into a DSEL approach in Scala. These term representations can be used as the target domain of program transformations on DSL terms.

2. We show that those term representations are composable in the same way as the languages that they represent. In particular, this composition also reflects the types of the DSL expressions.

3. Our representation accommodates for three kinds of interpretations: compositional interpretations, interpretations based on explicit AST traversal, and interpretations based on AST inspection. We motivate and compare these three options for writing interpretations.

4. We discuss name-binding on DSELS by means of composing with a lambda calculus language. In particular, we present an extensible term representation for the simply-typed lambda calculus using higher-order abstract syntax.

We will present the core of the representation for a single, uni-typed language in Sec. 2. In Section 3, we present how different languages (and their type representations) can be composed. In Section 4, we introduce language composition for a more challenging type system: the simply-typed lambda calculus. At the same time, we discuss the issue of name-binding and its representation. In Section 5, we discuss the design goals and the different kinds of interpretations that our representation allows. Related work is presented in Sec. 6 and conclusions in Sec. 7.

2. Presentation of the Core Design

In this section, we present the core design for a simple, uni-typed embedded language. We will first show how to define the language interface and compositional interpretations. Then we will introduce the term representation and an interpretation to create it. We demonstrate how the representations can be used to apply both compositional and non-compositional interpretations. We will use a language of regions [13] as the running example.

MDSLCS

2

2010/7/5

trait RegionLI {
 type Region
 def univ : Region
 def circle(radius : Double) : Region
 def union(reg1 : Region, reg2 : Region) : Region
}

trait Example {}

val regionInterpretation : RegionLI
import regionInterpretation,

... union(circle(2.0), univ) ...

object ExampleInstance extends Module {
 val regionInterpretation = new EvalRegion {}
}

Figure 1. The region language interface and its usage

2.1 Defining the Language Interface

Each language specifies the language interface as the signature of an algebra: abstract type members declare the sorts (domains) of the algebra, methods its constants and operations [12]. The language interface of the regions language is shown in the trait RegionLI in Fig. 1. Region is the only sort in this algebra. univ is the universal region, circle is a circle around the origin and union is a binary operation to construct the union of two regions. More operations could be defined in the same way. We could also add them later by defining an extended language interface that inherits from RegionLI: The language interface is extensible.

To create a term of a language, we need an object that implements the language interface. However, it is easy to abstract over the actual interpretation such that the same DSL program can be interpreted in multiple ways. One way to do that is shown in the trait Example. Here, we specify a dependency of the example on some interpretation of the region language. The object ExampleInstance then fixes a specific interpretation. Note that the import construct in Scala can appear anywhere in the code and can refer to arbitrary values. We use it here to import the operations of the interpretation so we can use them without prefixing them by the name regionInterpretation.

2.2 Defining Compositional Interpretations

Each interpretation is an algebra of the corresponding signature. It is implemented by defining the domains and the operations that are declared in the language interface [12]. As a consequence of the algebraic method, each interpretation is guaranteed to be compositional in the following sense: The interpretation of an expression is only dependent on the interpretation of its sub-expressions, not on their syntactic structure or some context. This can be seen in the declaration of the union method: its parameters are of type Region, which is the domain of the algebra, and not of some expression type that represents region expressions. If we look at it as a traversal of the AST, each interpretation is a primitive recursion (fold) over the tree, applying the interpretation recursively on all sub-expressions. Compositionality of interpretations is the selling point of denotational semantics. It enables compositional reasoning about programs and it eases language extension.

To give an example of how an interpretation looks like, we define an evaluating interpretation of the region language in Fig. 2. The domain of regions is represented by a predicate on points in the coordinate space. The universal region is the region that contains all points, the union of a region is calculated by evaluating whether a point is contained in one of the united regions, etc.
we do not fix these types. Only in the object member. To be able to extend the language with new operators, interface. Each sort of the algebra is a type parameter of this type language interface of the region language (see Fig. 1), with the them: The visitor interface of the internal visitor has to extend the visitor interface types are fixed. In RegionAST we create a concrete instance of the AST representation, where the pattern, respectively.

acceptI and the from a common super-node (case class domain, we implement an AST node as a Region

circle(radius : Double) : Region

def circle(rad: Double) = (x,y) => x*x + y*y <= rad * rad
def union(r1: Region, r2: Region) = (x,y) => r1(x,y) || r2(x,y)

