
UNIVERSITÀ DEGLI STUDI DI CATANIA

SCUOLA SUPERIORE DI CATANIA

Paolo G. Giarrusso

TypeChef: Towards Correct Variability
Analysis of Unpreprocessed C Code

for Software Product Lines

DIPLOMA DI LICENZA

Relatori:
Chiar.mo Prof.

Klaus Ostermann
Chiar.mo Prof. Ing.

Giuseppe Pappalardo

Correlatore:
Dr. Christian Kästner

ANNO ACCADEMICO 2010/2011

A mia madre Rosalia

Abstract

Analyzing static correctness of source code of software product lines imple-

mented through conditional compilation in C is extremely difficult. Standard C

parsers process only the output of the C preprocessor, which represents only a single

variant of the product line, and thus contains no more any information about vari-

ability; analyzing a whole product line seems to require parsing C code without first

preprocessing it, a task for which no general algorithm is known to date. Because of

this, a long line of research explored heuristics yielding approximate results (Gar-

rido and Johnson, 2005, 2003; Padioleau, 2009) and restrictions of preprocessor

usage which allow easier parsing (Baxter and Mehlich, 2001; Adams et al., 2009;

McCloskey and Brewer, 2005; Kästner et al., 2009).

Therefore, checking if all variants are syntactically and type-correct nowadays

essentially requires checking each variant in isolation, an impossible effort for com-

plex feature models, because the number of variants to check is exponential in the

number of features.

In this thesis we discuss TypeChef, an on-going development effort which will

be for the first time able to analyze together all variants of a software product line.

Contents

List of figures iv

I Introduction 1

1 Introduction 2

II Background 8

2 The C preprocessor 9

2.1 CPP syntax and semantics . 9

2.1.1 Macro definition and expansion 10

2.1.2 Conditional compilation 12

2.1.3 Other constructs . 12

2.2 Comprehensibility of unpreprocessed code 13

i

CONTENTS

III TypeChef 17

3 A design for a partial preprocessor 18

3.1 Requirements . 18

3.1.1 PPC as a partial evaluator 21

3.2 Design . 32

3.2.1 Conditional compilation 32

3.2.2 The macro table . 34

3.2.3 Macro references . 35

4 Boolean formula manipulation 39

4.1 Motivation . 39

4.1.1 The need for simplification 40

4.1.2 Existing approaches . 41

4.2 Preliminaries . 42

4.2.1 Conversion to conjunction normal form 45

4.2.2 Formula renaming . 46

4.3 The design space of in-memory representations 48

4.4 Formula representation . 52

4.4.1 Simplification . 54

4.4.2 Visiting a DAG and formula renaming 58

4.4.3 An exponential example 61

5 Conclusion and future works 63

ii

CONTENTS

5.1 Parsing . 63

5.1.1 Token stream representation 64

5.1.2 Typechecking . 65

5.2 Related work . 65

5.3 Future works . 66

5.4 Conclusion . 68

Acknowledgements 69

Ringraziamenti 70

Bibliography 77

iii

List of Figures

2.2.1 Interaction of preprocessor facilities 16

3.1.1 Why Eq. (3.1.1) is unsatisfiable – example 1 25

3.1.2 Why Eq. (3.1.1) is unsatisfiable – example 2 27

4.4.1 Standard simplification rules . 55

4.4.2 Advanced simplification rules . 56

iv

Part I

Introduction

1

1 Introduction

Many software systems need to support optional or alternative requirements in

different usage scenarios. Developers achieve this through various solutions, in-

cluding settings configurable at runtime. However, often for performance reasons,

one wants to generate a product containing only the features of interest, which are

combined together at compile-time, excluding the others. Therefore, modern soft-

ware systems are often developed as software product lines (SPLs), which allow

building customised versions of a software by selecting which features to enable,

subject to constraints like dependencies or incompatibilities between features, en-

coded by a feature model through propositional formulas. Feature selections are

also called software configurations.

Software product lines are often built by using conditional compilation, which

is available for various languages, supported either by the language toolchain itself

or through external tools. The C language integrates a preprocessing phase before

parsing and compilation, performed by a separate component called the C prepro-

cessor (henceforth CPP). Among the various possibilities, it allows conditionally

including or excluding code fragments depending on which macros are defined;

2

CHAPTER 1. Introduction

one can thus encode the selection of desired features by defining the corresponding

macros for the preprocessing phase, and the preprocessor will therefore generate the

appropriate program variant, which the compiler proper will subsequently analyze.

Variability is thus lost after the preprocessing step.

Checking, among others, syntax and type errors for a software product line

would certainly be useful to developers, which nowadays cannot guarantee even the

absence of syntax errors in all variants. Using static analysis tools for bug checking

can be a further step towards correctness of a software. Additional useful questions

about variability include: “Which are the possible expansions of a given macro in a

given context?”, “What code might be generated by this macro usage?”, “In which

variants is this code fragment included?”, “Is this code type-correct under all vari-

ants?”, “Is this variable initialized in all variants?”. Both humans (Favre, 1997;

Spencer and Collyer, 1992) and tools (Hu et al., 2000; Latendresse, 2004; Baxter

and Mehlich, 2001) face serious difficulties in answering these questions correctly

in non-trivial scenarios.

Performing such analysis at once on all variants is desirable. In many product

lines (such as the Linux kernel), hundreds or thousands of features can be enabled or

disabled, and for n features up to 2n variants can exist1, so that checking each one in

isolation would be impractical. We need thus to analyse source code before prepro-

cessing eliminates all variability-related information. However, devising a parser

for unpreprocessed code yielding correct results in all cases is widely regarded as

1The number can be less if the feature model restricts which variants are valid, but is still typically

exponential in practice.

3

CHAPTER 1. Introduction

impossible, due to several problems in the design of CPP:

• CPP directive direct not only conditional compilation, but also facilities for

file inclusion (through #include) and macro (through #define and #undef),

which interact together. For instance, conditional compilation allows macro

to have alternative definitions; in turn, the result of a conditional compilation

directive can depend on the expansion of macros, which in turn might have

been conditionally defined, and so on.

• Conditional compilation can express compile-time variability, by selecting

different code depending on which features are requested, or dually on the

facilities offered by the target machine; however, it is equally used to imple-

ment include guards, a coding pattern which prevents a C header file from

being included multiple times and bringing in scope the same declarations,

possibly causing compile-time errors. Tools need to distinguish these uses,

even if they are implemented through the same constructs.

• Finally, and most problematically, CPP provides lexical, not syntactic macros

(Brabrand and Schwartzbach, 2002), and is mostly oblivious to the language,

to the point that it is often used as-is in combination with other languages.

Lexical macros manipulate token streams, while syntactic macros are inte-

grated into the parser and work at a higher-level, manipulating and producing

abstract syntax trees. On one side, this means that conditional compilation di-

rectives and macros can appear in place of any token combination and across

non-terminals, as we discuss later in Sec. 5.1; thus, a conventional context-

4

CHAPTER 1. Introduction

free grammar would need to accept them at each position of each production.

Furthermore, CPP gives no guarantee that produced source code will be syn-

tactically correct, while the design of syntactic macros allow ensuring guar-

antees.

Source code analysis would thus be easier if variability were implemented through

either syntactic macros or other more disciplined solutions, such as compile-time

if statements as offered by D2, feature-oriented programming (Apel and Kästner,

2009), tool-driven feature mapping (Kästner et al., 2008), and so on. However, the

large amounts of software product lines implemented using CPP, not only in C,

has motivated various research efforts to overcome the technical challenges. Many

efforts impose restrictions on the usage of the preprocessor; however, a previous

study (Liebig et al., 2011) showed that a significant percentage of CPP annotations

are of the undisciplined category and thus are quite problematic to process.

Our key conclusion is that it is possible to perform just a part of preprocessing,

such that on the one hand variability information is preserved, while on the other

hand the resulting language is simple enough to be parsed, with a suitably extended

parsing technology.

TypeChef is our research effort to solve these problems, which consists of the

following contributions:

• A library which efficiently manipulates boolean formulas.

• A partial preprocessor which performs file inclusion and macro expansion,

2http://www.digitalmars.com/d/2.0/version.html

5

http://www.digitalmars.com/d/2.0/version.html

CHAPTER 1. Introduction

and performs only a partial evaluation of the conditional compilation direc-

tives, so that the output still encodes all possible program variants. It thus

separates the variability information relevant for further analyses, both by hu-

mans and by the rest of our toolchain, from unrelated informations encoded

through CPP.

• A parser combinator framework, based on the Scala Parser Combinator li-

brary (Moors et al., 2008), but extended to parse the output of our partial

preprocessor: the concern of processing variability information is exclusively

located within this framework, and the grammar needs thus not to be altered.

• A complete grammar for the GNU C dialect implemented using our frame-

work, developed extending partial implementations

• A variability-aware type-checker operating on abstract syntax trees produced

by the parsing process.

• Real world studies of the applicability of these components to real-world

Open Source software product lines, including among others the Linux ker-

nel.

We have a preliminary implementation of all these components, with source

code available at http://github.com/ckaestne/TypeChef.

This thesis discusses the partial preprocessor and formula manipulation, and our

approach to avoid exponential complexity in these phases. We will briefly outline

the next steps, but for further details we refer to our future paper (Kästner et al.).

6

http://github.com/ckaestne/TypeChef

CHAPTER 1. Introduction

The results in this thesis are based on joint work with Christian Kästner, Till-

mann Rendel and Klaus Ostermann. Part of this work, concerning the partial pre-

processor, has been published (Kästner, Giarrusso, and Ostermann, 2011); however,

here we give a different presentation, reflecting the evolution of the partial prepro-

cessor. The main novel contribution of this thesis is a formal definition of correct-

ness for a partial preprocessor, and a more principled analysis of how to perform

partial processing in polynomial time.

7

Part II

Background

8

2 The C preprocessor

In this chapter we present the fundamental constructs offered by the C prepro-

cessor language (ISO) and their semantics. We concentrate on what is needed to

understand subsequent chapters, yet we need to introduce some details which are

not usually of concern for developers. Furthermore, in Sec. 2.2, we discuss the

readability of CPP constructs, to later discuss how partial preprocessing can also

help program understanding.

2.1 CPP syntax and semantics

The C preprocessor language, unlike the C language, is line-based, i.e. the base

syntactical units, which are called preprocessor directives, are not terminated by a

separator symbol like the semicolon in C but by a whitespace character, i.e. newline.

The source code is first divided into preprocessor tokens. Directive lines have a #

character as their first non-whitespace character, followed by a token which iden-

tifies the directive name. Thus for instance # include <stdio.h> is a valid #include

directive. Lines not containing directives undergo macro replacement as described

below. We will not detail other transformations performed on such lines, like for

9

CHAPTER 2. The C preprocessor

instance comment removal or automatic concatenation of string literals.

2.1.1 Macro definition and expansion

CPP allows to define macros through #define and to undefine them through #un-

def: a defined macro is associated to a possibly empty replacement list, also called

macro body or expansion of the macro. Note that expansion can also refer to the

processing step of expanding macros. Once defined, a macro is added to the macro

table, and can be removed from this table only through #undef. No macro expan-

sion is performed on the macro body at this time; the body can contain references

which will be later expanded, as detailed below. Additional macro definitions can

be passed through the command line, and they are added to the macro table before

processing the input.

Two types of macro exist: object-like macros, introduced by the syntax:

#define macroName macroBody

and function-like macros, defined by the syntax:

#define macroName(comma-separated macro arguments) macroBody

As the subsequent output text is processed, any identifier token matching a

macro currently defined in the macro table is a macro invocation and must be ex-

panded.

1. If it is a function-like macro, each usage must provide actual arguments cor-

responding to the formal parameters of the declaration; macro invocations in

the actual arguments are in turn recursively expanded, using this algorithm,

10

CHAPTER 2. The C preprocessor

before being substituted in the macro body. This step goes under the name of

argument pre-scan.

