
A Theory of Changes for Higher-Order Languages
Incrementalizing λ-Calculi by Static Differentiation

Abstract
If the result of an expensive computation is invalidated by a small
change to the input, the old result should be updated incrementally
instead of reexecuting the whole computation. We incrementalize
programs through their derivative. A derivative maps changes in
the program’s input directly to changes in the program’s output,
without reexecuting the original program. We present a program
transformation taking programs to their derivatives, which is fully
static and automatic, supports first-class functions, and produces
derivatives amenable to standard optimization.

We prove the program transformation correct in Agda for a
family of simply-typed λ-calculi, parameterized by base types
and primitives. A precise interface specifies what is required to
incrementalize the chosen primitives.

We investigate performance by a case study: We implement in
Scala the program transformation, a plugin and improve perfor-
mance of a nontrivial program by orders of magnitude.

Keywords Incremental computation, first-class functions, perfor-
mance, Agda, formalization

1. Introduction
Incremental computation has a long-standing history in computer
science [20]. Often, a program needs to update its output efficiently
to reflect input changes [22]. Instead of rerunning such a programs
from scratch on its updated input, incremental computation research
looks for alternatives that are cheaper in a common scenario: namely,
when the input change is much smaller than the input itself.

For instance, consider the following program which adds all
members of a collection s of numbers.

sum s = fold (+) 0 s

y = sum {1, 2, 3, 4}
Now assume that the input to sum changes from {1, 2, 3, 4} to
{2, 3, 4, 5}. Instead of recomputing y from scratch, we could
also compute it incrementally. If we have a representation for
the change to the input (say, ds = {remove 1, add 5}), we can
compute the new result through a function sum ′ that takes the old
input s = {1, 2, 3, 4} and the change ds and produces a change
dy to the output y. In this case, it would compute the change
dy = sum ′ s ds = plus 4, which can then be used to update
the original output y = 10 to yield the updated result 14. We call

[Copyright notice will appear here once ’preprint’ option is removed.]

sum ′ the derivative of sum . It is a function in the same language of
sum , accepting and producing changes, which are simple first-class
values of this language. If we increase the size of the original input
s, the complexity of sum s increases linearly, while the complexity
of sum ′ s ds only depends on the size of ds , which is smaller both
in our example and typically.

To address this problem, in this paper we introduce the IλC
(incrementalizing λ-calculi) framework. We define an automatic
program transformation Derive that differentiates programs, that is,
computes their derivatives; Derive guarantees that

f (a⊕ da) ∼= (f a)⊕ (Derive(f) a da) . (1)

where ∼= is denotational equality, da is a change on a and a⊕ da
denotes a updated with change da , that is, the updated input of f .
Hence, we can optimize programs by replacing the left-hand side,
which recomputes the output from scratch, with the right-hand side,
which computes the output incrementally using derivatives.

IλC is based on a simply-typed λ-calculus parameterized by
plugins. A plugin defines (a) base types and primitive operations, and
(b) a change representation for each base type, and an incremental
version for each primitive. In other words, the plugin specifies the
primitives and their respective derivatives, and IλC can glue together
these simple derivatives in such a way that derivatives for arbitrary
simply-typed λ-calculus expressions using these primitives can be
computed. Both our implementation and our correctness proof is
parametric in the plugins, hence it is easy to support (and prove
correct) new plugins.

This paper makes the following contributions:

• We present a novel mathematical theory of changes and deriva-
tives, which is more general than other work in the field because
changes are first-class entities, they are distinct from base values
and they are defined also for functions (Sec. 2).
• We present the first approach to incremental computation for

pure λ-calculi by a source-to-source transformation, Derive, that
requires no run-time support. The transformation produces an
incremental program in the same language; all optimization
techniques for the original program are applicable to the incre-
mental program as well. We prove that our incrementalizing
transformation Derive is correct (Eq. (1)) by a machine-checked
formalization in Agda [6]. The proof gives insight into the defi-
nition of Derive: we first construct the derivative J− K∆ of the
denotational semantics of a simply-typed λ-calculus term, that
is, its change semantics. Then, we show that Derive is produced
by erasing J− K∆ to a simply-typed program (Sec. 3).
• While we focus mainly on the theory of changes and derivatives,

we also provide an initial experimental evaluation. We imple-
ment the derivation transformation in Scala. The implementation
is organized as a plug-in architecture that can be extended with
new base types and primitives. We define a plugin with support
for different collection types and use the plugin to incremen-
talize a variant of the MapReduce programming model [15].

1 2013/11/16

Benchmarks show that incrementalization can reduce asymp-
totic complexity and can turn O(n) performance into O(1),
improving running time by over 4 orders of magnitude (Sec. 4).

Our Agda formalization, Scala implementation and benchmark
results are available at the URL https://www.dropbox.com/
sh/3vg8pikd6wbgck5/SaZPRvqB2p. All lemmas and theorems
presented in this paper have been proven in Agda. In the paper, we
present an overview of the formalization in more human-readable
form, glossing over some technical details.

2. A theory of changes
This section introduces a formal concept of changes; this concept
was already used informally in Eq. (1) and is central to our approach.
We first define change structures formally, then construct change
structures for functions between change structures, and conclude
with a theorem that relates function changes to derivatives.

2.1 Change structures
Consider a set of values, for instance the set of natural numbers N.
A change dv for v ∈ N should describe the difference between v
and another natural vnew ∈ N. We do not define changes directly,
but we specify operations which must be defined on them. They are:

• We can update a base value v with a change dv to obtain an
updated or new value vnew. We write vnew = v ⊕ dv .
• We can compute a change between two arbitrary values vold and
vnew of the set we are considering. We write dv = vnew 	 vold.

For naturals, it is usual to describe changes using standard
subtraction and addition. That is, for naturals we can define v⊕dv =
v + dv and vnew 	 vold = vnew − vold. To ensure that ⊕ and 	 are
always defined, we need to define the set of changes carefully. N is
too small, because subtraction does not always produce a natural;
the set of integers Z is instead too big, since adding a natural and
an integer does not always produce a natural. In fact, we cannot
use the same set of all changes for all naturals. Hence we must
adjust the requirements: for each base value v we introduce a set
∆v of changes for v, and require vnew 	 vold to produce values in
∆vold, and v ⊕ dv to be defined for dv in ∆v. For natural v, we set
∆v = {dv | v + dv ≥ 0}; 	 and ⊕ are then always defined.

The following definition sums up the discussion so far:

Definition 2.1 (Change structures). A quadruple V̂ = (V,∆,⊕,)
is a change structure (for V) if the following holds.

(a) V is a set.
(b) Given v ∈ V , ∆v is a set, called the change set.
(c) Given v ∈ V and dv ∈ ∆v, v ⊕ dv ∈ V .
(d) Given u, v ∈ V , u	 v ∈ ∆v.
(e) Given u, v ∈ V , v ⊕ (u	 v) equals u.

We overload operators ∆, 	 and ⊕ to refer to the corresponding
operations of different change structures; we will subscript these
symbols when needed to prevent ambiguity. For any Ŝ, we write S
for its first component, as above.