Figure 2. A region evaluator written as a compositional interpretation

trait EvalRegion extends RegionLI {
 type Region = (Double,Double)=>Boolean
 def univ = (_,_)=>true
 def circle(rad: Double) = (x,y) => x*x + y*y <= rad * rad
 def union(r1: Region, r2: Region) = (x,y) => r1(x,y) || r2(x,y)
}

trait RegionAST {
 trait RExp {
 def acceptI[R](v : IVisitor[R]) : R = v.univ
 def acceptE[R](v : EVisitor[R]) : R = v.univ
 }
 case class Unireg1(r1: RExp, r2: RExp) extends RExp {
 def acceptI[R](v : IVisitor[R]) : R = v.union(r1.acceptI(r1), r2.acceptI(r2))
 def acceptE[R](v : EVisitor[R]) : R = v.union(r1, r2)
 }
 case class Unitv1 extends RExp {
 def acceptI[R](v : IVisitor[R]) : R = v.univ
 def acceptE[R](v : EVisitor[R]) : R = v.univ
 }
 case class Circle(radius : Double) extends RExp {
 def acceptI[R](v : IVisitor[R]) : R = v.circle(radius)
 def acceptE[R](v : EVisitor[R]) : R = v.circle(radius)
 }
 case class Union(r1: RExp, r2: RExp) extends RExp {
 def acceptI[R](v : IVisitor[R]) : R = v.union(r1.acceptI(r1), r2.acceptI(r2))
 def acceptE[R](v : EVisitor[R]) : R = v.union(r1, r2)
 }
 type IVisitor[R] = RegionLI (type Region = R)
 type EVisitor[R] = RegionEVisitor[RExp,R]}
 trait RegionEVisitor[RExp,Region] {
 def univ : Region
 def circle(radius : Double) : Region
 def union(r1 : RExp, r2 : RExp) : Region
 }
 object RegionASTSealed extends RegionAST {
 type IVisitor[R] = RegionLI (type Region = R)
 type EVisitor[R] = RegionEVisitor[RExp, R]
 }

Figure 3. A term representation for the region language

2.3 The Term Representation

In the next step, we define the explicit term representation. Its basic design is adapted with some minor modifications from the functional decomposition approach described in Zenger / Odersky [32], but implementing both the internal and the external visitor pattern [5, 19]. The representation of region terms is shown in Fig. 3 in the trait RegionAST.

For each sort in the signature of the algebra, we define an abstract syntax tree (AST) representation. In the example, the only sort is Region. For each operation that maps to a value of that domain, we implement an AST node as a case class 2 inheriting from a common super-node (RExp). That super-node declares the accept and the acceptE methods of the internal and external visitor pattern, respectively.

We declare higher-kinded abstract type members [17] IVisitor [R] and EVisitor[R] for both the internal and the external visitor interface. Each sort of the algebra is a type parameter of this type member. To be able to extend the language with new operators, we do not fix these types [32]. Only in the object RegionASTSealed we create a concrete instance of the AST representation, where the visitor interface types are fixed. In RegionAST we only constrain them: The visitor interface of the internal visitor has to extend the language interface of the region language (see Fig. 1), with the type Region corresponding to the type parameter of the visitor. The visitor interface for the external visitor is shown in RegionEVisitor. There are two differences to the internal visitor interface: Firstly, we define the sorts (Region) as type parameters and not any more as an abstract type members, as we do not want to use the external visitor as a language interface. Secondly, and more importantly, the visitor takes another type parameter (or set of type parameters) that represents the expression types (RExp). This type parameter is used in the operations that have to take elements of the domains as parameters (here: union). In the external visitor interface, those operations take these expressions as parameters and not the domain elements.

This reflects the difference between internal and external visitor pattern. The internal visitor is applied to the sub-expressions before they are passed to the visitor of the expression (see the method accept in the class Union). This enforces compositional interpretations. The acceptE method of the external visitor, in contrast, does not perform a recursive call on the sub-expressions, but passes them directly to the visitor. In that way, the visitor has access to the syntactic structure of the sub-expressions. This makes non-compositional interpretations possible.

2.4 Program Transformations with Internal Visitors

Having defined the term representation, we can now define program transformations, i.e., interpretations that map to this term representation. These interpretations can then be composed with other interpretations by applying the accept method to the latter. For example, we can write an optimization interpretation (a program transformation) and compose it with the evaluator by supplying the latter as a visitor to the result of the former.

A trivial program transformation is the reification of the program. It takes a term and maps it to its representation. It is the identity element with respect to the composition of interpretations. The reification for the region language is shown in the trait ReifyRegion in Fig. 4. Being a compositional interpretation it implements the region language interface and can be used as an internal visitor. The trait is parameterized by a value regAST that references the exact instantiation of the AST representation. This parametrization is needed to accommodate for extensions of the region language with further operators. If we instantiate this value with an extended AST representation, reification operates as an injection into this richer structure. The type Region, which specifies the domain of the interpretation, is defined as the expression super-type in the chosen representation, making the interpretation a mapping into the term representation. The operations simply construct the corresponding AST nodes.

A more interesting program transformation is optimization. In our case, we define a simple optimization that makes use of the algebraic law on regions: that the union of some region with the universal region is equivalent to the universal region. The interpretation is shown in the trait OptimizeRegion and again is just a compositional interpretation (i.e. inheriting from the language interface). Again, the term representation it produces is parametrized by the value regAST. The interesting case is the implementation of union. Here, we use pattern-matching on the sub-expressions, i.e., we inspect the explicit AST representation. Note that the optimization has already been applied recursively to the parameters reg1 and reg2. In that way, the optimization is propagated through the AST.