For object-like macros, the macro body is left unaltered.

2. The macro body, as potentially modified by the previous step, is scanned for

macro invocations, and they are in turn expanded, using their current defi-

nitions, and not the one valid when the macro was defined. In other words,

macro definitions are dynamically scoped, unlike variables in most program-

ming languages.

However, a macro definition cannot be recursive: if the macro name appears

in its body, even indirectly, this is called a self-reference, and the correspond-

ing token is marked so that it will not be expanded again during preprocessing.

For function-like macros, this step will process again the expansion of the

arguments; if these involved self-reference, the self-reference will be pre-

served also during the new macro expansion step, because of the marking.

Nested macro invocations allow the same self-reference to be processed mul-

tiple times and it is still required that it is not expanded, thus the mark must

be actually permanently associated to the macro.

3. The result is finally substituted for the original macro invocation.

Since in both cases macros are not allowed to be recursive, they cannot express

iteration.

11

CHAPTER 2. The C preprocessor

2.1.2 Conditional compilation

CPP allows expressing conditional compilation through #if, #else, #elif, #en-

dif. These directives express an if-then-else-endif construct which allows remov-

ing a code fragment from the output, with conditions expressed through prepro-

cessor conditional expressions: together with standard C operators, the defined()

operator, hereafter abbreviated as def(); def(MACRO) returns a boolean1 indicating

whether MACRO is present in the macro table, as either an object-like or function-

like macro. Additionally, #ifdef macro_name is provided as syntactic sugar for #if

defined(macro_name).

Moreover, macro definitions can use the stringification operator, written as #,

and the token pasting operator, written as ##. # is a unary operator which can be

applied to macro parameters and which produces the literal text of its argument,

represented as a string constant; ## can be applied to two tokens and concatenates

them to form a single token, if possible. If a macro parameter is passed as an

argument to any of these operators, the corresponding actual argument does not

undergo argument pre-scan.

2.1.3 Other constructs

CPP supports file inclusion through the #include directive. CPP locates the

named file and replaces the directive with the file content, which is in turn recur-

1In C, booleans are not a primitive type, but they are encoded through integers; 0 represents false,

anything different from 0 represents true, but “boolean” operators, like relational operators and def(),

return always 1 to represent true.

12

CHAPTER 2. The C preprocessor

sively processed. A file is allowed to include itself again, allowing to express recur-

sion. The maximal inclusion depth must have an implementation-defined limit, and

since there are no other ways to express iteration, CPP processing is guaranteed to

terminate: therefore, CPP is not a Turing-complete language.

Other directives are provided by the preprocessor, i.e. #error, #warning, #pragma,

#line. Their implementation, even in our partial preprocessor, is relatively straight-

forward, therefore we ignore them in the following discussion to concentrate on the

interesting and challenging features.

2.2 Comprehensibility of unpreprocessed code

Various studies (Favre, 1997; Spencer and Collyer, 1992; Pearse and Oman,

1997; Krone and Snelting, 1994) show that understanding the control flow in the

presence of conditional compilation can be difficult, and that macros defined unbe-

knownst to a developer will change the meaning of code in unexpected ways. In

particular, many uses of macros do not isolate properly the user of the macro from

its implementation details: thus, passing for instance an expression containing side

effects to a macro defined by #define square(x) ((x) * (x)) will duplicate these side

effects, because of the implementation detail that the parameter is used twice.

However, the interaction between different features can create even greater chal-

lenges for program comprehension. For instance, we might want to understand

whether the body of an #if directive is output or removed, by reasoning on the pos-

sible results of a preprocessor conditional expression; however, the result of the

13

CHAPTER 2. The C preprocessor

def() operator depends on all the files already processed, many of which have not

been written by the same programmer. Looking at CPP with the concepts of pro-

gramming language theory, we can identify two well-known problems here. On the

one hand, reasoning on CPP directives requires tracking mutable state, in this case

the macro table, and it is well-known in the functional programming community

that this can be difficult. On the other hand, CPP macros behave always like global

variables, because they cannot be local to a module other than a specific file.

Consider the example in Fig. 2.2.1: it show a possible CPP input, containing

extreme simplification of realistic coding patterns. In particular, the recursive in-

clusion of lib.h by itself might seem unrealistic, but indirect recursive inclusion are

relatively frequent due to long include chains.

To understand whether the macro T is defined in line 10, we need to look for

definitions like lines 21 and 24 from a header across all previously processed in-

put lines. That means that we need to analyse also gtk.h and any file which is

(even indirectly) included before line 10. Furthermore, it is not clear where macros

T_IS_32BIT and T_IS_16BIT could have been defined.

This example also shows the coding pattern known as include guards, in lines 14,

15, and 27, which prevents the content of the file from being processed again if its

inclusion is requested more than once, for instance by different modules; without

the include guards, the same declaration might be output twice by the preprocessor,

and this could constitute a syntax error; furthermore, a chain of inclusion might lead

to a file unwillingly including itself recursively, terminating only when the limit of

inclusion depth is reached.

14

CHAPTER 2. The C preprocessor

In conclusion, let us remember that for our overall goals, we are primarily in-

terested in the usage of conditional compilation to select features and implement

variability, not in other preprocessor features. Additionally, macro definitions and

file inclusion just complicate variability analysis. We will see in next chapter how

we approach this problem, from the point of view of tool support.

15

CHAPTER 2. The C preprocessor

main.c

1 #include "lib.h"

2 #if defined(WITH_GUI)

3 #include "gtk.h"

4 #endif

5 #define NAME foo

6 #if defined(NAME)

7 T NAME() {

8 return 3;

9 }

10 #if defined(T)

11 int main() { ... }

12 #endif

13 #endif

lib.h

14 #if !defined(_LIB_H)

15 #define _LIB_H

16

17 #include <stdio.h>

18 #include "lib.h"

19 extern int open(...);

20 #if defined(T_IS_32BIT)

21 #define T long

22 #endif

23 #if defined(T_IS_16BIT)

24 #define T short

25 #endif

26

27 #endif

Figure 2.2.1: Interaction of preprocessor facilities

16

Part III

TypeChef

17

3 A design for a partial

preprocessor

In this chapter, we outline the requirements (in Sec. 3.1) and design (in Sec. 3.2)

of our partial preprocessor, henceforth called PPC.

3.1 Requirements

As discussed in the previous chapters, we are interested in preserving variabil-

ity information, while processing away uses of other uninteresting CPP constructs.

PPC is intended to perform exactly this processing.

Additionally, we allow removing some variability information, by specifying

only an incomplete feature selection to PPC; in this case, the output reflects the

feature selection and preserves variability related to other features. This allows

reducing the complexity of further analysis by concentrating only on some features,

considered more interesting.

For the preprocessor there is no semantic distinction between macros used to en-

18

CHAPTER 3. A design for a partial preprocessor

code features and other ones which instead indicate are used to adapt, for instance,

to low-level portability issues. Depending on external requirements, one might want

to use a different definition of feature, and policies about such definitions do not be-

long to the tool itself, but to the users1. Therefore, we will abstract in the definitions

of this chapter from the specific application to software product lines.

To this end, we separate conceptually the source code defining the SPL proper,

which will be input to the partial preprocessor, from what the project uses to encode

a specific feature selection, which might be, e.g., either a set of macro definitions

specified on the command-line, or a special header file, which is not considered part

of the source code, and which is often generated.

We term macro environment the set of macro definitions which are external to

source code; thus, in the context of software product lines, the feature selection is

encoded through a macro environment. However, we will still refer to source code

fully preprocessed with a specific macro environment as a program variant.

We intend that both programmers and tools should be able to analyse the output;

the output of PPC will be represented internally as an annotated token stream, in-

tended for further analysis; programmers will instead read a textual representation

of said token stream. For simplicity, we now restrict our attention to the second kind

of output, and thus we regard PPC as a source-to-source processor. We will discuss

in Sec. 5.1.1 trade-offs concerning the design of an internal representation.

Additional requirements for PPC output follow:

1This is also a general design concept rooted in the Unix tradition; see http://catb.org/

~esr/writings/taoup/html/ch01s06.html#id2877777

19

http://catb.org/~esr/writings/taoup/html/ch01s06.html#id2877777
http://catb.org/~esr/writings/taoup/html/ch01s06.html#id2877777

CHAPTER 3. A design for a partial preprocessor

• Intuitively, we require that the output of PPC is a valid input to CPP. More-

over, it should be still possible to generate a specific program variant from

the PPC output, by processing it through CPP with a given macro environ-

ment; the output should be the same that CPP would produce on the original

input2. Furthermore, when supplying PPC with an incomplete feature selec-

tion, encoded as a partial macro environment, and specifying the rest of the

feature selection to CPP, the output should again be the same program variant

produced by supplying all macro definitions to CPP at once.

This correctness criteria is not just of theoretical relevance, as it is crucially

used during testing. However, the precise definition is more tricky, and we

will return to it and make this requirement more precise in Sec. 3.1.1.

• We additionally require that PPC processes completely #include directives, so

that no #include directive appears in the output. Also macro expansion should

be performed completely: If a macro has multiple alternative bodies, it should

be expanded to conditionally compiled text specifying all possible bodies.

• Furthermore, we want to know under which conditions (i.e. macro defini-

tions) a code fragment would be output by the preprocessor. Ideally, the con-

dition should only depend on the externally specified macro environment, as

in the work by Latendresse (2003), and we (Kästner, Giarrusso, and Oster-

mann, 2011) initially specified the same requirement. Therefore, no #define

directive should be needed in PPC output. Furthermore, we even decided not

2At least, it should be the same token stream, ignoring e.g. differences in whitespace.

20

CHAPTER 3. A design for a partial preprocessor

to rely on #else and #elif, and to rely only on #if and #endif, for this simplifies

reading the code in the common case that #if, #elif and #else are separated by

large chunks of program text.

However, we discovered that fully expanding all macros mentioned in a direc-

tive leads to practically relevant exponential worst-case behavior, as we will

discuss in Chap. 4, because exponential replication of macro bodies; the only

solution in the CPP language requires producing #define directives in the out-

put to name subformulas used repeatedly, so that their value is not duplicated.

Boolean formulas are however more expressive and can be used to construct

conditions which only depend on the external macro environment and which

only consume polynomially bounded space.

• We also require the absence of redundant conditional compilation directives.

If the condition of a compilation directive cannot be true in the context of

outer conditional compilation directives, i.e., it is not satisfiable, it must be

omitted together with its body. Similarly, if the condition is always true in its

context, then the conditional compilation directive should be omitted. This

requirement ensures, among other things, that include guards are correctly

handled.

3.1.1 PPC as a partial evaluator

As mentioned, the PPC output should be a valid CPP input, and after CPP pro-

cessing, the originally intended output should be produced. From this point of view,

21

CHAPTER 3. A design for a partial preprocessor

PPC is a customized type of partial evaluator (Jones, 1996) for CPP directives: the

values of some macros are known at partial preprocessing time, and they should be

completely expanded in the output; some other macros are left as yet unspecified,

and therefore the code referencing them should be left unevaluated. In the context of

variability analysis, we do not specify a value for macros which represent features.

We require however the ability to indicate to PPC that a macro M is undefined,

so that def(M) has to evaluate to 0 (which represents a false boolean value). For

PPC, unlike CPP, this is different from not specifying the value of macro M: the

latter implies that def(M) must be left unevaluated. In both cases, occurrences of

the identifier M will be left unaltered. We describe two use cases of this ability, by

referring again the example in Fig. 2.2.1.

1. lib.h contains support for 16 bit machines (enabled by T_IS_16BIT), but a

product line using that library might not consider that as a possible feature,

because our code requires 32 bit machines anyway. In general, a library often

supports many possible operating systems, possibly more than our software

product line. To save analysis time, we might thus specify that T_IS_16BIT is

always undefined.