One might expect a further assumption that (v ⊕ dv)	 v = dv .
While it does hold for the change structure of N, it is not needed
in general. This means that multiple changes can represent the
difference between the same two base values. Throughout our theory,
we only discuss equality of base values, not of changes.

Examples. One way to define change structures is from abelian
groups. In algebra, an abelian group is a quadruple (G,�,�, e),
where � is a commutative and associative binary operation, e
is its identity element, and � produces inverses of elements g
of G, such that (�g) � g = g � (�g) = e. For instance,

integers, unlike naturals, form the abelian group (Z,+,−, 0) (where
− represents the unary minus). Each abelian group (G,�,�, e)
induces a change structure, namely (G,λg. G,�, λg h. g � (�h)),
where the change set for any g ∈ G is the whole G. Change
structures are more general, though, as the example with natural
numbers illustrates.

The abelian group on integers induces also a change structure on
integers, namely Ẑ = (Z, (λv. Z) ,+,−), where 	 and ⊕ have the
same definitions as for naturals.

Another useful example is the definition of an abelian group
(and the induced change structure) on bags with signed multiplici-
ties [14]. These are unordered collections where each element can
appear an integer number of times. Element can appear a nega-
tive number −n of times in a bag change to represent n removals
of that element. If ∅ represents the empty bag, union performs
bag union, and negate negates the multiplicities of elements, we
can define the abelian group (Bag ι, union,negate, ∅), which in-
duces the change structure B̂ag ι = (Bag ι, (λv. Bag ι) , union,
λx y. union x (negate y)).

Nil changes and derivatives. A particularly important change is
the nil change of a value:

Definition 2.2 (Nil change). Given a change structure V̂ and a
value v ∈ V , the change v 	 v is the nil change for v.

0v = v 	 v
The nil change for a value does indeed not change it.

Lemma 2.3 (Behavior of 0). Given a change structure V̂ and a
value v ∈ V , v ⊕ 0v = v.

Equipped with the preceding definition, we can now restate the
definition of derivatives from Eq. (1).

Definition 2.4 (Derivatives). Given change structures Â and B̂
and a function f ∈ A → B on the change sets of these change
structures, we call a binary function f ′ the derivative of f if for all
values a ∈ A and corresponding changes da ∈ ∆Aa,

f (a⊕A da) = (f a)⊕B
(
f ′ a da

)
.

To avoid parentheses, we give function application precedence
over ⊕ and 	 in the remainder of this paper. For instance, the
equation above can be written as f (a⊕A da) = f a⊕B f ′ a da .

2.2 Function changes
We will now demonstrate that we can construct change structures
for functions between change structures.

A higher-order function f can take other functions as arguments
or return them as results. Hence, the derivative of f will respectively
take function changes as arguments or return function changes as
results. For instance, f = λx. λy. x+ y is a higher-order function,
so its derivative gives us the change to the function g = λy. x+ y
in terms of x and its change dx .

The first important design decision is how to represent changes to
functions. If a function has type (σ → τ), we represent a change to
that function by a function of type σ → ∆σ → ∆τ . By syntactically
abusing ∆ as a type operator, we can write this as:

∆ (σ → τ) = σ → ∆σ → ∆τ. (2)

A function change df hence takes as input the original value
a and its change da . Once we define change structures for func-
tions, we will show that a function change produces as output the
difference between the updated output (f ⊕ df) (a⊕ da) and the
original output f a. This difference is caused by two changes: the
change to a given by da and the change of f itself given by df .

2 2013/11/16

https://www.dropbox.com/sh/3vg8pikd6wbgck5/SaZPRvqB2p
https://www.dropbox.com/sh/3vg8pikd6wbgck5/SaZPRvqB2p

ι ::= . . . (base types)
σ, τ ::= ι | τ → τ (types)

Γ ::= ε | Γ, x : τ (typing contexts)
c ::= . . . (constants)

s, t ::= c | λx. t | t t | x (terms)

(a) Syntax.

. . .

` c : τ
CONST

Γ1, x : τ,Γ2 ` x : τ
LOOKUP

Γ ` t : τ

Γ, x : σ ` t : τ

Γ ` λx. t : σ → τ
LAM

Γ ` s : σ → τ Γ ` t : σ

Γ ` s t : τ
APP

(b) Typing.

Figure 1. Our base calculus.

We now define the set of function changes for function f ∈
A→ B. To fulfill the definition of change structure (Definition 2.1),
function changes must produce valid changes for their codomain;
moreover, it must be possible to “flip” an element change da from a
function change to its associated function:

Definition 2.5. Given change structures Â and B̂, the set ∆A→Bf
contains all binary functions df so that

(a) df a da ∈ ∆B (f a) and
(b) f a⊕B df a da = f (a⊕A da)⊕B df (a⊕A da) 0(a⊕Ada)

for all values a ∈ A and corresponding changes da ∈ ∆Aa.

The change structure operations on functions can now be defined
as a distributive law.

Definition 2.6 (Operations on function changes). Given change
structures Â and B̂, the operations ⊕A→B and 	A→B are defined
as follows.

(f ⊕A→B df) v = f v ⊕B df v 0v

(f2 	A→B f1) v dv = f2 (v ⊕A dv)	B f1 v

All these definitions have been carefully set up to ensure that we
have in fact lifted change structures to function spaces.

Theorem 2.7. Given change structures Â and B̂, the quadruple
(A→ B,∆A→B ,⊕A→B ,	A→B) is a change structure, which we
denote by Â→ B̂.

As promised, we can show that a function change df reacts to
input changes da like the incremental version of f , that is, df a da
computes the change from f a to (f ⊕ df) (a⊕ da):

Lemma 2.8 (Incrementalization). Given change structures Â and
B̂, a function f ∈ A→ B and a value a ∈ A with corresponding
changes df ∈ ∆A→Bf and da ∈ ∆Aa, we have that

(f ⊕A→B df) (a⊕A da) = f a⊕B df a da .

The lemma is just a restatement of Property 2.5b, which uses ⊕
on functions as defined in Definition 2.6.

For instance, incrementalizing

app = λf. λx. f x

with respect to the input changes df , dx amounts to calling df on
the original second argument xold and on the change dx .

2.3 Nil changes are derivatives
Lemma 2.8 tells us about the form an incremental program may take.
If df doesn’t change f at all, that is, if f ⊕df = f , then Lemma 2.8
becomes

f (a⊕ da) = f a⊕ df a da.

It says that df computes the change upon the output of f given a
change da upon the input a of f . In other words, the nil change to a
function is exactly its derivative (see Definition 2.4):

∆ : ∗ → ∗ the type of changes
⊕ : τ → ∆τ → τ update a value with a change
	 : τ → τ → ∆τ the change between two values

Figure 2. Erased change structures on simple types.

Theorem 2.9 (Nil changes are derivatives). Given change structures
Â and B̂ and a function f ∈ A→ B, the change 0f is the derivative
f ′ of f .

In this section, we developed the theory of changes to define
formally what a derivative is (Definition 2.4) and to recognize that in
order to find the derivative of a function, we only have to find its nil
change (Theorem 2.9). Next, we want to provide a fully automatic
method for finding the nil change of a given function.