2.5 Program Transformations with External Visitors

We can define an alternative optimization using an external visitor, shown in Fig. 5. All interpretations using an external visitor depend on the language module, i.e., they have to be nested in another trait. Here, the trait Optimize is nested in OptimizeRegionExternal. This is not a restriction arising from the use of type parameters instead of

2 Scala case classes are basically classes suitable for pattern matching.
trait ReifyRegion extends RegionLI {
 val regAST : RegionAST
 import regAST._
 type Region = RExp
 def univ : Region = Univ()
 ...
 def union(reg1 : Region, reg2 : Region) = Union(reg1, reg2)
}

trait OptimizeRegion extends RegionLI {
 val regAST : RegionAST
 import regAST._
 type Region = RExp
 def univ : Region = Univ()
 ...
 def union(reg1: Region, reg2: Region) : Region =
 reg1 match {
 case Univ() => Univ()
 case _ => reg2 match {
 case Univ() => Univ()
 case _ => Union(reg1, reg2)
 }
 }
}

trait OptimizeRegionExternal {
 val regAST : RegionAST
 import regAST._
 trait Optimize extends RegionEVisitor[RExp, RExp] {
 this EVisitor[RExp] =>
 type Region = RExp
 def univ : Region = Univ()
 }
 def univ : Region = Univ()
 def union(reg1: RExp, reg2: RExp): Region =
 val r1 = reg1.acceptE(this)
 r1 match {
 case Univ() => Univ()
 case _ =>
 val r2 = reg2.acceptE(this)
 r2 match {
 case Univ() => Univ()
 case _ => Union(r1, r2)
 }
 }
}

Figure 4. Two compositional program transformations

Figure 5. An optimizer as an external visitor

abstract type members in the external visitor interface. It is caused by the necessity to call acceptE recursively on the optimization visitor. To be able to call acceptE, we have to make sure that Optimize is in fact a valid visitor of type EVisitor[RExp]. We cannot guarantee this at this point, as the value of regAST and therefore the visitor interface is not yet fixed. But we can make the compiler ensure that each concrete instance of it has to be a valid visitor. This is done by declaring the type of this to be EVisitor[RExp] using Scala’s self-type annotations in the first line of the body of Optimize. The visitor is defined in regAST. If we would have declared this value inside of the Optimize trait instead, we would not be able to refer to it in the self-type annotation.

In the union case, we get the two sub-expressions as unevaluated expressions of type RExp as parameters. In that way, we can implement a more efficient version of the optimizer than before: In the first step, we only optimize sub-expression recursively by calling acceptE on it. If it already is the universal region, we can stop and return the universal region, otherwise we optimize the other sub-expression, too. We will discuss the respective advantages of compositional interpretations and explicit tree traversals in Sec. 5.

trait VectorLI {
 type Vector
 def vec(x : Double, y : Double) : Vector
 def add(v1 : Vector, v2 : Vector) : Vector
}

trait ExtRegionLI extends RegionLI {
 type Vector
 def scale(reg : Region, vec : Vector) : Region
}

Figure 6. Language interface for vector and extended region languages

3. Composing Domain-Specific Languages

In this section, we will discuss how to compose the representations of the embedded languages. If we only ever want to compose several languages that share the same sort (i.e., in an untyped setting), this is similar to extending a language with new operations. As the term representations we are using originally have been written with this extensibility in mind [32], this is easy.

On the other hand, if we only want to introduce new sorts within a single language, we could make the different expression types share the same visitor, with the accept methods taking several type parameters (to reflect the different sorts) instead of one. The difficulty arises when we want to compose independent languages that each define their own sorts, as the accept methods cannot be extended by type parameters through inheritance.

In the following, we will discuss how the term representation can be made to work with language and sort composition. At the same time, this will show how individual languages can be extended with new operators. As a running example we will compose the region language with a simple language of vectors. Its language interface is defined in Fig. 6. We restrict ourselves to two operators: vec constructs a two-dimensional vector, add is the common vector addition. Again, we can implement different compositional interpretations for this language interface, e.g., an interpreter or a pretty-printer. Furthermore, we assume to have a term representation of the vector language defined.

The need to integrate region and vector language arises if we want to extend our region language with a new operator: scale, that scales a region by a vector. An example term of the composed language could be: scale(circle(2.0), add(vec(1.2), vec(0.5))). We extend the language interface of the region language by inheriting from RegionLI, as shown in trait ExtRegionLI. Besides declaring the method scale, we declare an abstract type member Vector in addition to the inherited type member Region. We have shown how to compose language interfaces and their interpretations in this setting in earlier work [12]. Here, we focus on the corresponding composition of term representations.