2. As discussed, lines 14, 15 and 27 encode the include guard pattern. In this

and other patterns, the macro is not intended to be defined by the user, but

rather it is a flag used for internal purposes by the program. In this case, it

prevents the containing file from being processed multiple times. We can thus

safely specify that macro _LIB_H is undefined at program entry.

22

CHAPTER 3. A design for a partial preprocessor

Next, we introduce some definitions which allows making our specification pre-

cise. Let LCPP denote the language of programs in unpreprocessed C, which might

contain preprocessor directives; let LC denote the language of programs in pure C.

Let Id denote the set of possible macro names; remember that however this set co-

incides with the set of possible C identifiers, and in particular, even given an input,

it is not possible to distinguish unambiguously which are the macro names it ref-

erences. Let B denote possible macro values; we distinguish an element ⊥ ∈ B,

which we use to represent that a macro is known to be undefined. We term a par-

tial function σ : Id → B a macro environment, and Σ be the set of possible macro

environments. We can denote that two macro environments are distinct by writing

Domσ1∩Domσ2 = ∅, and in this case, remembering that functions are identified

with their graph, we write σ1 ∪σ2 to denote the merge of the two macro environ-

ments, which simply contains all macro definitions from both environments. Fi-

nally, let σ∅ denote the empty macro environment, that is a partial function Id→ B

nowhere defined.

Let the function cpp : Σ× LCPP → LC denote the behavior of CPP; let finally

ppc : Σ× LCPP → LCPP denote the behavior of the partial preprocessor. Our first

attempt to express a correctness requirement for our partial evaluator, similar to

correctness in a partial evaluator (Jones, 1996), is then expressed by the following

equation:

Domσ1∩Domσ2 =∅⇒ cpp(σ2, ppc(σ1, p)) = cpp(σ2∪σ1, p)

∀σ1 ∈ Σ,σ2 ∈ Σ, p ∈ LCPP (3.1.1)

23

CHAPTER 3. A design for a partial preprocessor

Note that it is crucial that Domσ1 ∩Domσ2 = ∅. A macro can expand to

a value containing itself, which will not be further expanded; therefore, prepro-

cessing with the same macro environment is not an idempotent operation. We

need thus, for each macro definition, to decide whether to supply it at partial pre-

processing time or later. As a bonus, this requirement ensures that ∀ MACRO ∈

Id (σ1 (MACRO) =⊥⇒MACRO 6∈ Domσ2). In other words, this requirement en-

sures that macros specified as undefined during partial preprocessing must be actu-

ally undefined later.

However, this specification is still impossible to satisfy: Macro expansion is sen-

sitive to the order in which macros are processed. For instance, consider Fig. 3.1.1:

file input.c shows a valid preprocessor input, and file output.i shows the output pro-

duced by either CPP or PPC with the empty macro environment σ∅. As shown

in lines 5 and 7, the macro STRINGIFY expands its argument and passes it to

_STRINGIFY1, which transforms it into a string via the stringification operator #.3

Now let us define a macro environment σ∗ undefined on all macro names except B,

such that σ∗ (B) = 2. Eq. (3.1.1) says now that

cpp(σ∗, input.c) = cpp(σ∗, ppc(σ∅, input.c)) = cpp(σ∗,output.i)

but that is incorrect. On line 7, now that B has been transformed into "B" by PPC, it

will not be expanded to "2" by the later CPP run; however, "2" would be the result,

when directly executing CPP on the original input with environment σ∗.

3As shown in lines 4 and 6, macro _STRINGIFY1, which uses directly #, does not macro-expand

its argument, as explained in the previous chapter.

24

CHAPTER 3. A design for a partial preprocessor

input.c

1 #define A 1

2 #define _STRINGIFY1(a) #a

3 #define STRINGIFY(a) _STRINGIFY1(a)

4 _STRINGIFY1(A)

5 STRINGIFY(A)

6 _STRINGIFY1(B)

7 STRINGIFY(B)

output.i

1

2

3

4 "A"

5 "1"

6 "B"

7 "B"

Figure 3.1.1: Why Eq. (3.1.1) is unsatisfiable – example 1

For an additional example, consider Fig. 3.1.2, again containing an input and

its PPC output. Here macro A (line 2) is defined in terms of B, which is a self-

referential macro. As explained, recursion is not supported to ensure termination,

therefore B expands to (1+B). If we regard the output as a PPC output and process

it again through CPP, the result will not be altered because the definition of B has

been removed from the output. Now, suppose that we move the definition of A

from input2.c to the initial macro environment σ1: output2.i is still the expected

output. Now let us defer A, i.e., specify it as part of σ2, the environment passed to

CPP after PPC is run. The output would be output2-wrong.i, because in line 3 A is

25

CHAPTER 3. A design for a partial preprocessor

expanded to B, but B is not expanded to 1+B. The obvious fix is to specify again the

definition of B, either in the output of PPC or in the macro environment; however,

this would not work as it would affect not only line 3 but also line 4, incorrectly.

Two key problems show up here: When the user defers the specification of A,

PPC neither knows whether A is a macro reference or a source identifier, nor that

it will be given a definition referencing B. Moreover, expansion of self-referential

macros is not idempotent, for after their body is output the special marking of the

identifier token which prevented recursive expansion is lost. Therefore, it seems

unlikely that PPC could behave according to the specification in Eq. (3.1.1). If

the marking were preserved in some way, by using a different output format, or

by mangling the name into a different one, preserving the definition of B would

be possible; after CPP has been run, one would need to remove the marking, for

instance by demangling the identifier name. Strictly speaking, we would need to

relax our definition to allow for this; moreover, this would not solve the first problem

we presented.

Therefore, we conclude that Eq. (3.1.1) is too strong and therefore could not be

satisfied by any partial preprocessor. Our actual requirements are however much

weaker. Remember that we are only interested in variability, that in most cases is

encoded by defining/undefining macros and testing them with #ifdef or similar, or

by giving them true/false values and testing them through #if.

This observation allows weakening our definition, so that it still ensures correct-

ness while restricting which macro definition can be deferred, i.e., specified only af-

ter partial preprocessing. This restriction is necessary, as a parser cannot cope with

26

CHAPTER 3. A design for a partial preprocessor

input2.c

1 #define B (1+B)

2 #define A B

3 A

4 B

output2.i – expected output

1

2

3 (1+B)

4 (1+B)

output2-wrong.i – result when defining A after PPC runs

1

2

3 (B)

4 (1+B)

Figure 3.1.2: Why Eq. (3.1.1) is unsatisfiable – example 2

unexpanded macro identifiers which might expand to arbitrary bodies – indeed, the

whole point of partial preprocessing is to remove these and other constructs.

Let us consider a macro definition d mapping MACRO_NAME to v ∈ B, a given

input file input.c, initial macro environments σ1, and deferred macro environment

σ2 containing d. We want to understand if dererring d is safe, i.e., if:

cpp(σ2 \{d}, ppc(σ1∪{d}, input.c)) = cpp(σ2, ppc(σ1, input.c)) (3.1.2)

where σ1∪{d} denotes σ1 extended with the definition d, and analogously σ2 \{d}

27

CHAPTER 3. A design for a partial preprocessor

denotes σ2 without the definition d.4 Putting stringification aside, passing d to PPC,

by adding it to σ1, ensures that all macro references in its body can be expanded

by either PPC or CPP, avoiding the problem described in Fig. 3.1.2, and can there-

fore produce the same result as standard preprocessing; therefore, the interesting

question is if deferring it is safe and thus Eq. (3.1.2) holds.

Claim 3.1.3. We claim that a sufficient condition for safe deferring is that all the

following conditions hold:

• MACRO_NAME is only mentioned by #ifdef, #if and #elif directives and/or in

the body of a #define directive for a deferrable identifier,

• v does not reference any identifiers in σ1,

• while processing cpp(σ1∪σ2, input.c), MACRO_NAME is never passed as an

argument to another macro (so that it cannot be stringified or pasted with

other tokens).

Under these hypothesis, we say that d is deferrable and write

defer(input.c,MACRO_NAME,v,σ1,σ2)

Given this definition, our requirement can be expressed as:

(Domσ1∩Domσ2 =∅)∧ (∀ id ∈ Domσ2(defer(p, id,σ2(id),σ1,σ2)))⇒

cpp(σ2, ppc(σ1, p)) = cpp(σ2∪σ1, p)

∀ σ1 ∈ Σ,σ2 ∈ Σ, p ∈ LCPP (3.1.4)

4These notations are coherent with identifying functions with their graph, as is common in set

theory.

28

CHAPTER 3. A design for a partial preprocessor

If non-deferrable macros are instead deferred, i.e., specified to CPP rather than

to PPC, Eq. (3.1.1) might still hold, but that is not a requirement; it is actually likely

that the definition of deferrable identifiers could be extended, but it is sufficient for

our applications.

We have not formally proved that Eq. (3.1.4) holds; we conjecture it is a corol-

lary of claim 3.1.3, which is again a conjecture. Additionally, setting up a formal

proof for the full CPP semantics would amount to a substantial amount of work,

while proving it on a subset of the CPP language would not necessarily be helpful:

restricting CPP by removing stringification and concatenation gives an interesting

sublanguage, but important corner cases as the one discussed in Fig. 3.1.1 would no

longer be valid, and the required hypothesis would be weaker. The full semantics

of CPP do not add syntactic sugar to the language, they enlarge instead expressive

power, and add corner cases like the ones we have shown above. Therefore proofs

of interesting properties on subsets of the CPP language are of limited interest, and

a full proof is left as future work.

However, we use Eq. (3.1.4) as a testing criteria: We use a set of real-world

OpenSource programs to test PPC, and the macro environments considered during

testing all comply to the hypotheses given.

Non-deferrable feature macros

We discussed the interaction between deferring a macro value and further pro-

cessing through CPP; however, it is at least as important to consider further pro-

cessing by the C compiler. Our definition of deferrable macro prevents the identi-

29

CHAPTER 3. A design for a partial preprocessor

fier from appearing in the program outside preprocessor directives. TypeChef rests

on the restriction that variability is encoded through conditional compilation and

not through macro expansion, because this restriction is applied in practice in most

cases and because it is not possible otherwise to guarantee correct results. We found

however a few exceptions, but we argue that they are not a real limitation, because

they can be solved without modifying the source code.

When processing a section of the Linux kernel, we found one macro encoded a

path and was used in C code; the TypeChef C parser could not know that the macro

would anyway expand to a string, could not parse the output.

When features are encoded through boolean values (i.e., numbers interpreted

as booleans), they can be tested through either #if MACRO_NAME or a C state-

ment similar to if (MACRO) {...}, intended to be evaluated at compile-time thanks to

dead-code detection. GNU coding standards5, recommend this, because it allows

a standard C compiler to check syntax and type-correctness correctness of the ex-

cluded code path, partially obviating the lack of tools like TypeChef. Of course, this

only works for the special case where the declarations needed by the feature-specific

code are always available.

The problem for TypeChef is again that the source code is only correct if MACRO

is actually a macro and its body is convertible to a truth value, and this information

is not specified anywhere.

Both kinds of false positives can be solved if the user of PPC encodes appro-

5http://www.gnu.org/prep/standards/html_node/

Conditional-Compilation.html#Conditional-Compilation

30

http://www.gnu.org/prep/standards/html_node/Conditional-Compilation.html#Conditional-Compilation
http://www.gnu.org/prep/standards/html_node/Conditional-Compilation.html#Conditional-Compilation

CHAPTER 3. A design for a partial preprocessor

priately the needed information from the feature model, i.e., that such macros are

expected to be strings, numbers, or the like. For the case of a feature macro whose

value is interpreted as a boolean, one could request PPC to load an extra header

containing code similar to:

1 #ifdef EXTERN_FEATURE_FOO

2 #define INTERN_FEATURE_FOO 1

3 #else

4 #define INTERN_FEATURE_FOO 0

5 #endif

so that the value of the macro used in the source (here, INTERN_FEATURE_FOO)

depends on a feature macro handled by TypeChef (here, EXTERN_FEATURE_FOO).