3. Incrementalizing λ-calculi
In this section, we show how to incrementalize an arbitrary program
in simply-typed λ-calculus. To this end, we define the source-to-
source transformation Derive. Using the denotational semantics J− K
we define later (in Sec. 3.4), we can specify Derive’s intended
behavior: to ensure Eq. (1), J Derive(f) K must be the derivative
of J f K for any closed term f : A→ B. We will overload the word
“derivative” and say simply that Derive(f) is the derivative of f .

It is easy to define derivatives of arbitrary functions as:

f ′ x dx = f (x⊕ dx)	 f x.

We could implement Derive following the same strategy. However,
the resulting incremental programs would be no faster than recom-
putation. We cannot do better for arbitrary mathematical functions,
since they are infinite objects which we cannot fully inspect. There-
fore, we resort to a source-to-source transformation on simply-typed
λ-calculus as defined in Fig. 1. The sets of base types and primitive
constants, as well as the typing rules for primitive constants, are on
purpose left unspecified and only defined by plugins — they are
extensions points. Defining different plugins allows to experiment
with sets of base types, associated primitives and incrementalization
strategies. We show an example plugin in our case study (Sec. 4.4).
In this section, we focus on the incrementalization of the features
that are shared among all instances of the plugin interface, that is,
function types and the associated syntactic forms, λ-abstraction,
application and variable references. Throughout the section, we
collect requirements on the plugins that instantiate the framework.
Definitions provided by the plugin are replaced, in figures, by el-
lipses (“. . .”). Satisfying these requirements is sufficient to ensure
correct incrementalization.

3.1 Change types and erased change structures
We developed the theory of change structures in the previous section
to guide our implementation of Derive. By Theorem 2.9, Derive has
only to find the nil change to the program itself, because nil changes
are derivatives. However, the theory of change structures is not

3 2013/11/16

∆ (σ → τ) = σ → ∆σ → ∆τ

	σ→τ = λg f x dx . (g (x⊕ dx))	 (f x)

⊕σ→τ = λf df x. (f x)⊕ (df x (x	 x))

Figure 3. The erased change structures for function types.

directly applicable to the simply-typed λ-calculus, because a precise
implementation of change structures requires dependent types. For
instance, we cannot describe the set of changes ∆τv precisely as
a non-dependent type, because it depends on the value we plan to
update with these changes.

To work around this limitation of our object language, we use a
form of erasure of dependent types to simple types. In Fig. 2 and
Fig. 4(a), we define change types ∆τ as an approximate description
of change sets ∆τv (Fig. 4(b)). In particular, all changes in ∆τv
correspond to values of terms with type ∆τ , but not necessarily the
other way around. For instance, in the change structure for natural
numbers described in Sec. 2.1, we would have ∆Nat = Int, even
though not every integer is a change for every natural number. For
primitive types ι, ∆ι and its associated ⊕ and 	 operator must
be provided by the plugin developer. For function types, erased
change structures are given by Fig. 3. Erasing dependent types in
all components of a change structure, we obtain erased change
structures, which represent change structures as simply-typed λ-
terms where ⊕ and 	 are families of λ-terms.

Erased change structures are not change structures themselves.
However, we will show how change structures and erased changes
structures have “almost the same” behavior (Sec. 3.6). We will hence
be able to apply our theory of changes.

3.2 Differentiation
When f is a closed term of function type, Derive(f) should be its
derivative. More in general, as discussed, we want that when t is
a closed term, Derive(t) is its nil change. Since Derive recurses on
open terms, we need a more general specification. We require that
if Γ ` t : τ , then Derive(t) represents the change in t (of type ∆τ)
in terms of changes to the values of its free variables. As a special
case, when t is a closed term, there is no free variable to change;
hence, the change to t will be as desired the nil change of t.

The following typing rule shows the static semantics of Derive:

Γ ` t : τ

Γ,∆Γ ` Derive(t) : ∆τ
DERIVE

We see that Derive(t) has access both to the free variables in t
(from Γ) and to their changes (from ∆Γ, defined in Fig. 4(d)). For
example, if a well-typed term t contains x free, then Γ contains an
assumption x : τ for some τ and ∆Γ contains the corresponding
assumption dx : ∆τ . Hence, Derive(t) can access the change of x
by using dx . For simplicity, we assume that the original program
contains no variable names that start with d .The definition of Derive
will ensure that the dx variables are bound if the original term is
closed.

Let us analyzes each case of the definition of Derive(u) (Fig. 4(g)):

• If u = x, Derive(x) must be the change of x, that is dx .
• If u = λx. t, Derive(t) is the change of u given the change in

its free variables. The change of u is then the change of t as a
function of the base input x and its change dx , with respect to
changes in other open variables. Hence, we simply need to bind
dx by defining Derive(λx. t) = λx. λdx . Derive(t).
• If u = s t, Derive(s) is the change of s as a function of its

base input and change. Hence, we simply apply Derive(s) to the

actual base input t and change Derive(t), giving Derive(s t) =
Derive(s) t Derive(t).
• If t = c: since c is a closed term, its change is a nil change,

hence (by Theorem 2.9) c’s derivative. We can obtain a correct
derivative for constants by setting:

Derive(c) = c	 c = 0c = c′

This definition is inefficient for functional constants; hence
plugins must provide derivatives of the primitives they define.

This might seem deceptively simple. But λ-calculus only imple-
ments binding of values, leaving “real work” to primitives; likewise,
differentiation for λ-calculus only implement binding of changes,
leaving “real work” to derivatives of primitives. However, our sup-
port for λ-calculus allows to glue the primitives together.

We have now informally derived the definition of Derive
(Fig. 4(g)) from its specification (Eq. (1)) and its typing. But for-
mally speaking, we have defined Derive, hence we must prove that
Derive satisfies Eq. (1). This proof is discussed in the remainder of
the section.

3.3 Architecture of the proof
Derive(t) is defined using change types. As discussed in Sec. 3.1,
change types impose on their members less restrictions than cor-
responding change structures – they contain “junk” (such as the
change −5 for the natural number 3). We cannot constrain the be-
havior of Derive(t) on such junk; a direct correctness proof fails. To
avoid this problem, our proof defines a version of Derive which uses
change structures instead.

To this end, we first present a standard denotational semantics
J− K for simply-typed λ-calculus. Using our theory of changes,
we associate change structures to our domains. We define a non-
standard denotational semantics J− K∆, which is analogous to
Derive but operates on elements of change structures, so that it
needn’t deal with junk. As a consequence, we can prove that J t K∆

is the derivative of J t K: this is our key result.
Finally, we define a correspondence between change sets and

domains associated with change types, and show that whenever
J t K∆ has a certain behavior on an input, J Derive(t) K has the
corresponding behavior on the corresponding input. Our correctness
property follows as a corollary.

3.4 Denotational semantics
In order to prove that incrementalization preserves the meaning of
terms, we define a denotational semantics of the object language.
We first associate a domain with every type, given the domains of
base types provided by the plugin. Since our calculus is strongly
normalizing and all functions are total, we can avoid using domain
theory to model partiality: our domains are simply sets. Likewise,
we can use functions as the domain of function types.