3.1 Composing Term Representations

To compose the different term representations in a modular way, we create an interface between them. The term representation for the vector language is not modified. The representation for the extended region language is shown in the trait ExtRegionAST in Fig. 7. It abstracts over the vector representation VectorRep: We do not necessarily have to compose with an explicit term representation of vectors, but can alternatively use a direct representation. For example, we could choose to represent vectors as pairs of numbers, which could be the result of an evaluating interpretation using the VectorLI language interface.

The external visitor interface for the extended region language is shown in trait ExtRegionEVisitor. It takes the representation of vectors as an additional type parameter. Each non-compositional interpretation has the responsibility to deal with the respective repre-
A method vector term representation to a vector domain representation out-strings. It is therefore not possible to define the translation from a represented as pairs of translation has different constraints about the other domain. For exam-
pretations should not operate on term representations, but only on representations of the other domains. However, we believe that this and simply require the interpretations to directly deal with the term representation or a direct representation. The presentation of the other domain (here: vectors), be it an explicit term is more straightforward. The extended optimizer is shown in trait OptimizeExtRegion in Fig. 8. It is independent of the repre-
dation of the vector language and thus defines interpretVector to be the identity function on the vector representation.

For the internal visitor interface, we could take the same strategy and simply require the interpretations to directly deal with the term representations of the other domains. However, we believe that this is in conflict with the spirit of compositional interpretations. Inter-
presentations should not operate on term representations, but only on the results of their interpretation. On the other hand, each interpretation has different constraints about the other domain. For example, an evaluator of the region language might expect to find vectors represented as pairs of Doubles, while a pretty printer might expect strings. It is therefore not possible to define the translation from a vector term representation to a vector domain representation out-
side of the visitor itself. That implies that the visitor has to supply a method interpretVector that does this interpretation. Otherwise, the internal visitor interface just extends the language interface. The code is shown in the trait ExtRegionVisitor.

Both the region and vector languages are uni-typed, so combin-
ations of languages can be mixed. We present two variants of an evaluator in Fig. 9. Both make use of the same base evaluator defined for the extended region language EvalExtRegion that expects vectors to be represented as pairs of Doubles.

In the first version (EvalRegionWithVector), we do not use a term representation of vectors. Accordingly, interpretVector is im-
plemented as the identity function on the vector domain. In the second version (EvalRegionWithVecAST), vector terms are repres-
ted. We can still reuse EvalExtRegion. The method interpretVector will apply a corresponding visitor for the vector language to get a value in the right domain. As the evaluator is now dependent on the specific term representation for vectors, the corresponding module vecAST is a dependency on the evaluation of regions. The object EvalRegionWithVecASTSealed is an example instantiation.

To conclude, we note that while the composition of explicit term representations increases the dependencies on the side of the inter-
prets, the main task with respect to language composition is the extension of the individual representations (here: the region rep-
resentations) to accommodate for the new language constructs that bring together the two languages. As the chosen representations are extensible, language extension itself is straightforward. We will discuss a more advanced example of language composition in the next section.

4. Embedding the Lambda Calculus

Both the region and vector languages are uni-typed, so combin-
ing them resulted in a language of two types. However, the design also scales to more complex types in the embedded language. A prominent language with a more demanding type system is the simply-typed lambda calculus with its inductive construction of ar-
row types. We will therefore briefly sketch how the lambda calculus can be represented. Introducing the lambda calculus serves also another purpose: as a showcase on how to handle name-binding in the embedded language.

3The full code is in the accompanying code of the paper.
trait EvalExtRegion extends EvalRegion with ExtRegionLI {
 type Vector = <Double,Double>
 def scale(r : Region, v : Vector) : Region =
 (x,y) => (r(x,v.y), r(y,v.x))
}

object EvalRegionWithVector extends EvalExtRegion with ExtRegionVisitor {
 type Vector = (Double,Double)
 type VRep = (Double,Double)
 def interpretVector(v : VRep) = v
 def evalVector : EvalExtRegion.IVisitor[Double,Double]
}

trait EvalRegionWithVecAST {
 val vecAST : VecAST
 trait Eval extends EvalExtRegion with ExtRegionVisitor {
 type Vector = (Double,Double)
 type VRep = vecAST.VectorExp
 def interpretVector(v : VRep) = v.acceptI(evalVector)
 def evalVector : EvalExtRegion.IVisitor[Double,Double]
 }
}

object EvalRegionWithVecASTSealed extends EvalRegionWithVecAST {
 val vecAST = VectorASTSealed
 object Eval extends super.Eval
 eval evalVector = new EvalVector()
}

Figure 9. Two evaluators based on the internal visitor pattern

trait THoasLI {
 type Rep[_]
 type VRep[_]
 def vr[T]: VRep[T]: Rep[T]
 def lam[S,T]: (Rep[S] => Rep[T]): Rep[S => T]
 def app[S,T]: (fun : Rep[S => T], param : Rep[S]): Rep[T]
}

Figure 10. Language interface for the lambda calculus in higher-order abstract syntax

In this section we will first introduce a language interface for the typed lambda calculus using higher-order abstract syntax (HOAS) [22]. We will then show how to integrate it with the region language interface. Next, we will present an explicit term representation based on HOAS. Discussing the short-comings of this representation, we will motivate a De Bruijn index representation for the untyped lambda calculus, which we will briefly present.