For the example involving paths, one could similarly specify a feature value.

Here any string value would probably work, as it does not affect syntactic or type

correctness; the specification could be unconditional, or conditional like in the

above example. The advantage in this case is that TypeChef will discover the errors

which would be produced by not satisfying the constraint, which might be useful if

the analysis is also used to reverse-engineer a feature model or to check its correct-

ness.

Based on the limited examples, one might imagine that the need for user inter-

vention is just a technical limitation of our tool which could be easily solved: in our

case, TypeChef could just infer that a certain macro needs to be a string and report

that if it was not specified by the user. However, in the more general case, macros

can expand to arbitrary token sequences, and a specific class of macro bodies can

be required for the input to be correct. A related problem is discussed

31

CHAPTER 3. A design for a partial preprocessor

Analyzing this suggested the absence of obvious meaningful approaches, and

we found only one such problem up to now, which we workarounded manually as

described. Therefore, further investigating this corner case would have been wasted

effort.

3.2 Design

3.2.1 Conditional compilation

Conditional compilation directives divide the program code (including the header

text) in a tree of nested code regions, such that the leaves of the tree contain no con-

ditional compilation directives. To each code region we associate a preprocessor

conditional expression called the presence condition (abbreviated p.c.) of that re-

gion, so that code in that region would be output by CPP if and only if the associated

p.c. evaluates to true. The first code region has presence condition true, because it

is unconditionally processed; for a code fragment of the form:

#if C1 body1 #elif C2 body2 . . . #elif Cn bodyn #else bodyn+1 #endif

located in a context with presence condition pc, code region bodyi has p.c. pc∧∧
1≤ j<i¬C j ∧Ci, i = 1..n, where Cn+1 = true. It is easy to verify the correctness of

this definition.

The set of produced formulas takes Ω(1+ 2+ 3+ . . .+ n+ n · |pc|) = Ω(n2 +

n · |pc|); this lower bound can be shown easily by considering the case where

|C1| = . . . = |Cn| = 1. In particular, pc(bodyn+1) has size Ω(n + |pc|). In this

32

CHAPTER 3. A design for a partial preprocessor

case, even nesting does not change the asymptotic complexity. However, it is possi-

ble to represent the p.c. of the various regions in linear space, by creating formulas

S2,S3, . . . ,Sn, with definitions S2 = ¬C1, Si+1 = Si∧¬Ci+1 for i = 2..n+1, so that

Si ≡
∧

1≤ j<i¬C j, and the presence condition of region bodyi becomes Si ∧Ci for

i = 2..n+1. It is important that multiple references to Si are represented as multiple

pointers to the same object – next chapters will discuss details of data representa-

tion.

The presence conditions for some code regions might be impossible to satisfy

for any feature selection. To correctly process multiple inclusions protected by

include guards, it is necessary to exclude such regions from the output, by checking

whether the presence condition is satisfiable. If this is not the case, we can avoid

processing the content of the region, other than to find the matching #endif directive

which concludes it. For greater speed we want to use satisfiability checkers for

propositional logic, rather than general constraint solver. Therefore, we need to

transform preprocessor conditional formulas into propositional formulas.

In particular, this mechanism allows to process correctly include guards: if a file

has been included, its include guard will be defined, and if it is included again, the

SAT solver will correctly declare that the condition for processing the file content

is unsatisfiable. If a file was included only if condition ϕ was satisfied, and now it

is included again under presence condition ψ , it will end up being included again

only if ψ ∧¬ϕ is satisfiable.

However, preprocessor conditional expression not only contain booleans, intro-

duced through the def() operator and by logical operators as && or || or !, but also in-

33

CHAPTER 3. A design for a partial preprocessor

tegers, either implicitly converted to booleans, or compared to one another through

relational operators, or on which arithmetic operators or macros are applied. Almost

always such results can be evaluated at formula parsing time because all variables

are known. For the few exceptions, where software variability is encoded through

non-boolean features, we can encode the distinct possibilities as feature macros,

similarly to what we described in Sec. 3.1.1.

Up to now, we have not specified how variables are interpreted in presence con-

ditions. In particular, it is possible that a condition refers to variables previously de-

fined or undefined within the source code, rather than specified in the initial macro

environment. To specify how this case is handled, we deal now with macro expan-

sion.

3.2.2 The macro table

During partial preprocessing we maintain a dictionary, known as macro table,

where macros are associated to a set of possible expansions; to each expansion, we

associate the boolean condition under which that definition is valid. Additionally,

we cache the existence condition under which the macro is defined, even if it is

always equivalent to the disjunction of all conditions; this condition will be used to

evaluate the def() operator. The macro table is updated as macros are defined and

undefined during processing, so that for each macro we know under which condition

it should be expanded, and for each associated macro body, under which condition

it should be used.

The macro environment provided by the user is used to initialize the table, and

34

CHAPTER 3. A design for a partial preprocessor

the p.c. true is associated to all the macro bodies and is added as existence condition.

If a macro was explicitly undefined, i.e., if it maps to⊥ (see Sec. 3.1.1), the macro is

associated to no expansion and to the existence conditionfalse. Macros whose value

is not specified are not stored in the table, and their existence condition is given by

definedEx(MACRO), which represents the unknown definition of the macro which

the user could specify at a later processing stage.

When under p.c. pc∗ an #undef Id directive is processed, PPC applies the substi-

tution pc 7→ pc∧¬pc∗ to the existence condition of Id and the conditions associated

to any existing definitions, to reflect the fact that under condition pc∗ they have been

overwritten and are no more valid.

When macro Id is defined to have body B under p.c. pc∗, PPC first erases the

current definitions as done to process #undef, then it adds the entry (B, pc∗) to the

other definitions of Id. Entries whose presence condition has become a contradic-

tion can be removed, and if identical expansions appear with different p.c.s, they

can be merged together under condition pc1∨ pc2.

3.2.3 Macro references

References to other macros can appear outside of CPP directives, in macro bod-

ies, and in presence conditions, but their handling is quite different in the three

cases.

1. Outside of CPP directives, we need to be careful to consider all possible ex-

pansions for a macro. Therefore, for each defined macro body under condi-

35

CHAPTER 3. A design for a partial preprocessor

tion pci, we perform macro expansion as usual but we wrap the result inside

the directive pair #if pci...#endif; the results are then concatenated and out-

put. If the disjunction of all these presence conditions, pc∗ =
∨

i pci is not a

tautology, we also produce the unexpanded macro reference under condition

¬pc∗. As an optimization, we can consider the current presence condition

pc: if pc∧ pci is a contradiction for a certain i, we can avoid processing the

corresponding expansion.

2. In macro bodies, reference should not be expanded when they appear in the

source, that is, where the macro is defined; as discussed, only when the macro

body is actually used for replacement the contained macro references should

be expanded with the values currently defined: in other words, such macro

references are resolved using dynamic scoping.

Therefore, the partial preprocessor does not distinguish at definition time

whether identifiers in macro bodies reference other macros or not. When

a macro is expanded, the produced source code can simply be scanned again

for further macro references as in the previous case.

3. Macro references in presence conditions, instead, are derived from condi-

tional compilation directives, where they would be resolved by CPP when

they appear. To obtain the same semantics, we could substitute each macro

occurrence by its current expansions, similarly to what we previously de-

scribed. However, iterating this process leads to an exponential explosion of

the formula size. Instead, we need to defer the substitution, and remember

36

CHAPTER 3. A design for a partial preprocessor

which set of definitions was in scope when the reference occurred. In other

words, in this context macro references are resolved using static or lexical

scoping, and we implement this not through eager substitution but by creat-

ing a data structure inspired by closures in the implementation of functional

programming languages. In our case, each macro reference is associated with

a pointer to the existing entry of the macro table.

We need to distinguish two possibilities: MACRO can be referenced either

through def(MACRO) or directly.

• In the first case, vastly the more common, the result of def(MACRO) is

simply its existence condition.

• Otherwise, we need to perform macro expansion, to be able to parse the

condition. The expansion is performed similarly as macro expansion

outside of directives; however, we cannot wrap each expansion inside

an #if...#endifpair. Since all expansions are mutually exclusive, we cre-

ate an if...else if...else chain, and represent it using the C conditional

operator: condition ? valueThen : valueElse. To convert the resulting

formula to a boolean one, instances of such operators can be lifted up-

wards in the AST representing the formula; for instance, (a ? b : c)

== d is equivalent to a? (b == d) : (c == d). We repeat the lifting until

valueThen and valueElse are both (convertible to) booleans, so that in-

stances of this operator can be replaced with condition && valueThen ||

!condition && valueElse. Note that we replicate program code when lift-

37

CHAPTER 3. A design for a partial preprocessor

ing if upwards, but that is harmless because it is evaluated immediately;

however, we duplicate also condition. If the resulting formula is nested

within another ?: operator, also the duplication will nest, and condition

will appear 4 times. It is here easy to prove by induction that if condi-

tions are nested n times, the size of the formula becomes exponential in

n. Discussion of these issues will follow in next chapter.

38

4 Boolean formula manipulation

4.1 Motivation

The TypeChef toolchain can partially preprocess, parse and type check a soft-

ware product line only if it can efficiently construct, manipulate and check satisfia-

bility and validity of the boolean formulas produced along the process. By efficient

we mean that we can tolerate only algorithms of polynomial space and time com-

plexity, and that sometimes even quadratic complexity can be excessive, depending

on the size of the involved parameter.

We already discussed in the previous chapter why checking satisfiability is im-

portant during partial preprocessing; in later phases, it becomes even more impor-

tant. For instance, checking whether an identifier is declared before use entails

checking whether the presence condition of its use implies the presence condition

of its definition.

Additionally, we need to pretty-print formulas to the user, especially during

partial preprocessing: to allow the user to fix effectively the errors we found, it is

desirable to simplify formulas before outputting them, since otherwise redundant

39

CHAPTER 4. Boolean formula manipulation

clauses (which arise extremely often) make them unreadable.

Finally, it should ideally be possible to determine directly under which cases a

section of the output is included. We had among our initial design goals the wish

to produce output depending only on the macros externally defined by the feature

model – that is, on the external definitions.

Naive implementations of these algorithms have exponential complexity, and

designing efficient algorithms turned out to be unexpectedly tricky and challenging.

In this chapter we analyze the causes of this exponential complexity and discuss

how we are optimizing the implementation to scale up to its requirements through

known general techniques for symbolic computation, for formula manipulation, and

through optimization steps specific to the domain of partial preprocessing.

4.1.1 The need for simplification

Let us consider a small example to see what happens without simplification.

Suppose that macro A is defined conditionally:

1 #if FEAT1 && FEAT2

2 #define A BODY1

3 #else

4 #define A BODY2

5 #endif

Suppose that macro A is used to conditionally define B as follows:

1 #if FEAT2

2 #define B A

3 #endif

40

CHAPTER 4. Boolean formula manipulation

Without any simplification, the expansion of B would become:

4 #if FEAT2 && FEAT1 && FEAT2

5 BODY1

6 #endif

7 #if FEAT2 && !(FEAT1 && FEAT2)

8 BODY2

9 #endif

In this case, one can easily see that both formulas contain redundant subfor-

mulas; the first could be simplified to FEAT2 && FEAT1, and the second to FEAT2

&& !FEAT1; it also seems simple for a computer to perform such simplifications.

However, the above example is an extremely simple case. In real-world examples,

processing a single source file can involve processing thousands of #include direc-

tives and hundreds of thousands of lines of code; conditions are more complex and

more deeply nested; many inclusions are conditional, so that all the macros that they

define are conditionally defined; often, the same headers might be included again

under under different conditions.

Simplifying formulas well and quickly in such cases is not simple; on the other

hand, it becomes even more important exactly because conditions are more com-

plex to understand. Moreover, simplifying formulas removes repetitions and thus

crucially reduces formula size.