Definition 3.1 (Domains). The domain J τ K of a type τ is defined
as in Fig. 4(c).

Given this domain construction, we can now define an evaluation
function for terms. The plugin has to provide the evaluation function
for constants. In general, the evaluation function J t K computes the
value of a well-typed term t given the values of all free variables in
t. The values of the free variables are provided in an environment.

Definition 3.2 (Environments). An environment ρ assigns values
to the names of free variables.

ρ ::= ε | ρ, x = v

We write J Γ K for the set of environments that assign values to
the names bound in Γ (see Fig. 4(f)).

4 2013/11/16

∆τ dv , df ∈ ∆τv v, f ∈ J τ K

∆ι = . . .

∆ (σ → τ) = σ → ∆σ → ∆τ

∆ιv = . . . ⊆ J ∆ι K

∆(σ→τ)f = {df ∈ (x : Jσ K)→ ∆σx→ ∆τ (f x) |
(f ⊕A→B df) (a⊕A da) = f a⊕B df a da}

J ι K = . . .

Jσ → τ K = Jσ K→ J τ K

(a) Change types. (b) Change values. (c) Standard values.

∆Γ dρ ∈ ∆Γρ ρ ∈ J Γ K

∆ε = ε

∆ (Γ, x : τ) = ∆Γ, dx : ∆τ

∆ε∅ = {∅}
∆(Γ,x:τ) (ρ, x = v) = {(dρ, dx = dv) | dρ ∈ ∆Γρ ∧ dv ∈ ∆τv}

J ε K = {∅}
J Γ, x : τ K = {(ρ, x = v) | ρ ∈ J Γ K ∧ v ∈ J τ K}

(d) Change contexts. (e) Change environments. (f) Standard environments.

∆t J t K∆ρ dρ J t K ρ

Derive(c) = . . .

Derive(λx. t) = λx dx . Derive(t)

Derive(s t) = Derive(s) t Derive(t)

Derive(x) = dx

J c K∆ρ dρ = . . .

Jλx. t K∆ρ dρ = λv dv . J t K∆(ρ, x = v) (dρ, dx = dv)

J s t K∆ρ dρ = (J s K∆ρ dρ) (J t K ρ) (J t K∆ρ dρ)

Jx K∆ρ dρ = lookup dx in dρ

J c K ρ = . . .

Jλx. t K ρ = λv. J t K (ρ, x = v)

J s t K ρ = (J s K ρ) (J t K ρ)

Jx K ρ = lookup x in ρ

(g) Differentiation. (h) Differential evaluation. (i) Standard evaluation.

Figure 4. Standard and differential behavior of the simply-typed λ-calculus. The left column defines differentiation as a source-to-source
transformation. The right column defines the standard semantics of the simply-typed lambda calculus. The middle column connects these
artifacts via a differential semantics that maps λ-terms to the derivative of their standard semantics.

Definition 3.3 (Evaluation). Given Γ ` t : τ , the meaning of t is
defined by the function J t K of type J Γ K→ J τ K in Fig. 4(i).

This is the standard semantics of the simply-typed λ-calculus.
We can now specify what it means to incrementalize the simply-
typed λ calculus with respect to this semantics.

3.5 Change semantics
The informal specification of differentiation is to map changes in
a program’s input to changes in the program’s output. In order to
formalize this specification in terms of change structures and the
denotational semantics of the object language, we now define a
non-standard denotational semantics of the object language that
computes changes. The evaluation function J t K∆ computes how
the value of a well-typed term t changes given both the values and
the changes of all free variables in t. In the special case that none
of the free variables change, J t K∆ computes the nil change. By
Theorem 2.9, this is the derivative of J t K which maps changes to
the input of J t K to changes of the output of J t K, as required.

First, we define a change structure on J τ K for all τ . The carrier
∆τ of these change structures will serve as non-standard domain for
the change semantics. The plugin provides a change structure Ĉι on
base type ι such that ∀v.∆ιv ⊆ J ∆ι K.

Definition 3.4 (Changes). Given a type τ , we define a change
structure Ĉτ for J τ K by induction on the structure of τ . If τ is a
base type ι, then the result Ĉι is supplied by the plugin. Otherwise

we use the construction from Theorem 2.7 and define

Ĉσ→τ = Ĉσ → Ĉτ .

To talk about the derivative of J t K, we need a change structure
on its domain, that is on the set of environments. Since environments
are (heterogeneous) lists of values, we can lift operations on change
structures to change structures on environments, acting pointwise in
the obvious way.

Definition 3.5 (Change environments). Given a context Γ, we
define a change structure ĈΓ on the corresponding environments
J Γ K and change environments ∆Γρ in Fig. 4(e).

The operations ⊕ρ and 	ρ are defined as follows.

ε⊕ ε = ε

(ρ, x = v)⊕ (dρ, dx = dv) = (ρ⊕ dρ) , x = (v ⊕ dv)

ε	 ε = ε

(ρ2, x = v2)	 (ρ1, x = v1) = (ρ2 	 ρ1) , x = (v2 	 v1)

The properties in Definition 2.1 follow directly from the same
properties for the underlying change structures Ĉτ .

At this point, we can define the change semantics of terms and
prove that J t K∆ it is the derivative of J t K. For each constant c, the
plugin provides J c K∆, the derivative of J c K.

Definition 3.6 (Change semantics). The function J t K∆ is defined
in Fig. 4(h).

5 2013/11/16

Lemma 3.7. Given Γ ` t : τ , J t K∆ is the derivative of J t K.

3.6 Correctness of differentiation
We can now prove that the behavior of J Derive(t) K is consistent with
the behavior of J t K∆. This leads us to the proof of the correctness
theorem mentioned in the introduction.

The logical relation [18, Chapter 8] of erasure captures the idea
that an element of a change structure stays almost the same after we
erase all traces of dependent types from it.

Definition 3.8 (Erasure). Let dv ∈ ∆τv and dv ′ ∈ J ∆τ K. We say
dv erases to dv ′, or dv ∼vτ dv ′, if one of the following holds:

(a) τ is a base type and dv = dv ′.
(b) τ = σ0 → σ1 and for all w, dw , dw ′ such that dw ∼wσ0 dw ′,

we have (dv w dw) ∼(v w)
σ1 (dv ′ w dw ′).

Sometimes we shall also say that dv ∈ ∆τv erases to a closed
term dt : ∆t, in which case we mean dv erases to (J dt K ∅).1

The following lemma makes precise what we meant by “almost
the same”.

Lemma 3.9. Suppose dv ∼vτ dv ′. If⊕′ is the erased version of the
update operator ⊕ of the change structure of τ (Sec. 3.1), then

v ⊕ dv = v ⊕′ dv ′.
It turns out that J t K∆ and Derive(t) are “almost the same”. For

closed terms, we make this precise by:

Lemma 3.10. If (t : τ) is closed, then (J t K∆∅ ∅) erases to
Derive(t).

We omit for lack of space a more general version of Lemma 3.10,
which holds also for open terms, but requires defining erasure
on environments. The main correctness theorem is a corollary of
Lemmas 3.7, 3.9 and 3.10.