The language interface is shown in Fig. 10. We use the type constructor Rep[T] to represent lambda calculus expressions of type T, and VRep[T] for variables of type T. Lambda calculus terms are either variables (constructed with vr), lambda abstractions (lam) or applications (app). Lambda abstractions make use of HOAS, i.e., we use function literals in Scala to represent lambda abstraction. An example term is: lam(x: VRep[Int])=>vr(x), which represents the identity function on integers. The Scala type checker is not able to infer the type of the parameter x. Therefore, we have to specify it explicitly.

Some related works have proposed another representation that omits the vr constructor and the separate representation for variable types [2, 6]. That representation, however, does not give rise to a term representation [23]. Our representation can be regarded as a generalization of [30] for a typed representation.

4.1 A Term Representation for the Lambda Calculus

A term representation for the lambda calculus is shown in Fig. 11. The constructor for lambda abstractions is shown, the others are straightforward. The main point to note is that we need a different representation for each type of variable representation. Therefore, the latter has to be supplied as a type parameter to THoasExp. The second type parameter T is a type index for the corresponding lambda calculus expression. The represented domain type for an interpretation is R[T]. That means that R[T] is the type operator that describes the interpretation of a type and is therefore the higher-kind type parameter of the accept methods. Note that reification (see trait ReifyToTHoas) is also always bound to a specific representation type for variables.

4.2 Integrating the Lambda Calculus with Other Languages

We can compose the lambda calculus with the region language and get regions as a base type in the lambda calculus and, on the other hand, the capability to use name binding in the region language. To this end, we extend both the region and the lambda calculus language interface, as shown in Fig. 12. We define implicit conversions (i.e., type conversions, that will be inserted by the type-checker of Scala automatically) toRegion and fromRegion to translate between the different representations of region language and lambda calculus. The extended interface of the region language needs to know how a lambda calculus type is represented (FunRep[Rep[T]]). In the same way, the lambda calculus interface needs knowledge about the representation of regions. The main restriction compared to the integration with the vector language is that we need an index type (i.e., a type parameter to Rep) to refer to the atomic region type in the lambda calculus representation. This cannot be Region, as the representation of functions has to be independent of a concrete interpretation domain of regions. That, however, requires that a region representation is not touched when it is transformed to a HOAS term: the parameter in fromRegion is not of type Region and we do not extend the visitor interface with a method interpretRegion. For symmetry, we also left out interpretFunction, making the interpretations themselves responsible for the interpretation step in the other domain. The corresponding extension of the term representation is straightforward and presented in the accompanying source code.
4.3 A Term Representation Based on De Bruijn Indices

Unfortunately, HOAS is not a good choice for programming interpretations that need to interpret recursively the body of a lambda abstraction, which is the case for many program transformations [27]. For this case, we propose a representation based on De Bruijn indices [7]. In this representation, variables do not have names, but are represented by an index that specifies in which binding it was defined. For example, the lambda expression \(\lambda x. \lambda y. y \) is written as \(\lambda(0) \), with the variable index 0 referring to the variable of the innermost binding (\(y \)). On the other hand, \(\lambda x. \lambda y. x \) is written as \(\lambda(1) \), where the 1 refers to the variable of the next-innermost binding (\(x \)).

Unfortunately, a typed De Bruijn index representation still has limitations. Atkey et al. [2] argue that the translation from HOAS to De Bruijn indices cannot be done fully type-safe, if the type-system of the language does not incorporate parametricity principles. While this is worse: It is not obvious how to express relevant interpretations, e.g., substitutions, in a type-safe way. We will therefore represent only an untyped lambda calculus in the De Bruijn index representation, and it is up to the implementor to ensure type-safety of translations and interpretations. Still, the type-safety of embedded lambda calculus terms is preserved, if the THoasLI language interface is used.

The De Bruijn interface LCLI and its term representation are shown in Fig. 13. The reification of HOAS terms to De Bruijn index terms can be derived from [2] and is defined in the accompanying source code.

For a demonstration that this representation allows for interesting program transformations we refer the reader to [2], where a shrinking reduction [1] is defined by an explicit traversal of the syntax tree. It is an interesting question, how much of it can be implemented using a compositional interpretation and we will come back to this in Sec. 5.

To conclude, it is possible to represent a typed lambda calculus using HOAS and compose it with other languages. However, for many program transformations it is not obvious how to implement them in this representation. Therefore, we follow [2] in performing these operations on an untyped representation based on De Bruijn indices.

5. Discussion

In this section, we will first review that the presented design meets our design goals. In the second part, we will compare the different representations that are part of our encodings. Finally, we will briefly discuss an alternative encoding for the visitor pattern.

