Existential Types

Klaus Ostermann
Aarhus University

Existential Types

Are ,dual” to universal types

Foundation for data abstraction and information
hiding

Two ways to look at an existential type {3X,T}

— Logical intuition: a value of type T[X:=S] for some type
S

— Operational intuition: a pair {*S,t} of a type S and term
t of type T[X:=S]

Other books use the (more standard) notation
dX.T. We stick to Pierce's notation {3X,T}

Building and using terms with
existential types

* Or, in the terminology of natural deduction,
introduction and elimination rules

 |dea: A term can be packed to hide a type
component, and unpacked (or: openend)
to use it

Example

counterADT =

{*Nat,
{new =
get
inc =

1,
Ai:Nat. 1,
Al:Nat. succ(i)}}

as {3Counter,
{new: Counter,

get: Counter—Nat,

inc: Counter—Counter}}:

» counterADT : {3Counter,

{new:Counter,get:Counter—Nat,inc:Counter—Counter}}

lTet {Counter,counter} = counterADT 1in
counter.get (counter.inc counter.new);

> 2

: Nat

Example

let {Counter,counter}=counterADT in :
let add3 = Ac:Counter. counter.inc (counter.inc {counter.inc c)) 1in
counter.get (add3 counter.new);

» 4 1 Nat

let {Counter,counter} = counterADT in

let {FlipFlop,flipflop} =

{#*Counter,
{new = counter.new,
read = Ac:Counter. iseven (counter.get c),
toggle = Ac:Counter. counter.inc c,

reset = Ac:Counter. counter.new}}
as {3JFiipFlop,
{new: FlipFlop, read: FlipFlop—Bool,
toggle: FlipFlop—FlipFlop, reset: FlipFlop—FlipFlop}} in

flipflop.read (flipflop.toggle (flipflop.togglie flipflop.new));

» false : Bool

Existential Types

New syntactic forms
t u= | ferms: (E-PACK)
{5, : packing
unpacking
v o= values: (E-UNPACK)
package value
T o= - types: Fr-t:T
X, T existential type
(T-PACK)
New evaluation rules t—t
ll':-_ : :55. e i e
(E-UNPACKPACK) (T-UNPACK)

Encoding existential types by

universal types

* In logic we have 3zeX P(z) = VzeX -P(z)
* We can simulate a existential types by a
universal type and a “continuation”
{3X,7r & vy, (vX. T-v) - V.
» Recall that, via Curry-Howard, CPS

transformation corresponds to double
negation!

Encoding existential types by
universal types
» Packing

def

{*S,t} as {IX, T} AY. AF: (VX.T=Y). F[S] t

» Unpacking

Tet {X,x}=t; in t» def t1 [T2] (AX. Ax:Ti1. t2).

Forms of existential types: SML

signature INT_QUEUE = sig

type t

val empty : t

val insert : int * t -> t
val remove : t -> int * t

end

Forms of existential types: SML

structure IQ :> INT QUEUE = struct
type £t = 1nt 1list
val empty = nil
val insert = op
fun remove q =
let val x::qr = rev q
in (x, rev gqr) end

end

structure Client = struct
. IQ.insert .. IQ.remove ..

end

Open vs closed Scope

 Existentials via pack/unpack provide no
direct access to hidden type (closed
scope)
— If we open an existential package twice, we
get two different abstract types!

 If S is an SML module with hidden type t,
then each occurrence of S.t refers to the
same unknown type

— SML modules are not first-class whereas
pack/unpack terms are

Forms of existential types: Java
Wildcards

Box<7> —— =X.Box<¥>

Box<Box<7>> —— Box<ZX.Box<¥i>>

Box<? extends Dog> —— X< Dog.Box<¥>

Pair<?,7> ——— =X.=Y.Pair<¥,¥Y> From: “Towards an Existential Types Model

for Java Wildcards”, FTFJP 2007
void ml(Box<?>» %) {...}
void m2(Box<Dog> y) { this.mi(y); }

is translated to:
void ml1(3%.Box<¥> x) {...}
void m2(Box<Dog> y)} { this.ml(close y with X hiding Dog); 1}

<X>Box<X> ml(Box<X> x) {...}
Box<?> m2(Box<?> y) { this.ml(y); }

is translated to (note how opening the existential tvpe allows us to provide an
actual tvpe parameter to ml):

<>Box<X> ml1(Box<¥> x) {...}

3Z.Box<Z> m2(3Y.Box<Y> y) {

open y,Y as yZ in

close
this.<Y>mil (y2) \\has type Box<Y>
with Z hiding Y; \\has type ZZ.Box<Z>

Forms of existential types:

Existentially quantified data constructors in Haskell

data Obj = forall a. (Show a) => Obj a

xs :: [Obj]

xs = [Obj 1, Obj "foo", Obj 'c']
doShow :: [Obj] —-> String
doShow [] = ""

doShow ((Obj x):xs) = show x ++ doShow xs