Theorem 3.11 (Correctness of differentiation). Let f : σ → τ be
a closed term of function type. For every closed base term s : σ
and for every closed change term ds : ∆σ such that some change
dv ∈ ∆σ J s K erases to ds , we have

f (s⊕ ds) ∼= (f s)⊕ (Derive(f) s ds) ,

where ∼= is denotational equality (a ∼= b iff J a K = J b K).

Theorem 3.11 is a more precise restatement of Eq. (1). Requiring
the existence of dv ensures that ds evaluates to a change, and not to
junk in J ∆σ K.

3.7 Plugins
Both our correctness proof and the differentiation framework (which
is the basis for our implementation) are parametric in the plugin.
Instantiating the differentiation framework requires a differentiation
plugin; instantiating the correctness proof for it requires a proof
plugin.

To allow executing and differentiating λ-terms, a differentiation
plugin must provide:

• base types, and for each base type ι, the erased change structure
of ι as specified in Fig. 2,
• primitives, and for each primitive c, the term Derive(c).

To instantiate the correctness proof to a plugin, one must provide
additional definitions and lemmas. For each base type ι, a proof
plugin must provide:

1 To evaluate a closed term t, we need no environment entries, so the empty
environment ∅ suffices: (J t K ∅) is the value of t in the empty environment,
and (J t K∆∅ ∅) is the value of t using the change semantics, the empty
environment and the empty change environment.

• a semantic domain J ι K,

• a change structure Ĉι such that ∀v.∆ιv ⊆ J ∆ι K,

• a proof that Ĉι erases to the corresponding erased change
structure in the differentiation plugin.

For each primitive c : τ , the proof plugin must provide:

• its value J c K in the domain J τ K,

• its derivative (J c K∆∅ ∅)1 in the change set of τ ,
• a proof that (J c K∆∅ ∅) erases to the term Derive(c).

To show that the interface for proof plugins can be implemented,
we wrote a small proof plugin with integers and bags of integers.
To show that differentiation plugins are practicable, we have imple-
mented the transformation and a differentiation plugin which allows
the incrementalization of non-trivial programs. This is presented in
the next section.

4. Differentiation in practice
In practice, successful incrementalization requires both correctness
and performance of the derivatives. Correctness of derivatives is
guaranteed by the theoretical development the previous sections,
together with the interface for differentiation and proof plugins,
whereas performance of derivatives has to come from careful design
and implementation of differentiation plugins.

4.1 The role of differentiation plugins
Users of our approach need to (1) choose which base types and
primitives they need, (2) implement suitable differentiation plugins
for these base types and primitives, (3) rewrite (relevant parts of)
their programs in terms of these primitives and (4) arrange for their
program to be called on changes instead of updated inputs.

As discussed in Sec. 3.2, differentiation supports abstraction,
application and variables, but since computation on base types is
performed by primitives for those types, efficient derivatives for
primitives are essential for good performance.

To make such derivatives efficient, change types must also have
efficient implementations, and allow describing precisely what
changed. The efficient derivative of sum in Sec. 1 is possible only
if bag changes can describe deletions and insertions, and integer
changes can describe additive differences.

For many conceivable base types, we do not have to design
the differentiation plugins from scratch. Instead, we can reuse
the large body of existing research on incrementalization in first-
order and domain-specific settings. For instance, we reuse the
approach from Gluche et al. [11] to support incremental bags and
maps. By wrapping a domain-specific incrementalization result in
a differentiation plugin, we adapt it to be usable in the context of
a higher-order and general-purpose programming language, and in
interaction with other differentiation plugins for the other base types
of that language.

For base types with no known incrementalization strategy, the
precise interfaces for differentiation and proof plugins can guide the
implementation effort. These interfaces could also from the basis
for a library of differentiation plugins that work well together.

Rewriting whole programs in our language would be an excessive
requirements. Instead, we embed our object language as an EDSL
in some more expressive meta-language (Scala in our case study),
so that embedded programs are reified. The embedded language can
be made to resemble the metalanguage [21]. To incrementalize a
part of a computation, we write it in our embedded object language,
invoke Derive on the embedded program, optionally optimize the
resulting programs and finally invoke them. The metalanguage also
acts as a macro system for the object language, as usual. This allows

6 2013/11/16

histogram :: Map Int (Bag word)→ Map word Int
histogram = mapReduce groupOnBags additiveGroupOnIntegers histogramMap histogramReduce

where additiveGroupOnIntegers = Group (+) (λn → −n) 0
histogramMap = foldBag groupOnBags (λn → singletonBag (n, 1))
histogramReduce = foldBag additiveGroupOnIntegers id

-- Precondition:
-- For every key1 :: k1 and key2 :: k2, the terms mapper key1 and reducer key2 are homomorphisms.
mapReduce :: Group v1 → Group v3 → (k1 → v1 → Bag (k2, v2))→ (k2 → Bag v2 → v3)→ Map k1 v1 → Map k2 v3
mapReduce group1 group3 mapper reducer = reducePerKey ◦ groupByKey ◦mapPerKey

where mapPerKey = foldMap group1 groupOnBags mapper
groupByKey = foldBag (groupOnMaps groupOnBags) (λ(key, val)→ singletonMap key (singletonBag val))
reducePerKey = foldMap groupOnBags (groupOnMaps group3) (λkey bag → singletonMap key (reducer key bag))

Figure 5. The λ-term histogram with Haskell-like syntactic sugar. additiveGroupOnIntegers is the group on integers described in Sec. 2.1.

us to simulate polymorphic collections such as (Bag ι) even though
the object language is simply-typed; technically, our plugin exposes
a family of base types to the object language.

4.2 Predicting nil changes
Handling changes to all inputs can induce excessive overhead in
incremental programs[2]. It is also often unnecessary; for instance,
the function argument of fold in Sec. 1 does not change since it is
a closed subterm of the program, so fold will receive a nil change
for it. A (conservative) static analysis can detect changes that are
guaranteed to be nil at runtime. We can then specialize derivatives
that receive this change, so that they need not inspect the change at
runtime.

For our case study, we have implemented a simple static analysis
which detects and propagates information about closed terms. The
analysis is not interesting and we omit details for lack of space.

4.3 Self-maintainability
In databases, a self-maintainable view [12] is a function that can
update its result from input changes alone, without looking at the
actual input. By analogy, we call a derivative self-maintainable if
it uses no base parameters, only their changes. Self-maintainable
derivatives describe efficient incremental computations: since they
do not use their base input, their running time does not have to
depend on the input size.

For instance, union on bags is self-maintainable with the
change structure B̂ag ι described in Sec. 2.1; its derivative
Derive(union) = (λx dx y dy . union dx dy) does not use the
base inputs x and y. On the other hand, foldBag is not necessarily
self-maintainable. However, (foldBag f) is self-maintainable if we
can predict that changes to f are going to be nil. We take advantage
of this by implementing a specialized derivative.