5.1 Reviewing the Design Goals

First of all, the design allows for the composition of independently developed languages and their representations. We have demonstrated, how the representations of several languages can be composed in Sec. 3 and Sec. 4. We have furthermore demonstrated, how the interpretations compose even for distinct representations of the different languages in the evaluator example of Fig. 9.

We have seen that the composed language preserves the types of the individual languages. For example, the scale operation requires a region in the first parameter and a vector in the second. The implicit conversions between regions and lambda expressions ensure that only representations of regions can be converted.

Furthermore, we have demonstrated that different interpretations can be applied on the same language representation. We have shown, how we can define program transformations like the region optimization that transform to the same representation of the terms and can be composed with other interpretations. The representation can be used for defining compositional interpretations (using the internal visitor pattern) and non-compositional interpretations (using the external visitor pattern).

Finally, we have kept language representations and interpretations independent. This is a major difference to the Zenger/Oder- sky design [32]. We can seal a language representation as demonstrated, e.g., in RegionASTSealed in Fig. 3, and define interpretations like those in Fig. 4 independently from it, using dependency injection in the interpretations.

5.2 Comparing the Representations

In the paper so far, we have focused the discussion on two different representations, namely external versus internal visitors. However, we are in fact dealing with four different representations.

1. The implicit term representation defined by the language interface.
2. The Church encoding expressed by the accept method of the internal visitor.
3. The Scott encoding expressed by the accept method of the external visitor.
4. The explicit AST representation that is part of both the external and the internal visitor pattern.

In this following, we discuss each of these representations.

5.2.1 The Implicit Term Representation

The implicit term representation is defined by the language interface: Each operator of the DSL is represented by a method dec-
loration in the language interface and each term is at some point mapped to a concrete interpretation to a target domain. However, this implies that the representation cannot be used as a target domain of an interpretation by itself. If we want to define a program transformation, we immediately have to compose it with an interpretation to another target domain. As a consequence, the transformation of an expression has no access to the transformation of its sub-expressions, but only to the results of their final interpretation.

To overcome this, we can define the target domain to be a pair, where the first component is the intended interpretation and the second component is some information that we need for performing the program transformation. We have demonstrated this for the optimization of regions in [12], where the second component was a Boolean flag that informed us, if a region was the universal region. Then we could shortcut the intended interpretation in the first component, whenever the Boolean flag was true.

5.2.2 The Church Encoding

As has been pointed out in [5], the internal visitor pattern corresponds to a Church encoding. For instance, the Church encoding for the natural numbers defines the constant 0 ($\lambda c\cdot c$) and the successor function $\lambda n\cdot n\cdot c$ as lambda terms [3]:

$$\begin{align*}
z_0 & : \text{Nat} \\
{s}_n & : \text{Nat} \rightarrow \text{Nat}
\end{align*}$$

We do not want to explain the details of this encoding. The important point is that the sort Nat and the operators z and s define what we would call the language interface of the natural numbers. That means, that each expression in the Church encoding is defined by abstracting over a specific interpretation of the language. Once an interpretation is provided, the sub-expressions are recursively interpreted, and the result is passed to the interpretation of the expression. This corresponds directly to the implementation of the accept method. In effect, it performs a fold over the expression tree.

Note that the Church encoding, as well as the standard visitor pattern, are not by themselves extensible. An extensible solution has to allow for adding domains and operations to the language interface. The presented design does exactly that.

Defining an interpretation using the Church encoding makes it compositional. While compositionality is certainly beneficial for reasoning about a DSL term, not every interpretation can directly be encoded in this style. However, for many non-compositional interpretations to a domain we can find a compositional interpretation to a computation of that domain. This is the core idea behind using monads to define modular denotational semantics [16].

For example, the optimization interpretation in Fig. 4 is not optimal: in the union case, if the first region is the universal region, then we could short-circuit the interpretation of the second region, as the result will be the universal region. However, as we defined the parameters call-by-value, the interpretation of the second region has already taken place. To avoid this, we could redefine the language interface to take the parameters of union as call-by-need parameters. However, if we do not want to change the language interface, we could redefine the domain of the optimization interpretation to be a function from the unit type to the AST representation. In that way, we can manually control the triggering of the optimization in the sub-expressions.

Another example would be a language of arithmetics, where we cannot implement a compositional evaluator to a domain of numbers that handles division-by-zero, but we could implement a compositional evaluator to a domain of computations that can fail (described by the error monad).

And finally, there are many interpretations that depend on a context. One example is the interpretation that counts the occurrences of a free variable in a De Bruijn index representation of a lambda expression. Atkey et al. [2] define this interpretation as a recursion on an explicit AST representation. But we can also express it as a fold, as shown in Fig. 14. We represent the domain as a function that maps a De Bruijn index to the number of occurrences of the variable with this index. The De Bruijn index is the context that is passed through the interpretation of the sub-expressions and is increased inside a lambda body.

