
Higher-Order Types

Klaus Ostermann
Aarhus University



Motivation: 
Limitations of first-order types in Scala

From “Generics of a Higher Kind” by

Moors et al, 2008



Solution using higher-order 

types



Universes in Scala



Motivation:

Higher-Order types in Haskell
data Tree a = Leaf a | Branch (Tree a) (Tree a)

class Functor f where -- f must have kind *->*

fmap :: (a -> b) -> f a -> f b

instance Functor Tree where

fmap f (Leaf x) = Leaf (f x)

fmap f (Branch t1 t2) = Branch (fmap f t1) (fmap f t2)

addone :: Tree Int -> Tree Int

addone t = fmap (+ 1) t

-- instance Functor Integer where � kind error



Adding kinds to simply-typed LC

• Syntax

– Syntax of terms and values unchanged



Evaluation

• Like in simply-typed LC, no changes



Kinding rules

This is basically a copy of the STLC “one level up”!



Typing Rules

• We need a notion of type equivalence!

• T-Eq is not syntax-directed, like the 
subsumption rule in subtyping



Type Equivalence



Nice, but…

• Adding kinds to STLC is not really useful.

• A program in this language can trivially be 
rewritten to STLC w/o kinds by just 
normalizing every type expression in 
place.

• To gain real expressive power we need 
universal types, too.

• Let’s hack System F, then!



Adding kinds to System F –

a.k.a. F
ω

• Syntax of terms and values



Adding kinds to System F –

a.k.a. F
ω

• Syntax of types, contexts, kinds



Adding kinds to System F –

a.k.a. F
ω



Adding kinds to System F –

a.k.a. F
ω



Adding kinds to System F –

a.k.a. F
ω



Adding kinds to System F –

a.k.a. F
ω



Higher-Order Existentials

• F
ω

with existential types has some 
interesting uses

• Example: Abstract data type for pairs

– want to hide choice of Pair type constructor



Higher-Order Existentials

• Example, continued

Using the Pair ADT:



Higher-Order Existentials, 

formally



Algorithmic Type-Checking for 

F
ω

• Kinding relation is easily decidable 
(syntax-directed)

• T-Eq must be removed, similarly to T-Sub 
in the system with subtyping

• Two critical points for the now missing T-
Eq rule:

– First premise of T-App and T-TApp requires 

type to be of a specific form

– In the second premise of T-App we must 

match two types 



Algorithmic Type-Checking for 

F
ω

• Idea: Equivalence checking by normalization

• Normalization = Reduction to normal form

• In our case: Use directed variant of type 

equivalence relation, reduce until normal form 

reached

• In practical languages, a slightly weaker form of 

equivalence checking is used: Normalization to 

Weak Head Normal Form (WHNF)

• A term is in WHNF if its top-level constructor is 

not reducible

– i.e. stop if top-level constructor is not an application