To avoid the recomputation of base arguments for self-maintainable
derivatives (which never need them), we currently employ lazy eval-
uation. Since we could use standard techniques for dead-code
elimination [7] instead, laziness is not central to our approach,
however. Derivatives which are not self-maintainable need their
base arguments, which can be expensive to compute. Since they are
also computed while running the base program, one could reuse
the previously computed value through memoization or extensions
of static caching (as discussed in Sec. 5). We leave implementing
these optimizations for future work. As a consequence, our current
implementation delivers good results only if most derivatives are
self-maintainable.

4.4 Case study
To demonstrate that IλC can speed up realistic programs, we per-
form a case study on a nontrivial one. We take the MapReduce-based
skeleton of the word-count example, as described by Lämmel [15].
We define a suitable differentiation plugin, adapt the program to use

it and show that incremental computation is faster than recomputa-
tion on it. We designed and implemented the differentiation plugin
following the requirements on the corresponding proof plugin, even
though we did not yet formally (for example, in Agda) define the
proof plugin. For lack of space, we focus on base types which are
crucial for our example and its performance, that is, collections.
The plugin also implements tuples, tagged unions, Booleans and
integers with the usual introduction and elimination forms, with few
optimizations for their derivatives.

wordcount takes a map from document IDs to documents and
produces a map from words appearing in the input to the count of
their appearances, that is, a histogram:

wordcount : Map ID Document→ Map Word Int

For simplicity, instead of modeling strings, we model documents
as bags of words and document IDs as integers. Hence, what we
implement is:

histogram : Map Int (Bag a)→ Map a Int

We model words by integers (a = Int), but treat them paramet-
rically. Other than that, we adapt directly Lämmel’s code to our
language. Figure 5 shows the λ-term histogram .

Figure 6 shows a simplified Scala implementation of the primi-
tives used in Fig. 5. As bag primitives, we provide constructors and
a fold operation, following Gluche et al. [11]. The constructors for
bags are ∅ (constructing the empty bag), singleton (constructing a
bag with one element), union (constructing the union of two bags)
and negate (negate b constructs a bag with the same elements as b
but negated multiplicities); all but singleton represent abelian group
operations. Unlike for usual ADT constructors, the same bag can be
constructed in different ways, which are equivalent by the equations
defining abelian groups; for instance, since union is commutative,
union x y = union y x. Folding on a bag will represent the bag
through constructors in an arbitrary way, and then replace construc-
tors with arguments; to ensure a well-defined result, the arguments
of fold should respect the same equations, that is, they should form
an abelian group; for instance, the binary operator should be com-
mutative. Hence, the fold operator foldBag can be defined to take a
function (corresponding to singleton) and an abelian group (for the
other constructors). foldBag is then defined by equations:

foldBag : Group τ → (σ → τ)→ Bag σ → τ

foldBag g@(_,�,�, e) f ∅ = e

foldBag g@(_,�,�, e) f (union b1 b2) = foldBag g f b1

� foldBag g f b1

foldBag g@(_,�,�, e) f (negate b) = � (foldBag g f b)

foldBag g@(_,�,�, e) f (singleton v) = f v

If g is a group, these equations specify foldBag g precisely [11].
Moreover, since foldBag g f satisfies the first three equations, it

7 2013/11/16

// Abelian groups
abstract class Group[A] {
def merge(value1: A, value2: A): A
def inverse(value: A): A
def zero: A

}

// Bags
type Bag[A] = collection.immutable.HashMap[A, Int]

def groupOnBags[A] = new Group[Bag[A]] {
def merge(bag1: Bag[A], bag2: Bag[A]) = . . .
def inverse(bag: Bag[A]) = bag map {
case (value, count) ⇒ (value, -count)

}
def zero = collection.immutable.HashMap()

}

def foldBag[A, B](group: Group[B], f: A ⇒ B, bag: Bag[A]): B =
bag.flatMap {
case (x, c) if c ≥ 0 ⇒ Seq.fill(c)(f(x))
case (x, c) if c < 0 ⇒ Seq.fill(-c)(group.inverse(f(x)))

}.fold(group.zero)(group.merge)

// Maps
type Map[K, A] = collection.immutable.HashMap[K, A]

def groupOnMaps[K, A](group: Group[A]) = new Group[Map[K, A]] {
def merge(dict1: Map[K, A], dict2: Map[K, A]): Map[K, A] =
(dict1 merged dict2) {
case ((k, v1), (_, v2)) ⇒ (k, group.merge(v1, v2))

} filter {
case (k, v) ⇒ v 6= group.zero

}

def inverse(dict: Map[K, A]): Map[K, A] = dict map {
case (k, v) ⇒ (k, group.inverse(v))

}

def zero = collection.immutable.HashMap()
}

// The general map fold
def foldMapGen[K, A, B](zero: B, merge: (B, B) ⇒ B)
(f: (K, A) ⇒ B, dict: Map[K, A]): B =
dict.map(Function.tupled(f)).fold(zero)(merge)

// By using foldMap instead of foldMapGen, the user promises that
// f k is a homomorphism from groupA to groupB for each k : K.
def foldMap[K, A, B](groupA: Group[A], groupB: Group[B])
(f: (K, A) ⇒ B, dict: Map[K, A]): B =
foldMapGen(groupB.zero, groupB.merge)(f, dict)

Figure 6. A Scala implementation of primitives for bags and maps.
In the code, we call �, � and e respectively merge, inverse, and
zero. We also omit the relatively standard primitives.

satisfies the definition of an abelian group homomorphism between
the abelian group on bags and the group g (because those equations
coincide with the definition). Figure 6 shows an implementation
of foldBag as specified above. Moreover, all functions which
deconstruct a bag can be expressed in terms of foldBag with
suitable arguments. For instance, we can sum the elements of a
bag of integers with foldBag gZ (λx. x), where gZ is the abelian
group on integers defined in Sec. 2.1. Users of foldBag can define
different abelian groups to specify different operations (for instance,
to multiply floating-point numbers).

If g and f do not change, foldBag g f has a self-maintainable
derivative. By the equations above,

foldBag g f (b⊕ db)

= foldBag g f(union b db)

= foldBag g f b� foldBag g f db

= foldBag g f b⊕GroupChange g (foldBag g f db)

We will describe the GroupChange change constructor in a mo-
ment. Before that, we note that as a consequence, the derivative of
foldBag g f is

λb db. GroupChange g (foldBag g f db) ,

and we can see it does not use b: as desired, it is self-maintainable.
Additional restrictions are require to make foldMap’s derivative
self-maintainable. Those restrictions require the precondition on
mapReduce in Fig. 5. foldMapGen has the same implementation
but without those restrictions; as a consequence, its derivative is not
self-maintainable, but it is more generally applicable. Lack of space
prevents us from giving more details.

To define GroupChange, we need a suitable erased change
structure on τ , such that ⊕ will be equivalent to �. Since there
might be multiple groups on τ , we allow the changes to specify a
group, and have ⊕ delegate to �:

∆τ = Replace τ | GroupChange (AbelianGroup τ) τ

v ⊕ (Replace u) = u

v ⊕ (GroupChange (•, inverse, zero) dv) = v • dv
v 	 u = Replace v

That is, a change between two values is either simply the new value
(which replaces the old one, triggering recomputation), or their
difference (computed with abelian group operations, like in the
changes structures for groups from Sec. 2.1. The operator 	 does
not know which group to use, so it does not take advantage of the
group structure. However, foldBag is now able to generate a group
change.