Another limitation of the Church encoding is that it is hard to define accessor functions to the sub-expressions of an expression. We encounter this problem, if we translate the shrinking reduction implementation from [2] to one based on internal visitors, as shown in Fig. 15. The shrinking reduction [1] is an inlining operation that performs a beta-reduction in cases where a bound variable is used at most once.

For simplicity, this interpretation is hard-wired to some sealed version of the AST representation for internal visitors. Furthermore, it assumes a substitution interpretation (Subs). It also does not claim to be the most efficient implementation.

The interesting part is the interpretation of app. It does a pattern-matching on the interpretation of the first parameter. If it is a lambda expression, it might perform a substitution to inline the application. If we wanted to avoid using pattern-matching, we would need an accessor to the body of the lambda abstraction.

The solution to this problem was discovered by Kleene, who defined the predecessor function on Church numerals by a triple construction [14] together with a projection to the first component of the triple. This trick can be generalized to arbitrary accesses on inductive data structures. However, using this method, the sub-expression has to be fully reconstructed from bottom up, making accessors a linear-time instead of a constant-time operation. It is also not obvious how to adapt Kleene’s trick to access the body of a lambda expression in a higher-order abstract syntax representation.

5.2.3 The Scott Encoding

Like the internal visitor pattern corresponds to a Church encoding, Oliveira et al. [20] have pointed out that the external visitor pattern corresponds to a Parigot encoding [21], which is a typed version of the Scott encoding. We can express the Scott encoding for natural numbers by the following encoding for 0 and the successor

$$\begin{align*}
&\text{object UsesOf extends LCLI} \\
&\text{type Rep = Int} \\
&\text{def vr(n: Int): Rep} = n \\
&\text{def lam(body: Int): Rep} = \text{Int = n} \\
&\text{def app(fun: Int, param: Int): Rep} = \text{Int = n} \\
&\text{object Shrinks extends LCLI} \\
&\text{import LCIASTSealed,} \\
&\text{type Rep = LCExp} \\
&\text{def vr(n: Int): Rep} = Vr(n) \\
&\text{def lam(body: Rep): Rep} = Lam(body) \\
&\text{def app(fun: Rep, param: Rep): Rep} = fun \\
&\text{match} \\
&\text{case Lam(u) = if(u.accept(UsesOf(0)) <= 1)} \\
&\text{else App(fun, param)} \\
&\text{case _ = App(fun, param)}
\end{align*}$$

Figure 14. Counting the occurrences of a lambda expression

Figure 15. Shrinking reduction

expression. This could of course include the conversion from region language terms.
function:
\[z_S : \text{Nat} = \Lambda N. \lambda z : N. \lambda s : N \to N. z \]
\[s_S n : \text{Nat} = \Lambda N. \lambda z : N. \lambda s : N \to N. s n \]

where \(\text{Nat} \) is a recursive type. Again, the sort \(N \) and the operators \(z \) and \(s \) define the language interface of the natural numbers. That means, that each term in the Scott encoding is defined by abstracting over some interpretation for the language interface. Once a concrete interpretation is provided, the sub-expressions are passed to the interpretation of the expression without interpreting them before. This corresponds directly to the implementation of the accept\(s \) method. Like the Church encoding, the Scott encoding is not by itself extensible.

The Scott encoding makes it easy to define an accessor operation on inductive data structures. In effect, that means that we can implement everything with the Scott encoding that we can implement by pattern matching. The interpretations are not guaranteed to be compositional. Using the presented version of the external visitor pattern has one core advantage over directly accessing the AST representation via pattern-matching: The interpretation stays extensible. If we extend a language by a new operation, we simply have to define the interpretation for this operation. If we had used pattern-matching instead, the interpretation for the extended language version would have to override the original interpretation in order to take the extended cases into consideration.

5.2.4 The Explicit AST Representation

After this discussion, there seems to be no place where the explicit AST representation is really needed. We used it in many examples, nevertheless, however not as an alternative encoding, but inside the internal and external visitors. The representation is useful, when we want to abstract the structure of the sub-expressions, typen after applying a code transformation on them. Writing another interpretation that does this analysis in many cases cumbersome, when a pattern matching is so much easier. However, it should be kept in mind that this could conflict with the extensibility of the interpretation.

5.3 Alternative Encodings for the Visitor Pattern

While the visitor pattern in its basic version does not accommodate well for extending data types, there are several approaches to make the visitor pattern extensible and in that way give a solution to the expression problem \([19, 28, 32]\). We have adapted the solution presented in \([32]\) to get an extensible visitor pattern as the basis of our design. We have modified it to separate representation from visitors and to make use of higher-kindred type members \([17]\). Furthermore, we have implemented an internal visitor pattern variant for it.

Another interesting candidate was \([19]\). In that approach internal and external visitors can be constructed in a very customizable way, giving the user fine-grained control over which language operators to include. A core advantage of this approach is that it renders the dependency injections that inform each interpretation about the exact language used (see, e.g., value regAST in Fig. 4) unnecessary. Instead, an interpretation of an extended language can always be used as an interpretation for a more restricted language.