4.1.2 Existing approaches

Many standard algorithms for formula manipulation are based on binary deci-

sion diagrams, or BDDs, in particular reduced ordered BDDs (Bryant, 1986), and

41

CHAPTER 4. Boolean formula manipulation

they are also used to manipulate boolean formulas in variability analysis (Mendonça

et al., 2008). Constructing BDDs requires choosing a fixed variable order, but for

some choices the size of a BDD suffers from combinatorial explosion, i.e., it be-

comes exponential; determining the optimal variable order is an NP-hard problem.

Using existing heuristics, SAT-based approaches have successfully handled reason-

ing on up to 10 000 features (Mendonça et al., 2009), while with BDDs late results

reach only up to 2 000 features (Mendonça et al., 2008). For a comparison, the

Linux kernel provides 8 000 features, and this motivated our choice of a SAT-based

approach.

Even though checking satisfiability of a propositional formula, or SAT-solving,

is notoriously an NP-complete problem, commonly referred as SAT, modern SAT

solvers are quite efficient on many classes of instances; formulas arising in tools for

SPL support, in particular, are always tractable (Mendonça et al., 2009), and testing

of our tools never produce intractable formulas during development.

However, the problems that we mentioned arise in manipulation steps other than

SAT-solving: when naively implemented, these algorithms consume exponential

space and/or time in the worst case; this is not only a theoretical concern, but it

actually makes analysis of some real-world C programs intractable.

4.2 Preliminaries

In this section we introduce some standard definitions for propositional logic

that we will later need.

42

CHAPTER 4. Boolean formula manipulation

To define propositional formulas, we must first stipulate a set of variables, and

we choose the set of macro identifiers. In this chapter, unless otherwise stated, vari-

ables (e.g., MACRO) represent the result of the def() operator (e.g., def(MACRO)).

A literal is an atom (a) or the negation of an atom (¬a).

A formula (ϕ) is either an atom (a), a negation of a formula (¬ϕ), a conjunction

of two formulas (ϕ∧ψ), a disjunction of two formulas (ϕ∨ψ); evaluation is defined

according to the usual semantics.

Since ∧ and ∨ are commutative and associative, we can unambiguously extend

them to sets: if S is a set and s1,s2, . . . ,sn ∈ S, we define
∧

s∈S = s1 ∧ s2 ∧ . . .∧ sn

and
∨

s∈S = s1∨ s2∨ . . .∨ sn.

We call a disjunction of literals which does not contain opposite literals a clause;

a formula in conjunctive normal form (henceforth CNF) is a conjunction of clauses.

The conjunctive normal form of a formula is important because SAT solvers require

as input a formula in this form.

A first step into converting a formula to conjunctive normal form is conversion

to negation normal form (NNF). A formula is in NNF if and only if the ¬ operator is

only used on atoms. In other words, negation cannot be used on the result of other

operations, but it must be “pushed down” as far as possible. Any propositional

formula can be converted to NNF by applying repeatedly the following rules:

¬¬ϕ 7→ ϕ

¬(ϕ ∧ψ) 7→ ¬ϕ ∨¬ψ

¬(ϕ ∨ψ) 7→ ¬ϕ ∧¬ψ

43

CHAPTER 4. Boolean formula manipulation

Each of these rules decreases the size of negated formulas, guaranteeing termination

of the algorithm; when the algorithm terminates, no pattern applies to the resulting

formula. By inspecting the rules, one can convince himself that the result must

therefore be in NNF.

Through the above defined operators, one can define the additional derived op-

erators a→ b = (¬a∨ b) and a↔ b = (a→ b)∧ (b→ a); formulas using those

operators are immediately converted in their simplified form which uses only the

primitive operations ¬,∧,∨.

An assignment is a partial function mapping variable names to booleans, defined

only on a finite number of input values; an assignment A models a formula ϕ , written

A |= ϕ , if A defines all the variables mentioned ϕ so that the latter evaluates to true.

A formula ϕ:

• is valid, or a tautology, if it all assignments model it: We write then |= ϕ , or

ϕ =>, where > represents true, or can be taken to be any specific tautology;

• is unsatisfiable, or a contradiction, if its negation is valid, i.e. |= ¬ϕ; we

write then ϕ =⊥, where⊥ represents false, or can be taken to be any specific

contradiction;

• is satisfiable if it is not unsatisfiable 6|= ¬ϕ; Equivalently, ϕ is satisfiable iff

there is an assignment A that models it, which we write ∃A (A |= ϕ), with a

slight notational abuse.

Two formulas ϕ and ψ are equivalent and we write ϕ ≡ψ iff for any assignment

A, A |= ϕ ↔ A |= ψ; they are equisatisfiable if they are both satisfiable or both

44

CHAPTER 4. Boolean formula manipulation

unsatisfiable, under possibly different models.

Finally, a formula transformation f preserves satisfiability if f (ψ) is equisatis-

fiable to ψ for any ψ , and preserves equivalence if f (ψ)≡ ψ for any ψ .

4.2.1 Conversion to conjunction normal form

A generic formula can be converted to CNF by first converting it into NNF

and then applying repeatedly the distributive law of disjunction over conjunction:

(x1∧ y1)∨ (x2∧ y2) = (x1∨ x2)∧ (x1∨ y2)∧ (y1∨ x2)∧ (y1∨ y2).

From the point of view of the implementation, if the formula is implemented as

a tree, the CNF can be defined recursively after transforming it into NNF: each node

computes the CNF of its children and combines them appropriately. In particular,

disjunction nodes need to apply the distributive law; conjunction nodes can simply

join together the CNF formulas obtained from their children; negation nodes in NNF

are only part of literals, thus they are already in CNF. For efficiency, the conversion

to NNF and the later pass of conversion to CNF can be fused together in a single-

pass algorithm, but we omit further details because mostly straightforward.

However, when a formula is a disjunction of n conjunctions of literals c1,c2, ...cn,

applying the distributive law produces ∏
n
i=1 ci clauses. We show an example for

45

CHAPTER 4. Boolean formula manipulation

c1 = c2 = . . .= cn = 2:

∨n
i=1(xi∧ yi) = (x1∨ . . .∨ xn−2∨ xn−1∨ xn)

∧ (x1∨ . . .∨ xn−2∨ xn−1∨ yn)

∧ (x1∨ . . .∨ xn−2∨ yn−1∨ xn)

∧ (x1∨ . . .∨ xn−2∨ yn−1∨ yn)

∧ . . .

∧ (y1∨ . . .∨ yn−1∨ yn)

(4.2.1)

We will later present the general technique of formula renaming: renaming a

formula preserves satisfiability and allows producing an equisatisfiable formula in

CNF having size polynomial in the input. Furthermore, this technique will be use-

ful for us to avoid combinatorial explosion also in other algorithms for formula

manipulation.

4.2.2 Formula renaming

Let us first illustrate the technique on the same example. We need to transform

χ = ϕ ∨ψ into CNF; we assume that both ϕ and ψ have been transformed into

CNF and have respectively n and m clauses, but we want to avoid producing nm

clauses. We now introduce two fresh variables x and y and consider the formula

χ ′ = (x∨ y)∧ (x ↔ ϕ)∧ (y ↔ ψ); in this formula, we have renamed ϕ and ψ

respectively by x and y, producing the clause x∨y, and we have conjuncted formulas

ensuring that (in a satisfying assignment) each formula evaluates to the same truth

value as its “new name”. Indeed, one can prove that χ and χ ′ are equisatisfiable.

46

CHAPTER 4. Boolean formula manipulation

In general, we can rename an arbitrary subformula ϕ of χ; we have to be careful,

however, to add the clauses relating ϕ to its new name only to the top level.

The technique, as described, allows renaming an arbitrary subformula, but is

not always optimal; renaming ϕ adds the CNF of x↔ ϕ = (x→ ϕ)∧ (ϕ → x) =

(¬x∨ϕ)∧ (¬ϕ ∨x), which adds two occurrences of ϕ in place of the renamed one.

However, this doubling happens exactly once and does not lead to a exponential

blowup, because the resulting clauses are added to the top-level, rather than inside

the formula where they could be subject to renaming and be duplicated again.

Still, when using formula renaming under special conditions, it is possible to

avoid this duplication. We avoid stating those conditions in full generality, and

refer the reader to Nonnengart and Weidenbach (2001) for those. We simply note

that when χ is in NNF and we rename any subformula ϕ which is not a literal,

and thus does not appear inside any negation, it is enough to add x→ ϕ rather

than x↔ ϕ; we allow x to be false while ϕ is true, but this “loss of precision” is

not a problem, because after modifying the assignment to make x true produces an

assignment which still models χ , thanks to the constraints on χ and ϕ .

What is even more useful is that these hypothesis apply when converting a for-

mula from NNF to CNF. Therefore, the original example χ = ϕ ∨ψ is equisatisfi-

able to χ ′ = (x∨ y)∧ (x→ ϕ)∧ (y→ ψ).

47

CHAPTER 4. Boolean formula manipulation

4.3 The design space of in-memory representations

It is possible to translate directly the above definitions to a BNF grammar, and

to use the associated AST as our data structure.1 Formally, in BNF notation:

Formula ::= Identi f ier

| Formula∧Formula

| Formula∨Formula

| ¬Formula

(4.3.1)

To represent ¬a, a∨b, a∧b, we simply build a new AST node.

In all cases, both for this representation and the next ones we will discuss, in-

stances of all these classes are (semantically) immutable once constructed: We can-

not modify a formula, rather we create a new one. Due to extensive sharing, this

is essential: otherwise we might risk modifying, e.g., the presence condition of

already created nodes.

The problems with such a representation are the memory consumption and sim-

plification. For instance, n1 = ¬(¬(¬a)) is a valid node, as n2 = (((a∧b)∧c)∧a),

or as n3 = (a∧ b)∧ (c∧ a). The size of a formula grows at each operation, and

fully simplifying a formula is expensive, because it requires looking for duplicate

subformulas, and comparing two formulas for structural equality has a cost linear in

their size. Thus, in a tree with n nodes, comparing each pair of nodes could take (by

a very simple estimation) Ω(n2)), which is quite expensive. Additionally, structural

1Readers knowledgeable with functional programming will notice that we are defining in essence

an algebraic data type, as available for instance in Haskell, even if with a more sloppy notation.

48

CHAPTER 4. Boolean formula manipulation

equality cannot detect that, e.g., n1 = ¬a, or n2 = n3, even if those formulas are

clearly equivalent, and differ only in the order of their operation.

We described just the simplest possible algorithms based on this data structure;

among other things, one can try simplifying just some common patterns for which

simplification is less expensive, or disable it altogether. However, we experimented

with various variations, but simplification had never good performance, and even

disabling it altogether, conversion of formulas into CNF always consumed excessive

time and space. Thus, in the end we abandoned this approach, and we found one

which is much better, that we later describe.

One way to look at the problem is that the data representation can represent too

much information which is irrelevant, for instance the difference between n2 and

n3. Analogously, there is no reason to allow building n4 = ¬(¬a): when attempting

to construct such a node, a good algorithm should simply return a. Since n1 =

¬n4, attempting to build n1 would simply produce ¬a again. This suggests using a

canonical or normal form, such that a single representation is used for both n2 and

n3, and that we prevent building nodes like n4 during construction.

A canonical form on a set S is always relative to some equivalence relation

R ⊂ S×S, because the canonical form of an element x ∈ S is a designated element

of its equivalence class. Now, it is crucial to understand that we cannot use a rep-

resentation which is canonical relative to formula equivalence, but we need to use

a smaller relation. Otherwise, either the canonicalization algorithm or checking

structural equivalence on the result would be NP-hard, as can be easily proved:

Theorem 4.3.2. Converting any propositional formula (represented as defined by

49

CHAPTER 4. Boolean formula manipulation

Eq. (4.3.1)) to a form which is canonical relative to equivalence, and which can be

compared for equality in polynomial time, is NP-hard.