4.5 Benchmarks
Benchmarking our case study shows that IλC can offer order-of-
magnitude speedups for a realistic higher-order program.

Benchmarking setup We run object language programs by gen-
erating corresponding Scala code. To ensure rigorous benchmark-
ing [10], we use the Scalameter benchmarking library. To show
that the performance difference from the baseline is statistically
significant, we show 99%-confidence intervals in graphs.

We verify Eq. (1) experimentally by checking that the two sides
of the equation always evaluate to the same value.

Input generation Inputs are randomly generated to resemble
English words over all webpages on the internet: The vocabulary
size and the average length of a webpage stay relatively the same,
while the number of webpages grows day by day. To generate a
size-n input of type (Map Int (Bag Int)), we generate n random
numbers between 1 and 1000 and distribute them randomly in
n/1000 bags. Changes are randomly generated to resemble edits.
A change has 50% probability to delete a random existing number,
and has 50% probability to insert a random number at a random
location.

Experimental units Thanks to Eq. (1), both recomputation
f (a⊕ da) and incremental computation (f a)⊕ (Derive(f) a da)
produce the same result. To show that derivatives are faster, we
compare these two computations. To compare with recomputation,
we measure the aggregated running time for running the derivative
on the change and for updating the original output with the result of
the derivative.

4.6 Experimental results
We present our results in Fig. 7. As expected, the runtime of
incremental computation is essentially constant in the size of the
input, while the runtime of recomputation is linear in the input size.
Hence, on our biggest inputs incremental computation is over 104

times faster.

8 2013/11/16

0.1	

1	

10	

100	

1000	

10000	

1k	
 2k	
 4k	
 8k	
 16k	
 32k	
 64k	
 128k	
 256k	
 512k	
 1024k	
 2048k	
 4096k	

Run$me	
 (ms)	

Input	
 size	

Incremental	
 Recomputa:on	

Figure 7. Performance results in log-log scale, with input size on
the x-axis and runtime in ms on the y-axis. Confidence intervals are
shown by the whiskers; most whiskers are simply too small to be
visible.

Derivative time is in fact slightly irregular for the first few
inputs, but this irregularity decreases slowly with increasing warmup
cycles. In the end, for derivatives we use 104 warmup cycles.
With fewer warmup cycles, running time for derivatives decreases
significantly during execution, going from 2.6ms for n = 1000 to
0.2ms for n = 512000. Hence, we believe extended warmup is
appropriate, and the changes do not affect our general conclusions.
Considering confidence intervals, in our experiments the running
time for derivatives varies between 0.139ms and 0.378ms.

In our current implementation, the code of the generated deriva-
tives can become quite big. For the histogram example (which is
around 1KB of code), a pretty-print of its derivative is around 40KB
of code. The function application case in Fig. 4(g) can lead to a
quadratic growth in the worst case. We believe that the code size
of the derivative can be reduced again by common subexpression
elimination, but we did not yet pursue that option.

Summary Our results show that the incrementalized program runs
in essentially constant time and hence orders of magnitude faster
than the alternative of recomputation from scratch.

5. Related work
Existing work on incremental computation can be divided into two
groups: Static incrementalization and dynamic incrementalization.
Static approaches analyze a program statically and generate an
incremental version of it. Dynamic approaches create dynamic
dependency graphs while the program runs and propagate changes
along these graphs.

The trade-off between the two is that static approaches have the
potential to be faster because no dependency tracking at runtime is
needed, whereas dynamic approaches can support more powerful
programming languages. The quick summary of how IλC fits
into this landscape is that it pushes the envelope with regard
to the expressive power of languages whose programs can be
incrementalized statically.

In the remainder of this section, we analyze the relation to the
most closely related prior works. Ramalingam and Reps [20] and
Acar et al. [3] discuss further related work.

5.1 Dynamic approaches
One of the most advanced dynamic approach to incrementalization is
self-adjusting computation, which has been applied to Standard ML
and large subsets of C [2, 13]. In this approach, programs execute
on the original input in an enhanced runtime environment that
tracks the dependencies between values in a dynamic dependence
graph [3]; intermediate results are memoized. Later, changes to the
input propagate through dependency graphs from changed inputs to
results, updating both intermediate and final results; this processing
is often more efficient than recomputation.

However, creating dynamic dependence graphs imposes a large
constant-factor overhead during runtime, ranging from 2 to 30 in
reported experiments [4, 5], and affecting the initial run of the
program on its base input. Acar et al. [5] show how to support
high-level data types in the context of self-adjusting computation;
however, the approach still requires expensive runtime bookkeeping
during the initial run. Like other static approaches, our work needs
no modified runtime environment and has no overhead during
base computation, though it may be less efficient when processing
changes. This pays off if the initial input is big compared to its
changes.

Chen et al. [8] have developed a static transformation for purely
functional programs, but this transformation just provides a superior
inferface to use the runtime support with less boilerplate, and does
not reduce this performance overhead. Hence, it is still a dynamic
approach and should not be confused with the transformation we
show in this work.

Another property of self-adjusting computation is that incremen-
talization is only efficient if the program has a suitable computation
structure. For instance, a program folding the elements of a bag
with a left or right fold will not have efficient incremental behavior;
instead, it’s necessary that the fold be shaped like a balanced tree. In
general, incremental computations become efficient only if they are
stable [1]. Hence one may need to massage the program to make
it efficient. Our methodology is different: Since we do not aim to
incrementalize arbitrary programs written in standard programming
languages, we can select primitives that have efficient derivatives
and thereby require the programmer to use them.

Functional reactive programming [9] can also be seen as a
dynamic approach to incremental computation; recent work by
Maier and Odersky [17] has focused on speeding up reactions to
input changes by making them incremental on collections. Dynamic
techniques are also used by Willis et al. [23] to incrementalize JQL
queries.

5.2 Static approaches
Static approaches analyze a program at compile-time and produce
an incremental version that efficiently updates the output of the
original program according to changing inputs.

Static approaches have the potential to be more efficient than
dynamic approaches, because no bookkeeping at runtime is required.
Also, the computed incremental versions can often be optimized
using standard compiler techniques such as constant folding or
inlining. However, none of them support first-class functions; some
approaches have further restrictions.

Our aim is to apply static incrementalization to more expressive
languages; in particular, IλC supports first-class functions and an
open set of base types with associated primitive operations.

5.2.1 Finite differencing
Our work and terminology is partially inspired by finite differenc-
ing [19]. Paige and Koenig [19] present derivatives for a first-order
language with a fixed set of primitives. This work has inspired vari-
ants of finite differencing for queries on relational data, such as
algebraic differencing [12], and delta processing [14].

9 2013/11/16

However, most work in the database community is specialized
to relational databases, hence does not support nested data (either
nested collections, or algebraic data types). Incremental support is
further designed monolithically for a whole language, rather than
piecewise. The languages that are considered do not support first-
class functions.