However, if we want to avoid dependency injection even when composing languages, the visitors and the constructors of the overarching language constructs have to take more type parameters. To integrate these visitors with the original language components, we had to curry the type parameters of the visitors by using Scala’s encoding of anonymous type functions \([17]\). As a result, the type parameters got very cluttered and Scala’s type checker was clearly pushed to its limits. However, if anonymous type functions get direct support in Scala, this might be the preferable approach.

6. Related Work

Espinosa presented an (untyped) design for denotational semantics where the language interface is decoupled from the (compositional) interpretations \([9]\). The interpretations Espinosa uses are implemented using monads and monad transformers, making them extensible with respect to different kinds of computational capabilities. Term representations as the domain of an interpretation are not considered.

Carette et al. \([6]\) have been using a Church-like encoding for the lambda calculus based on a typed version of \([15]\). They mainly focus on a MetaOCaml implementation. In this implementation, the terms themselves are not written in an explicit Church encoding in the sense of lambda abstracting over the interpretation of the lam and app terms, but instead they are encapsulated in functors that provide this abstraction. This prevents using a Church encoding as the target domain of an interpretation, although in their typeclass-based Haskell implementation this would be possible. However, the encoding allows applying different interpretations with different target domains. For defining program transformations like partial evaluation, they use quoted MetaOCaml terms. In Haskell, they use an explicit AST representation. They do not discuss extension or composition of languages, but restrict themselves to the presentation of a lambda calculus with a fixed set of arithmetics and Boolean operations.

In our own previous work \([12]\), we have used an approach similar to \([6]\) to representing terms in Scala that allows for easy composition of languages and interpretations. The definition of language interfaces as traits that declare the signature of an algebra was developed there. However, we only used the implicit term representation and did not consider the possibility to use a Church encoding of the target domain. As a consequence, program transformations like the optimization of regions could only be expressed by coupling them with an interpretation to another target domain, as has been discussed in Sec. 5.

Arkey et al. \([2]\) adapt the type-class based representation of \([6]\) written in Haskell and present a typed and an untyped variant of it. They argue that an unembedding to an explicit data structure representation of ASTs using De Bruijn indices is necessary for some interpretations. The proposed representation, however, is neither extensible nor composable.

There is plenty of literature on using higher-order abstract syntax to represent the lambda calculus in a host language beyond the one already mentioned (recent articles are \([10, 18, 24, 26, 27, 30]\)). Many of them use HOAS on an explicit data structure representation and discuss issues like adequacy of the representation that are beyond of the scope of this paper. Our encoding of HOAS has been inspired by the untyped variant discussed in \([30]\).

Stump \([27]\) introduces a new meta-programming language, Archon, based on the untyped lambda calculus, but extended with direct support for structural reflection, using HOAS to represent lambda abstraction. In contrast to approaches built on top of explicit encodings of the object language, Archon introduces explicit language constructs for opening of lambda expressions along with other language constructs for working on variables and overcomes in this way the restrictions of HOAS representations.

Buchholzky / Thieleke \([5]\) have analyzed the type theory of the visitor pattern. They observed the difference between the internal visitor pattern and the external visitor pattern and elaborated the correspondence of the former to the Böhm-Berarducci encoding \([3]\). Oliveira et al. \([20]\) observed that the external visitors correspond to the Parigot encoding \([21]\). These correspondences make the visitor pattern an ideal candidate to define compositional and non-compositional interpretations on an AST representation in object-oriented languages.
Keeping language representations and their interpretations as extensible components has been the eponymous example for the discussion of the expression problem [29], i.e., the problem of extending data types and operations on them independently. We have adapted and extended the design from [32]. Our work has a different focus, though. The expression problem is about incrementally extending individual languages, not about composing independently developed languages and their representations. Furthermore, while the expression problem has been described for untyped expressions, our design had to accommodate for a typed setting.

Finally, there are other approaches to implement embedded languages that use external tools to integrate the embedded language into the host language. Examples are the attribute grammar based approach of ableJ [31] and the term rewriting approach of Stratego/XT [4]. In contrast to these approaches, our aim is to use the host language not only as the target language, but also as the language to implement the interpretations.

7. Conclusion

We have presented a design for integrating extensible term representations into a typed DSEL approach. We showed how to use these term representations as target domains for program transformations on DSL terms and as starting points for writing non-compositional interpretations. Furthermore, we demonstrated how several DSELS can be composed in a type-preserving way. We discussed name-binding by introducing the lambda calculus as a DSEL, together with two representations: a typed HOAS-based and an untyped De-Bruijn-index-based representation. Finally, we have discussed how the presented design accommodates for three kinds of interpretations: compositional interpretations, interpretations based on explicit AST traversal and interpretations based on AST inspection. We have compared the advantages and disadvantages of these three styles of interpretation. In the future, we want to further investigate typed lambda calculus representations and the limits of representability in a DSEL approach.

References