We present a proof sketch.

Proof. Let us assume that c(ψ) computes a canonical form of ψ in polynomial time

for a generic ψ . We can check whether a formula ϕ is valid by comparing its normal

form c(ϕ) with c(>), where > is an arbitrary tautology; since c has only time

to produce an output of polynomial size, the comparison would take polynomial

time as well. We can check satisfiability with a validity checker: ∃A (A |= a)↔6|=

¬a. Since in the representation above ¬a can be produced in polynomial time, this

gives an polynomial algorithm for SAT. In technical terms, we have reduced SAT to

the canonicalization algorithm c, and thus shown that the latter solves an NP-hard

problem.

BDDs are such a canonical form, and this theorem explains why they suffer

exactly from this problem. The same is true for some CNF variants, but conversion

to CNF (also to such variants) produces output of exponential size in the worst

case. Converting a formula to an equisatisfiable one in CNF form, on the other

hand, introduces freshly generated variables in the formula, so that equality would

need to be defined up to renaming of those variables.

However, we are not really interested in formula equivalence, as the SAT-solver

takes care of that; our motivation is increasing readability of produced formulas

while enabling simplification patterns to remove redundant subformulas.

A canonical form has the following advantages:

50

CHAPTER 4. Boolean formula manipulation

1. Structural equality between object in a canonical form allows testing the re-

lation R.

2. If we can construct an hash function consistent with structural equality, and

our data is represented through immutable objects, we can avoid having mul-

tiple copies of the same object, ensuring maximal sharing.

3. Maximal sharing not only saves memory, but allows testing for structural

equality through a simple pointer comparison; this changes the comparison

cost from Ω(n) to Θ(1). This in turns is useful for fast simplification.

4. It simplifies code operating on the structure, because it needs to cope with a

smaller variety of structures.

Similar technique have long been used since long time, especially in symbolic

computation, and go under different names: maximal sharing, hash-consing (Goto,

1974; Ershov, 1958; Appel and Gonçalves, 1993), and the flyweight pattern (Gamma

et al., 1995). A modern description of hash-consing, together with an experimental

evaluation of it applied to boolean formula manipulation, is presented by Filliâtre

and Conchon (2006).

We denote structural equality of formulas through =, and pointer equality by $.

Thus, ϕ $ ψ means that ϕ and ψ are represented by the same object. In general,

ϕ $ ψ → ϕ = ψ; with maximal sharing, ϕ $ ψ ↔ ϕ = ψ .

51

CHAPTER 4. Boolean formula manipulation

4.4 Formula representation

In our representation, implemented in Scala2, we have a simple object hierarchy

to represent formulas. FeatureExpr is the root of our hierarchy; subclass Defined-

Expr represents atoms; subclass Not represents the negation operator, and contains

a field referring to the negated formula; ∧ and ∨ are represented by subclasses

And and Or, both inheriting from BinaryLogicConnective. They both contain a field

which links to a Set of formulas; Set are implemented by Scala standard library

through hashtables, thus membership testing takes time constant in the set size; for

the time to be constant also in the formula size, we need O(1) equality testing and

hash-code computation. Finally, we have singleton objects True and False; since

True is the identity for ∧, we stipulate that And(Set())3 is identical to True, so that

True extends And(Set()). Dually, Or(Set()) is identical to False. 4

All formulas inherit the default implementation of structural equality (method

Object.equals), which only tests for pointer equality, and has thus O(1) cost. Fur-

thermore, each subclass of FeatureExpr has a amortized O(1) hash-code implemen-

tation. To ensure this, BinaryLogicConnective contains a cache of the hash code, to

ensure that it is computed only once. Furthermore, given a = And(Set(x1, x2, ...,

2Scala is a modern programming language running on the JVM and with strong compatibility

with Java libraries, which is both object-oriented and functional; we assume only knowledge of Java

in the discussion.
3Set() represents the empty set.
4This was inspired by the algorithm of resolution, where a contradiction is represented by the

empty clause. However, if we define
∧

and
∨

over sets of clauses, the only coherent way to extend

them to ∅ is the one we described, i.e.,
∧
∅=>, and

∨
∅=⊥.

52

CHAPTER 4. Boolean formula manipulation

xn)), creating b = And(Set(x1, x2, ..., xn+1) reuses the old hash code for computing

the new one, in this case at object time.

The constructors of all these classes are hidden, and factory methods must be

used: this is needed to ensure that no two objects representing the same formula are

created, and that formulas are simplified during object creation.

After a new object is created, we need to check whether another copy of it was

already created. The standard solution is to look up an object in a canonicalization

hash-table, where we associate to each canonical object the object itself; thus, look-

ing up in this table an object o′ equal to the already existing o returns o, which we

can return. However, during this lookup we cannot use pointer equality to imple-

ment structural equality, because we are trying to detect equal formulas to eliminate

the duplicate from existence. The key idea of hash-consing is that since object in-

stances are canonicalized at build time, it is correct to use pointer equality for the

children of the current node. Thus, for an instance of BinaryLogicConnective hav-

ing k children, we can check equality in Θ(k) time, by checking whether each child

of the newly created node belongs to the set of children of the existing node, and

whether the two sets of children have the same size.

We can safely skip this step when enlarging an BinaryLogicConnective node

with a new operand, if the node is used internally for adding further clauses, as long

as we finally canonicalize the result.

53

CHAPTER 4. Boolean formula manipulation

4.4.1 Simplification

As a first step, we notice that Not(Not(a) ≡ a, And(And(a, b), c) ≡ And(a, b, c),

Or(Or(a, b), c) ≡ Or(a, b, c). Therefore, we enforce as a structural constraint that

connectives of the same type cannot be nested: whenever the library is requested to

build one, it builds the flattened version, similarly to the examples just described.

We use the transformation rules in Fig. 4.4.1 and Fig. 4.4.2 for formula simpli-

fication. Thanks to the use of Set, they are matched commutatively.

The two tricky pattern are quite useful: they ensure that in a (sub)formula of

shape ϕ g (
c

i ψi), where g and f are any two binary operators, neither ϕ nor ¬ϕ

appear among {ψi}i, because they will be simplified.

Adding DeMorgan’s laws was particularly tricky, for various reason, but also

particularly useful: they ensure that formulas are normalized to NNF while con-

struction. A complexity analysis shows that applying De Morgan laws during

formula construction, i.e. bottom-up, can cause a subtree to be processed each

time the containing tree is negated. Let us consider iterating the transformation,

a 7→ ¬(a∧b), where b is a fresh atom (i.e., not used in a), so that a∧b is not sim-

plified by any pattern, and the result of applying it n times. At each step the whole

obtained formula is visited again, leading to complexity quadratic in n and in the

input size if the tree size is linear in the number of step (i.e., if it is list-like). In

comparison, if we perform the transformation top-down, we can stop building new

nodes when we find a subformula of form Not(f); we simply obtain f as its negation;

afterwards, we continue descending looking for new negated formulas. Therefore,

54

CHAPTER 4. Boolean formula manipulation

¬True 7→ False (4.4.1)

¬False 7→ True (4.4.2)

e∧ e 7→ e (4.4.3)

e∧False 7→ False (4.4.4)

e∧True 7→ e (4.4.5)

e∧¬e 7→ False (4.4.6)

e∧ (e∧ e′) 7→ e∧ e′ (4.4.7)

e∧ (¬e∧o) 7→ False (4.4.8)

Duals:

e∨ e 7→ e (4.4.9)

e∨True 7→ True (4.4.10)

e∨False 7→ e (4.4.11)

e∨¬e 7→ True (4.4.12)

e∨ (e∨ e′) 7→ e∨ e′ (4.4.13)

e∨ (¬e∨o) 7→ True (4.4.14)

Figure 4.4.1: Standard simplification rules

55

CHAPTER 4. Boolean formula manipulation

Tricky rules:

e∧ (e∨o) 7→ e (4.4.15)

e∧ (¬e∨o) 7→ e∧o (4.4.16)

Duals:

e∨ (e∧o) 7→ e (4.4.17)

e∨ (¬e∧o) 7→ e∨o (4.4.18)

De Morgan laws:

¬
∧

i

xi 7→
∨

i

¬xi (4.4.19)

¬
∨

i

xi 7→
∧

i

¬xi (4.4.20)

Figure 4.4.2: Advanced simplification rules

56

CHAPTER 4. Boolean formula manipulation

the whole formula is only visited once.

However, this problem can be solved effectively by memoizing formula nega-

tion. We first add a field notCache to the class FeatureExpr; when we negate a

formula ϕ and produce ψ ≡ ϕ , we set ϕ .notCache = ψ and ψ .notCache = ϕ , so

that next time we negate either formula we can return the result immediately. Note

that maximal sharing makes memoization more effective and cheap. Alert readers

might notice that adding such a cache seems to make objects no more immutable;

however, the meaning of each node is still immutable, and this is the essential for

the correctness of our software. If a formula is the presence condition of multi-

ple statements, we cannot add a clause because that would change the p.c. of those

statements, but caching its negation within that formula is not a problem.5

This still does not solve the problem; with this fix, negating (
cn

i=1 ψi) takes

O(n) time, if for each ψi the negation was already computed, and time proportional

to the formula size in the worst case. However, applying rules like (4.4.8) relies on

negation, which must then take constant time to be fast. In practice, this change

makes runtime again exponential; to fix the problem, we changed these rules, so

that they are applied only if the needed negations have already been computed. The

underlying hypothesis is that if objects representing ψ and ¬ψ exist in memory, it

is likely that ¬ψ has been produced by negating ψ , and that therefore the cache

lookup will be successful; otherwise, if the cache lookup fails, it is likely that the

5Immutable data is also useful because it prevents data races in multithreaded software and, in

that context, material immutability is important. However our partial preprocessor is single-threaded,

so this is not a problem.

57

CHAPTER 4. Boolean formula manipulation

negation has never been computed, and therefore it is useless to build ¬ψ to use it

in a comparison which is likely to fail. While we might miss some opportunities for

simplification, the runtime becomes again acceptable, we can apply DeMorgan’s

laws during construction and represent formulas in NNF, and this enables other

simplification opportunities. For instance, we observed in the output of our tool

occurrences of the pattern a∧¬(a∧ b), and its variation; in NNF this formula be-

comes a∧ (¬a∨¬b), which is simplified by rule (4.4.16) to a∧¬b. However, we

will need to perform more benchmarks to understand whether NNF normalization

is worth its cost.

Another effect of these patterns is that the associative property does not hold

any more wrt. structural equality, because of simplification patterns which trigger

in one case but not another. For instance the associative law for∧, i.e. ((a∧b)∧c) 6$

((a∧b)∧c), does not hold for (a,b,c) = (x,x∨y,z), because a∧b = x∧(x∨y) 7→ x.

4.4.2 Visiting a DAG and formula renaming

Converting a formula to CNF, or applying DeMorgan’s laws to a formula, is

done by a recursive visit, i.e., in essence, through a post-order visit of the tree repre-

senting the formula. However in our cases subtrees can be shared, first because they

are immutable so they might be shared, second because we have maximal sharing,

so wherever sharing is possible it will happen. This means that our data structure,

under an appearance similar to an abstract syntax tree, is actually a disguised di-

rected acyclic graph, which requires the use of different algorithms to avoid visiting

the same node more than once.

58

CHAPTER 4. Boolean formula manipulation

On the other hand, if we now want to output the formula, we seemingly need to

visit the same trees again.

Additionally, maximal sharing can change the size of a data structure from ex-

ponential to polynomial, therefore visiting again node can make the complexity of

the visit exponential.

For example, consider the family of formulas (and the representing DAGs) de-

fined as: T1 = a, Ti+1 = Ti ∧ (b∨ (Ti ∧¬c)). This complex family is chosen to

avoid that simplification patterns simplify it and remove the duplication. Taking

sharing into account, the cost of representing the DAGs T1, . . . ,Tn is Θ(n), because

the representation of Ti+1 given Ti takes O(1) space. However, if we regard them

as trees, their size is exponential. Using the number of leaves as a size measure,

|Ti+1|= 2 |Ti|+2, so that the number of leaves for Tn is Ω(2n); this implies that also

the number of nodes in the corresponding tree is exponential.

