
Motivation
Architecture

Summary

Case Study: Existential and Higher-Order Types
for Polymorphic Embedding of DSLs

based on Hofer, Ostermann, Rendel, Moors, Polymorphic Embedding of DSLs, ACM Conference on
Generative Programming and Component Engineering, 2008

1 / 30

Motivation
Architecture

Summary

Pure Embedding of DSLs
Polymorphic Embedding

The Traditional Approach

P. Hudak, Modular Domain Specific Languages and Tools

DSL as library, not as a separate language

DSL as an algebra, not via building ASTs

Example: A Regions language

type Region = Vector ⇒ boolean

def univ : Region = p ⇒ true
def circle : Region

= p ⇒ p. 1 * p. 1 + p. 2 * p. 2 < 1
def union(x : Region, y : Region) : Region

= p ⇒ x(p) || y(p)
...

3 / 30

Motivation
Architecture

Summary

Pure Embedding of DSLs
Polymorphic Embedding

Pros and Cons

Pros

Reuse of language infrastructure (incl. type checking)
Interpretation is compositional (defined by an algebra)
Allows combining several DSLs

Cons
The interpretation is integral part of the language

Alternative interpretations cannot be supplied

Interpretations are not components

In particular: Optimizations cannot be applied to them

4 / 30

Motivation
Architecture

Summary

Pure Embedding of DSLs
Polymorphic Embedding

Contributions

Pure Embedding with multiple interpretations

Analyses and optimizations as “yet another” interpretation

Interpretations and languages as components

Scala as implementation language in OO context

Show-case for existential and higher-order types in the form of
abstract (higher-kinded) type members

6 / 30

Motivation
Architecture

Summary

Core Elements
Interpretations as Components
Languages as Components

Explicit language interface

trait Regions {
// Ordinary type synonyms

type Vector = (double, double)

// Abstract domain types

type Region

// Abstract domain operations

def univ : Region
def circle : Region
def union(x : Region, y : Region) : Region
def scale(v : Vector, r : Region) : Region
...

}

8 / 30

Motivation
Architecture

Summary

Core Elements
Interpretations as Components
Languages as Components

Explicit language interface II

Abstract type members are existential types that represent
domain types

type Region

Compositional by construction:
Interface is the signature of the algebra

def union(x : Region, y : Region) : Region

9 / 30

Motivation
Architecture

Summary

Core Elements
Interpretations as Components
Languages as Components

Architecture Overview

Regions

type Region

Evaluator

type Region = Vec) Bool

Pretty Printer

type Region = String

Program
Oblivious Client

Optimization

OptimizePrint

10 / 30

Motivation
Architecture

Summary

Core Elements
Interpretations as Components
Languages as Components

Architecture Overview

Regions

type Region

Evaluator

type Region = Vec) Bool

Pretty Printer

type Region = String

Program
Oblivious Client

Optimization

OptimizePrint

11 / 30

Motivation
Architecture

Summary

Core Elements
Interpretations as Components
Languages as Components

An Evaluator

trait Evaluation extends Regions {
type Region = Vector ⇒ boolean

def univ : Region = p ⇒ true
def circle : Region

= p ⇒ p. 1 * p. 1 + p. 2 * p. 2 < 1
def union(x : Region, y : Region) : Region

= p ⇒ x(p) || y(p)
...

}
object Eval extends Evaluation

Same definitions as in the traditional approach

12 / 30

Motivation
Architecture

Summary

Core Elements
Interpretations as Components
Languages as Components

A Pretty Printer

trait Printing extends Regions {
type Region = String

def univ : Region = "univ"
def circle : Region = "circle"
def union (x : Region, y : Region) : Region

= "union(" + x + ", " + y + ")"
...

}
object Print extends Printing

13 / 30

Motivation
Architecture

Summary

Core Elements
Interpretations as Components
Languages as Components

Architecture Overview

Regions

type Region

Evaluator

type Region = Vec) Bool

Pretty Printer

type Region = String

Program
Oblivious Client

Optimization

OptimizePrint

14 / 30

Motivation
Architecture

Summary

Core Elements
Interpretations as Components
Languages as Components

Programs as Oblivious Clients

// A simple program

def program (semantics : Regions)
: semantics.Region = {

import semantics.
val ellipse24 = scale((2, 4), circle)
union(univ, ellipse24)

}

A DSL program has path-dependent type: semantics.Region

println(program(Eval)((1, 2))) prints true

println(program(Print)) prints
union(univ, scale((2, 4), circle)

15 / 30

Motivation
Architecture

Summary

Core Elements
Interpretations as Components
Languages as Components

Architecture Overview

Regions

type Region

Evaluator

type Region = Vec) Bool

Pretty Printer

type Region = String

Program
Oblivious Client

Optimization

OptimizePrint

16 / 30

Motivation
Architecture

Summary

Core Elements
Interpretations as Components
Languages as Components

A DSL with Polymorphism

Example: Functions language (inspired by Carette et al.)

