
Fachbereich Mathematik und Informatik

Prof. Dr. K. Ostermann

Sebastian Erdweg, seba@informatik

Tillmann Rendel, rendel@informatik

January 28, 2010

Programming Languages and Types

Homework Assignment 13

Please hand in your homework by email to mailto:pllecture@informatik.uni-marburg.
de until February, 4. Please submit your solutions in appropriate file formats.

H13.1 Encoding Existential Types

Consider the following encoding of a counter with existentials.

counterADT = { *Nat,
{ new = 1,

get = λi : Nat . i,
inc = λi : Nat . succ(i) }}

as { ∃Counter,
{ new : Counter,

get : Counter → Nat,
inc : Counter → Counter }}

test = let {Counter, counter} = counterADT in
get (inc (inc new))

Rewrite this example using universal types. You can do this either in the formal System
F notation, or you can write a little Haskell program using Rank-N types. In the latter
case the type applications are implicit.

H13.2 Higher-Order Types

In Fω, the universe of kinds can be separated into kind levels as follows.

K(1) = {}
K(i+ 1) = {∗} ∪ {κ1 ⇒ κ2 | κ1 ∈ K(i) ∧ κ2 ∈ K(i+ 1)}

For example, ∗ ⇒ ∗ is in K(3), K(4) etc. but not in K(2).
Corresponding to these levels, Fω can be divided into sublanguages Fi, where the language
Fi only permits kinds from kind level K(i).
In this terminology, the simply-typed lambda calculus is F1, and System F is F2.
Write or find a useful program that can be written in F4 but not in F3.

mailto:pllecture@informatik.uni-marburg.de
mailto:pllecture@informatik.uni-marburg.de

	Encoding Existential Types
	Higher-Order Types