In standard DAG algorithms, one maintains a set of visited nodes, or flags the

nodes themselves; however, this complicates the traversal. In the examples we con-

sidered, memoization however is a convenient way to mark nodes which have al-

ready been visited (even in previous visits), beyond simply saving the result. This

is one reason why also the result of CNF transformation are memoized. Both the

change of space complexity due to maximal sharing, and the use of memoization

were already described by Goto (1974), where memoization is offered through the

function assoccomp at page 17.

We also memoize the result of combining two formulas by ∧ or ∨, but it seems

that after introducing a global canonicalization hash-table, this might no more be

59

CHAPTER 4. Boolean formula manipulation

needed, if building the node takes only constant time – the saving might not be

worth the effort; on the other hand, if rebuilding the node takes linear time, and

this depends on the algorithm for set merging, then also this cache might be useful.

However, it is a fundamentally different cache because it can at most save time

linear in the number of children of a node.

A further problem is that even if results of CNF transformation are memoized,

they must be propagated upwards multiple time; if the original formula tree is of

exponential size, we still risk an exponential blowup.

Additionally, we need to be able to pretty-print formulas for the output. In a

simple string representation, we concatenate the results of visiting subtrees, so the

total length of the resulting string can be exponential. Indeed, when this was our

actual implementation, on complex input files our tool often exhausted the available

heap exactly in this phase. This problem was partially alleviated by simply avoiding

this concatenation: we now print the string piece by piece, during the visit, and

have introduced a special token type to represent formulas to avoid having a textual

representation. However, this is the only token type which does not have a string

representation, and this complicates the implementation of our preprocessor.

Furthermore, this only shifted the problem: while memory consumption re-

mains reasonable, on the same inputs now TypeChef is happy to produce various

gigabytes of output – even if these are not the typical cases.

We have two possibilities to avoid all these problems, both in CNF and stringifi-

cation: the first is using the same idea as in formula renaming instead of replacing a

reference to a macro with its macro body. Indeed, we do not even need to introduce

60

CHAPTER 4. Boolean formula manipulation

a new name: we can simply reuse the existing name of the referenced macro, to in-

crease readability. This might reduce the possibilities of producing an exponential

formula in the first place.

Indeed, expanding a formula into another is similar to inlining a function into

another, as done by optimizing compilers, which face the same problem of avoiding

exponential blowup when doing so; similar heuristics can be used. In our case, we

found that simply expanding inline small formulas (smaller than a fixed threshold)

is beneficial, because it allows further simplification.

When outputting a string, formula renaming needs to be slightly modified. CPP

does not check satisfiability of a formula, it checks if it is satisfied. Therefore, to

introduce a new variable, we need to output a #define statement.

The other possibility is to identify sharing explicitly and introduce new names.

While it is not a problem for CNF transformation, for the output this would reduce

readability, therefore we want to avoid it or leave it optional, and use it as a last

resort. However, this is possible. We can modify the algorithm for a standard DAG

visit, by keeping two sets: the sets of visited nodes, and the sets of nodes which

where encountered in the visit when already present in the first set. The formulas in

the second set could then be renamed, making the size of the output formula linear.

4.4.3 An exponential example

When the program includes a file conditionally multiple times, we have a con-

crete case which can trigger formula blowup. Below, we show a simplified example,

which shows how formulas can grow; the resulting pattern would be simplified by

61

CHAPTER 4. Boolean formula manipulation

our simplification rules, but for more complex examples, too complex to present

here, this is no more true.

1 #if A

2 //After expanding #include <header.h>

3 #ifndef HEADER_H

4 #define HEADER_H

5 //Header body

6 #endif

7 #endif

8 // Now defined(HEADER_H) = defined(A) || definedEx(HEADER_H) = φ

9 #if B

10 //After expanding #include <header.h>

11 #ifndef HEADER_H

12 #define HEADER_H

13 //Header body

14 #endif

15 #endif

16 // Now defined(HEADER_H) = φ ∨ (B∧¬φ) =

17 // defined(A) || definedEx(HEADER_H) || (!defined(A) && !definedEx(HEADER_H) &&

defined(B))

62

5 Conclusion and future works

5.1 Parsing

We have discussed the design and the challenges behind the design of our partial

preprocessor. In this chapter, we briefly discuss how the output of partial prepro-

cessing can be parsed and typechecked.

Baxter and Mehlich (2001) and Padioleau (2009) modify a standard C gram-

mar to allow explicitly for CPP annotations at specific places; they note that with

this approach, allowing preprocessor annotations at any source location would be

unwieldy. The first problem is that preprocessor annotation can occur at arbitrary

places; the second is that matching #if and #endif annotation might occur while pro-

cessing different nonterminals. Thus, in such approaches, the grammar is modified

to handle common patterns of preprocessor usage. However, Liebig et al. (2011)

discuss such patterns of disciplined annotations and show that on average 16% of

all annotations are not disciplined.

In a nutshell, instead of modifying the grammar, our approach is to modify the

semantics of the grammar to encode once and for all the semantics of conditional

63

CHAPTER 5. Conclusion and future works

compilation: when the parser reads an #if directive, it should split the parsing con-

text, producing two parsers. In the context of each parser we maintain the presence

condition of the text which is being parsed. The two obtained parsers should then

continue parsing the two possible alternatives; when an #endif directive is found,

the two parsers should try to complete parsing a syntactic unit, reach a common

position and then join together again. The resulting AST would contain a node

representing the two alternatives, and the conditions leading to one or the other.

However, obtaining a robust algorithm to ensure that parsers join if possible

is complex, and we do not detail this further. A further complication is that #if

directives do not occur in isolation, but are often nested, so often split parsers need

to split again; additionally, in practice parsers do not always join right after a #endif

directive, therefore parser might split again also on non-nested conditions.

Therefore, a parser with associated presence condition γ , when reading an #if

directive with condition ϕ , needs to check whether γ → ϕ or γ → ¬ϕ is valid; in

this case, the parser needs only to follow the considered branch, otherwise it needs

to split again.

5.1.1 Token stream representation

In our current representation, as described in our paper (Kästner, Giarrusso, and

Ostermann, 2011), the output of the partial preprocessor is internally represented

as a token stream where each token is associated with its presence condition in the

output; thus, #if and #endif directives are represented only implicitly. However,

in this implicit representation, it is no more immediate to understand where code

64

CHAPTER 5. Conclusion and future works

regions start and end. Consider now a generic directive of form #if ϕ in a region with

p.c. ψ: in this representation, we simply annotate the contained tokens with p.c. ϕ∧

ψ , while the context has p.c. ψ , and it is in general difficult to extract the difference

of two formulas, obtaining again ϕ . Therefore, a parser with p.c. γ reaching such a

directive will have to check validity of γ → (ϕ ∧ψ) and γ →¬(ϕ ∧ψ), rather than

γ → ϕ and γ →¬ϕ . Since ψ accounts for all outer #if directives, while ϕ is likely

small, this makes a big difference; the expensive operation, during benchmark, was

conversion to CNF, not validity checking (which invokes the efficient SAT-solver),

and that conversion has already been performed for γ . Therefore, we believe that

changing the representation might be a useful optimization, and we plan to do this

in future work.

5.1.2 Typechecking

Having such a representation available, performing typechecking is a compar-

atively easier task. Variability-aware extension of existing type systems have been

designed for instance by Kästner, Apel, Thüm, and Saake (2011), which introduced

a general method which can be extended to other type systems as well.

5.2 Related work

Our work is most closely related to the one by Latendresse (2003, 2004): the

algorithm he describes is similar to what we discussed in Sec. 3.2.

An interesting difference is that the representation he uses for formulas, which

65

CHAPTER 5. Conclusion and future works

he terms conditional values, most closely resembles an hybrid between BDD and

boolean formulas. He does not detail which satisfiability procedure he used.

He argues on some examples that his algorithm has in practice linear time com-

plexity; however, his example only show that unrelated macros do not interact and

therefore the complexity does not grow with the number of macro bindings.

Additionally, his implementation is not tuned for performance and his evaluation

is performed only on two very small examples. His algorithm always fully expands

macro conditions, even if in a different representation, therefore we believe that

making his algorithm perform well would require a substantial redesign, as needed

for us.

Moreover, his algorithm only decides the presence condition of each line of

source code, but does not perform partial preprocessing; macro expansion is limited

to what is needed to process conditional compilation directives.

For further discussion of other related work, we refer to Kästner et al. (2011).

5.3 Future works

Some of the algorithms described for formula manipulation have not yet been

fully implemented, and finishing this work is the obvious next step.

We already outlined the complete TypeChef project, which is nearing comple-

tion of its next milestone.

One interesting additional application of PPC would be to combine our work

with the algorithms by Spinellis (2003): his algorithm tracks macro expansion in

66

CHAPTER 5. Conclusion and future works

a fully correct way to enable rename refactoring, but cannot cope with conditional

compilation. On the other hand, PPC handles conditional compilation but needs to

perform full macro expansion, thus combining the two tools would extend rename

refactoring to software product lines.

Another possibility is extending the study of Chap. 3 to a full semantics and

correctness proof of partial preprocessing.

Additionally, a last area for future work is independent caching of different

headers. To speed up our tool, we could cache the result of partial preprocess-

ing a header, because given the same macro table, the same preprocessor output and

the same resulting macro table are produced; in particular, not the whole original

macro table is relevant, and we can extract a partial macro table containing relevant

entries. In C compilers, that is done only for the first header file, because as soon as

any new macros are defined, the result might be different.

It could even be possible to partially preprocess each header in isolation, and

then assemble and further preprocess the result. It is more perspicuous to regard

this as partially evaluating each header in isolation (together with the recursively

included files), and then performing further partial evaluation on the result. An es-

sential condition for this to work is that each headers includes all the needed depen-

dencies, rather than expecting some macros to be already defined by the including

file; however, this is a well-known and widely respected guideline in many software

projects, and exceptions might be indicated by the user.

Bigger technical problems are caused by the technicalities discussed in 3.1.1; in

particular, preprocessing is not idempotent, as we discussed, so further preprocess-

67

CHAPTER 5. Conclusion and future works

ing a file is not necessarily safe. It seems possible that such partial preprocessing

might depend on deferring some non-deferrable headers; thus, we might need the

ability to defer more macro definitions. Both problems might be solved by using

a more powerful output format; for instance, expanded self-references are marked

as expanded during (partial) preprocessing to prevent recursion, and we need to

preserve such marking also in the output. Details are yet to investigate.

5.4 Conclusion

This thesis discussed our partial preprocessing algorithm, why efficient formula

manipulation is crucial, and how we can perform it. The analysis performed iden-

tified algorithms which cannot be made efficient, design requirements which had to

be changed, and guided in designing better algorithms; the study that we performed

about the connection with partial evaluation opens interesting possibilities for future

works.

68

Acknowledgements

I would like to thank my supervisors during this thesis, Prof. Klaus Ostermann,

Prof. Giuseppe Pappalardo, and Dr. Christian Kästner, for their suggestions and

guidance during the work on this thesis and more in general.

I would also like to thank my colleagues Tillmann Rendel and Sebastian Erdweg

for the many helpful discussions we had.

My work on this project was supported by the European Research Council (grant

ERC #203099).

Personal acknowledgements follow in Italian only.

69

Ringraziamenti

A conclusione di questo lavoro, devo ringraziare coloro i quali mi hanno aiutato

a compierlo, sia direttamente, sia indirettamente, aiutandomi a crescere e arricchen-

do quello che sono.

Ringrazio la mia famiglia, in particolare la mia cara e tenera madre Rosalia, mio

padre Salvatore, mio zio Enzo, che mi hanno aiutato a crescere e diventare quello

che sono.