More general (non-relational) data types are considered in the
work by Gluche et al. [11]; our support for bags and the use
of groups is inspired by their work, but their architecture is still
rather restrictive: they lack support for function changes and restrict
incrementalization to self-maintainable views.

5.2.2 Static memoization
Liu [16]’s work allows to incrementalize a first-order base program
f(xold) to compute f(xnew), knowing how xnew is related to xold.
To this end, they transform f(xnew) into an incremental program
which reuses the intermediate results produced while computing
f(xold), the base program. To this end, (i) first the base program
is transformed to save all its intermediate results, then (ii) the
incremental program is transformed to reuse those intermediate
results, and finally (iii) intermediate results which are not needed
are pruned from the base program. However, to reuse intermediate
results, the incremental program must often be rearranged, using
some form of equational reasoning, into some equivalent program
where partial results appear literally. For instance, if the base
program f uses a left fold to sum the elements of a list of integers
xold, accessing them from the head onwards, and xnew prepends a
new element h to the list, at no point does f(xnew) recompute the
same results. But since addition is commutative on integers, we can
rewrite f(xnew) as f(xold) + h. The author’s CACHET system will
try to perform such rewritings automatically, but it is not guaranteed
to succeed. Similarly, CACHET will try to synthesize any additional
results which can be computed cheaply by the base program to help
make the incremental program more efficient.

Since it is hard to fully automate such reasoning, we move
equational reasoning to the plugin design phase. A plugin provides
general-purpose higher-order primitives for which the plugin authors
have devised efficient derivatives (by using equational reasoning
in the design phase). Then, the differentiation algorithm computes
incremental versions of user programs without requiring further user
intervention. It would be useful to combine IλC with some form of
static caching to make the computation of derivatives which are not
self-maintainable more efficient. We plan to do so in future work.

6. Conclusions and future work
We have presented IλC, an approach to lifting incremental com-
putations on first-order programs to incremental computations on
higher-order programs. We have presented a machine-checked cor-
rectness proof of a formalization of IλC and an initial experimental
evaluation in the form of an implementation, a sample plugin for
maps and bags, and a non-trivial example that was incrementalized
successfully and efficiently.

Our work opens several avenues of future work. Our current
implementation is not very efficient on derivatives that are not
self-maintainable. However, as discussed (Sec. 3), we plan to
investigate approaches to memoizing intermediate results to address
this limitation. Our next step will be to develop language plugins
which have efficient non-self-maintainable primitives.

Another area of future work is adding support for algebraic data
types (including recursive types), polymorphism, subtyping, general
recursion and other collection types. While support for algebraic
data types could subsume support for specific collections, many
collections have additional algebraic properties that enable faster
incrementalization (like bags). Even lists (which have less algebraic
properties) can benefit from special support [17].

Finally, we intend to perform a full and thorough experimental
evaluation to demonstrate that IλC can incrementalize large-scale
practical programs.

References
[1] U. A. Acar. Self-Adjusting Computation. PhD thesis, Princeton

University, 2005.
[2] U. A. Acar. Self-adjusting computation: (an overview). In PEPM,

pages 1–6. ACM, 2009.
[3] U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive functional

programming. TOPLAS, 28(6):990–1034, Nov. 2006.
[4] U. A. Acar, G. E. Blelloch, M. Blume, R. Harper, and K. Tangwongsan.

An experimental analysis of self-adjusting computation. TOPLAS, 32
(1):3:1–3:53, Nov. 2009.

[5] U. A. Acar, G. Blelloch, R. Ley-Wild, K. Tangwongsan, and
D. Turkoglu. Traceable data types for self-adjusting computation.
In PLDI, pages 483–496. ACM, 2010.

[6] Agda Development Team. The Agda Wiki. http://wiki.portal.
chalmers.se/agda/, 2013. Accessed on 2013-10-30.

[7] A. W. Appel and T. Jim. Shrinking lambda expressions in linear time.
JFP, 7:515–540, 1997.

[8] Y. Chen, J. Dunfield, M. A. Hammer, and U. A. Acar. Implicit self-
adjusting computation for purely functional programs. In ICFP, pages
129–141. ACM, 2011.

[9] C. Elliott and P. Hudak. Functional reactive animation. In ICFP, pages
263–273. ACM, 1997.

[10] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous Java
performance evaluation. In OOPSLA, pages 57–76. ACM, 2007.

[11] D. Gluche, T. Grust, C. Mainberger, and M. Scholl. Incremental
updates for materialized OQL views. In Deductive and Object-Oriented
Databases, volume 1341 of LNCS, pages 52–66. Springer, 1997.

[12] A. Gupta and I. S. Mumick. Maintenance of materialized views:
problems, techniques, and applications. In A. Gupta and I. S. Mumick,
editors, Materialized views, pages 145–157. MIT Press, 1999.

[13] M. A. Hammer, G. Neis, Y. Chen, and U. A. Acar. Self-adjusting stack
machines. In OOPSLA, pages 753–772. ACM, 2011.

[14] C. Koch. Incremental query evaluation in a ring of databases. In Proc.
Symp. Principles of Database Systems (PODS), pages 87–98. ACM,
2010.

[15] R. Lämmel. Google’s MapReduce programming model — revisited.
Sci. Comput. Program., 68(3):208–237, Oct. 2007.

[16] Y. A. Liu. Efficiency by incrementalization: An introduction. HOSC,
13(4):289–313, 2000.

[17] I. Maier and M. Odersky. Higher-order reactive programming with
incremental lists. In ECOOP, pages 707–731. Springer-Verlag, 2013.

[18] J. C. Mitchell. Foundations of programming languages. MIT Press,
1996.

[19] R. Paige and S. Koenig. Finite differencing of computable expressions.
TOPLAS, 4(3):402–454, July 1982.

[20] G. Ramalingam and T. Reps. A categorized bibliography on incremen-
tal computation. In POPL, pages 502–510. ACM, 1993.

[21] T. Rompf and M. Odersky. Lightweight modular staging: a pragmatic
approach to runtime code generation and compiled DSLs. In GPCE,
pages 127–136. ACM, 2010.

[22] G. Salvaneschi and M. Mezini. Reactive behavior in object-oriented
applications: an analysis and a research roadmap. In AOSD, pages
37–48. ACM, 2013.

[23] D. Willis, D. J. Pearce, and J. Noble. Caching and incrementalisation
in the Java Query Language. In OOPSLA, pages 1–18. ACM, 2008.

10 2013/11/16

http://wiki.portal.chalmers.se/agda/
http://wiki.portal.chalmers.se/agda/

	Introduction
	A theory of changes
	Change structures
	Function changes
	Nil changes are derivatives

	Incrementalizing λ-calculi
	Change types and erased change structures
	Differentiation
	Architecture of the proof
	Denotational semantics
	Change semantics
	Correctness of differentiation
	Plugins

	Differentiation in practice
	The role of differentiation plugins
	Predicting nil changes
	Self-maintainability
	Case study
	Benchmarks
	Experimental results

	Related work
	Dynamic approaches
	Static approaches
	Finite differencing
	Static memoization

	Conclusions and future work