User-defined bindings

trait Functions {
// Abstract domain types

type Rep[X]
// Abstract domain operations

def fun[S, T](f : Rep[S] ⇒ Rep[T])
: Rep[S ⇒ T]

def app[S, T](f : Rep[S ⇒ T], v : Rep[S])
: Rep[T]

}

Using higher-kinded abstract type member Rep

Using higher-order abstract syntax (HOAS)

17 / 30

Motivation
Architecture

Summary

Core Elements
Interpretations as Components
Languages as Components

Two Example Interpretations

trait FunEval extends Functions {
type Rep[T] = T
def fun [S,T](f : S ⇒ T) = f
def app [S,T](f : S ⇒ T, v : S) : T = f(v)

}
trait FunPrinting extends Functions {

type Rep[X] = String
def fun [S,T](f : String ⇒ String) : String

=
{

val v = variables.next
"fun(" + v + " ⇒ " + f(v) + ")"

}
...

}

18 / 30

Motivation
Architecture

Summary

Core Elements
Interpretations as Components
Languages as Components

Architecture Overview

Regions

type Region

Evaluator

type Region = Vec) Bool

Pretty Printer

type Region = String

Program
Oblivious Client

Optimization

OptimizePrint

20 / 30

Motivation
Architecture

Summary

Core Elements
Interpretations as Components
Languages as Components

Interpretations as Components

Example: Optimization

trait Optimization extends Regions {
val semantics : Regions

type Region = (semantics.Region, boolean)
def univ : Region = (semantics.univ, true)
def circle : Region =

(semantics.circle, false)
def union (x : Region, y : Region) : Region

=
if (x. 2 || y. 2) (semantics.univ, true)

else (semantics.union(x. 1, y. 1), false)
...

21 / 30

Motivation
Architecture

Summary

Core Elements
Interpretations as Components
Languages as Components

Architecture Overview

Regions

type Region

Evaluator

type Region = Vec) Bool

Pretty Printer

type Region = String

Program
Oblivious Client

Optimization

OptimizePrint

22 / 30

Motivation
Architecture

Summary

Core Elements
Interpretations as Components
Languages as Components

Reuse of Interpretations

Interpretations can be regarded as reusable components

Odersky / Zenger: Scalable Component Abstractions

Example: An optimizing interpretation can work on several
interpretations

object OptimizePrint extends Optimization {
val semantics = Print

}

println(program(OptimizePrint)) prints
(univ, true)

while println(program(Print)) prints
union(univ, scale((2, 4), circle))

23 / 30

Motivation
Architecture

Summary

Core Elements
Interpretations as Components
Languages as Components

Hierarchical Composition

Example: A Vectors sublanguage

trait Vectors {
type Vector
...

}

trait Regions {
val vec : Vectors
import vec.
...

}

25 / 30

Motivation
Architecture

Summary

Core Elements
Interpretations as Components
Languages as Components

Interplay with Interpretation Components

Example: Optimization for refactored Regions language

Needs singleton types

trait Optimization extends Regions {
val semantics : Regions
val vec : semantics.vec.type = semantics.vec
import vec._
...

}

26 / 30

Motivation
Architecture

Summary

Core Elements
Interpretations as Components
Languages as Components

Peer Composition

Example: Combine Regions with Functions language

Problem: Representations have to be translated

trait FunReg extends
Regions with Functions {

implicit def fromRegion(r : Region)
: Rep[Region]

implicit def toRegion(r : Rep[Region])
: Region

}

Using Scala’s implicit conversions for less verbosity

27 / 30

Motivation
Architecture

Summary

Core Elements
Interpretations as Components
Languages as Components

Peer Composition: Overview

Regions

type Region

Evaluator

type Region = Vec) Bool

Functions

type Rep[X]

FunEval

type Rep[X] = X

FunRegEval

type Region = Rep[Region]

FunReg

type Region ↔ Rep[Region]

28 / 30

Motivation
Architecture

Summary

Core Elements
Interpretations as Components
Languages as Components

Peer Composition of Interpretations

Integration for both evaluation and printing semantics

Example: Evaluation

object FunRegEval extends FunReg
with Evaluation with FunEval {

implicit def fromRegion(r : Region)
: Rep[Region] = r

implicit def toRegion(r : Rep[Region])
: Region = r

}

29 / 30

Motivation
Architecture

Summary

Summary

Reuse of the language infrastructure in pure embedding style

Interpretation components

In particular: Application of optimizations on them

Language components

Outlook

Compositionality can be limiting
Regard Scala arithmetics, etc. as language interfaces
Alternative approaches

Type classes (Haskell)
Virtual classes (gbeta)

30 / 30

	Motivation
	Pure Embedding of DSLs
	Polymorphic Embedding

	Architecture
	Core Elements
	Interpretations as Components
	Languages as Components

	Summary