Ringrazio il mio amico Matteo, per l’ineffabile amicizia che ci lega e per tutto

il tempo passato assieme.

Ringrazio i miei amici Dario, Mauro, Silvia, Roberto, Bean, che mi hanno inse-

gnato a non essere troppo serio e a sapermi sempre prendere in giro, e con cui ho la

fortuna di poter parlare sempre schiettamente, senza segreti né ipocrisie.

Ringrazio i miei amici Enrico, Federica, Daniela, Pie(t)ro Torre, Simone, Do-

menico, Serena, Lorena, Toti, con cui abbiamo passato assieme tanti momenti belli

della mia vita in questi anni.

Ringrazio tutta la SSC, in particolare Ivan, Salvo ‘Spider’, Roberta, Ivano, Be-

niamino, Mario, Alekampo, e tanti altri, per aver reso così belli gli anni vissuti nella

70

SSC.

Ringrazio i miei colleghi, Pino, Angelo, Eugenio, Samuele, Daniela, Lorenzo,

Mikkule, Carlo, Gianluca, Giancarlo, Simone, Salvo ‘LtWorf’, per aver reso un po’

meno noiose tante giornate di studio.

71

Bibliography

Bram Adams, Wolfgang De Meuter, Herman Tromp, and Ahmed E. Hassan. Can

we refactor conditional compilation into aspects? In Proc. Int’l Conf. Aspect-

Oriented Software Development (AOSD), pages 243–254, New York, 2009. ACM

Press. ISBN 978-1-60558-442-3. doi: http://doi.acm.org/10.1145/1509239.

1509274.

Sven Apel and Christian Kästner. An overview of feature-oriented software devel-

opment. Journal of Object Technology (JOT), 8(5):49–84, 2009.

A.W. Appel and M.J.R. Gonçalves. Hash-consing Garbage Collection. Technical

Report CS-TR-412-93, Princeton University, 1993.

Ira Baxter and Michael Mehlich. Preprocessor conditional removal by simple partial

evaluation. In Proc. Working Conf. Reverse Engineering (WCRE), pages 281–

290, Washington, DC, 2001. IEEE Computer Society. ISBN 0-7695-1303-4.

Claus Brabrand and Michael I. Schwartzbach. Growing languages with metamor-

phic syntax macros. In Workshop on Partial Evaluation and Semantics-Based

Program Manipulation, pages 31–40, New York, 2002. ACM Press.

72

BIBLIOGRAPHY

Randal E. Bryant. Graph-based algorithms for boolean function manipulation.

IEEE Trans. Computers, 35:677–691, 1986. ISSN 0018-9340. doi: 10.1109/TC.

1986.1676819. URL http://portal.acm.org/citation.cfm?id=

6432.6433.

A. P. Ershov. On programming of arithmetic operations. Commun. ACM, 1:3–6,

1958. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/368892.368907. URL

http://doi.acm.org/10.1145/368892.368907.

Jean-Marie Favre. Understanding-in-the-large. In Proc. Int’l Workshop on Program

Comprehension, page 29, Los Alamitos, CA, 1997. IEEE Computer Society. doi:

http://doi.ieeecomputersociety.org/10.1109/WPC.1997.601260.

Jean-Christophe Filliâtre and Sylvain Conchon. Type-safe modular hash-consing.

In Proceedings of the 2006 workshop on ML, ML ’06, pages 12–19, New York,

2006. ACM Press. ISBN 1-59593-483-9. doi: http://doi.acm.org/10.1145/

1159876.1159880. URL http://doi.acm.org/10.1145/1159876.

1159880.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley, Boston, MA,

1995. ISBN 0-201-63361-2.

Alejandra Garrido and Ralph Johnson. Refactoring C with conditional com-

pilation. In Proc. Int’l Conf. Automated Software Engineering (ASE), page

73

http://portal.acm.org/citation.cfm?id=6432.6433
http://portal.acm.org/citation.cfm?id=6432.6433
http://doi.acm.org/10.1145/368892.368907
http://doi.acm.org/10.1145/1159876.1159880
http://doi.acm.org/10.1145/1159876.1159880

BIBLIOGRAPHY

323, Los Alamitos, CA, 2003. IEEE Computer Society. doi: http://doi.

ieeecomputersociety.org/10.1109/ASE.2003.1240330.

Alejandra Garrido and Ralph Johnson. Analyzing multiple configurations of a C

program. In Proc. Int’l Conf. Software Maintenance (ICSM), pages 379–388,

Washington, DC, 2005. IEEE Computer Society. ISBN 0-7695-2368-4. doi:

http://dx.doi.org/10.1109/ICSM.2005.23.

Eiichi Goto. Monocopy and associative algorithms in an extended Lisp. Technical

Report TR74-03, University of Tokio, 1974.

Ying Hu, Ettore Merlo, Michel Dagenais, and Bruno Laguë. C/C++ conditional

compilation analysis using symbolic execution. In Proc. Int’l Conf. Software

Maintenance (ICSM), pages 196–206, Los Alamitos, CA, 2000. IEEE Computer

Society.

ISO. ISO/IEC 9899-1999: Programming Languages—C. International Organiza-

tion for Standardization, 1999.

Neil D. Jones. An introduction to partial evaluation. ACM Computing Surveys

(CSUR), 28:480–503, 1996. ISSN 0360-0300.

Christian Kästner, Paolo G. Giarrusso, Tillmann Rendel, and Klaus Ostermann.

Variability-aware parsing in the presence of lexical macros and conditional com-

pilation. In preparation.

Christian Kästner, Sven Apel, and Martin Kuhlemann. Granularity in software

74

BIBLIOGRAPHY

product lines. In Proc. Int’l Conf. Software Engineering (ICSE), pages 311–

320, New York, 2008. ACM Press. ISBN 978-1-60558-079-1. doi: http:

//doi.acm.org/10.1145/1368088.1368131.

Christian Kästner, Sven Apel, Salvador Trujillo, Martin Kuhlemann, and Don Ba-

tory. Guaranteeing syntactic correctness for all product line variants: A language-

independent approach. In Proc. Int’l Conf. Objects, Models, Components, Pat-

terns (TOOLS EUROPE), volume 33 of Lecture Notes in Business Information

Processing, pages 175–194, Berlin/Heidelberg, 2009. Springer-Verlag. ISBN

978-3-642-02570-9. doi: 10.1007/978-3-642-02571-6.

Christian Kästner, Sven Apel, Thomas Thüm, and Gunter Saake. Type checking

annotation-based software product lines. ACM Trans. Softw. Eng. Methodol.

(TOSEM), 2011. accepted for publication.

Christian Kästner, Paolo G. Giarrusso, and Klaus Ostermann. Partial preprocessing

of C code for variability analysis. In Proc. Int’l Workshop on Variability Mod-

elling of Software-intensive Systems (VaMoS), 2011. accepted for publication,

preprint: http://www.informatik.uni-marburg.de/~kaestner/

vamos11.pdf.

Maren Krone and Gregor Snelting. On the inference of configuration structures

from source code. In Proc. Int’l Conf. Software Engineering (ICSE), pages 49–

57, Los Alamitos, CA, 1994. IEEE Computer Society. ISBN 0-8186-5855-X.

Mario Latendresse. Fast symbolic evaluation of C/C++ preprocessing using condi-

75

http://www.informatik.uni-marburg.de/~kaestner/vamos11.pdf
http://www.informatik.uni-marburg.de/~kaestner/vamos11.pdf

BIBLIOGRAPHY

tional values. In Proc. European Conf. on Software Maintenance and Reengineer-

ing (CSMR), pages 170–179, Los Alamitos, CA, 2003. IEEE Computer Society.

ISBN 0-7695-1902-4.

Mario Latendresse. Rewrite systems for symbolic evaluation of C-like prepro-

cessing. In Proc. European Conf. on Software Maintenance and Reengineering

(CSMR), pages 165–173, Washington, DC, 2004. IEEE Computer Society. ISBN

0-7695-2107-X.

Jörg Liebig, Christian Kästner, and Sven Apel. Analyzing the discipline of pre-

processor annotations in 30 million lines of C code. In Proc. Int’l Conf. Aspect-

Oriented Software Development (AOSD), 2011. accepted for publication.

Bill McCloskey and Eric Brewer. ASTEC: A new approach to refactoring C. In

Proc. Europ. Software Engineering Conf./Foundations of Software Engineering

(ESEC/FSE), pages 21–30, New York, 2005. ACM Press. ISBN 1-59593-014-0.

doi: http://doi.acm.org/10.1145/1081706.1081712.

Marcílio Mendonça, Andrzej Wąsowski, Krzysztof Czarnecki, and Donald D.

Cowan. Efficient compilation techniques for large scale feature models. In

Proc. Int’l Conf. Generative Programming and Component Engineering (GPCE),

pages 13–22, New York, 2008. ACM Press.

Marcílio Mendonça, Andrzej Wąsowski, and Krzysztof Czarnecki. SAT-based anal-

ysis of feature models is easy. In Proc. Int’l Software Product Line Conference

(SPLC), pages 231–240, Pittsburgh, PA, 2009. Carnegie Mellon University.

76

BIBLIOGRAPHY

A. Moors, F. Piessens, and M. Odersky. Parser combinators in Scala. CW Report

CW491, Department of Computer Science, KU Leuven, 2008.

Andreas Nonnengart and Christoph Weidenbach. Computing small clause normal

forms, volume 1, chapter 6, pages 335–367. Elsevier, Amsterdam, the Nether-

lands, 2001. Handbook of Automated Reasoning.

Yoann Padioleau. Parsing C/C++ code without pre-processing. In Proc. Int’l

Conf. Compiler Construction (CC), pages 109–125, Berlin/Heidelberg, 2009.

Springer-Verlag. ISBN 978-3-642-00721-7. doi: http://dx.doi.org/10.1007/

978-3-642-00722-4_9.

T. Troy Pearse and Paul W. Oman. Experiences developing and maintaining soft-

ware in a multi-platform environment. In Proc. Int’l Conf. Software Maintenance

(ICSM), pages 270–277, Los Alamitos, CA, 1997. IEEE Computer Society. doi:

http://doi.ieeecomputersociety.org/10.1109/ICSM.1997.624254.

Henry Spencer and Geoff Collyer. #ifdef considered harmful or portability experi-

ence with C news. In Proc. USENIX Conf., pages 185–198, Berkeley, CA, 1992.

USENIX Association. ISBN 1-880446-44-8.

Diomidis Spinellis. Global analysis and transformations in preprocessed languages.

IEEE Trans. Softw. Eng. (TSE), pages 1019–1030, 2003. ISSN 0098-5589.

77

	List of figures
	I Introduction
	1 Introduction

	II Background
	2 The C preprocessor
	2.1 CPP syntax and semantics
	2.1.1 Macro definition and expansion
	2.1.2 Conditional compilation
	2.1.3 Other constructs

	2.2 Comprehensibility of unpreprocessed code

	III TypeChef
	3 A design for a partial preprocessor
	3.1 Requirements
	3.1.1 PPC as a partial evaluator

	3.2 Design
	3.2.1 Conditional compilation
	3.2.2 The macro table
	3.2.3 Macro references

	4 Boolean formula manipulation
	4.1 Motivation
	4.1.1 The need for simplification
	4.1.2 Existing approaches

	4.2 Preliminaries
	4.2.1 Conversion to conjunction normal form
	4.2.2 Formula renaming

	4.3 The design space of in-memory representations
	4.4 Formula representation
	4.4.1 Simplification
	4.4.2 Visiting a DAG and formula renaming
	4.4.3 An exponential example

	5 Conclusion and future works
	5.1 Parsing
	5.1.1 Token stream representation
	5.1.2 Typechecking

	5.2 Related work
	5.3 Future works
	5.4 Conclusion

	Acknowledgements
	Ringraziamenti
	Bibliography

