A Theory of Changes for Higher-Order Languages
Incrementalizing λ-Calculi by Static Differentiation

Yufei Cai Paolo G. Giarrusso Tillmann Rendel Klaus Ostermann
Philippus-Universität Marburg

Abstract
If the result of an expensive computation is invalidated by a small change to the input, the old result should be updated incrementally instead of reexecuting the whole computation. We incrementalize programs through their derivative. A derivative maps changes in the program’s input directly to changes in the program’s output, without reexecuting the original program. We present a program transformation taking programs to their derivatives, which is fully static and automatic, supports first-class functions, and produces derivatives amenable to standard optimization.

We prove the program transformation correct in Agda for a family of simply-typed λ-calculi, parameterized by base types and primitives. A precise interface specifies what is required to incrementalize the chosen primitives.

We investigate performance by a case study: We implement in Scala the program transformation, a plugin and improve performance of a nontrivial program by orders of magnitude.

Keywords Incremental computation, first-class functions, performance, Agda, formalization

Categories and Subject Descriptors D.1.1 [Programming Techniques]: Applicative (Functional) Programming; D.3.3 [Programming Languages]: Language Constructs and Features; D.3.4 [Programming Languages]: Processors—Optimization

1. Introduction
Incremental computation has a long-standing history in computer science [21]. Often, a program needs to update its output efficiently to reflect input changes [23]. Instead of rerunning such a program from scratch on its updated input, incremental computation research looks for alternatives that are cheaper in a common scenario: namely, when the input change is much smaller than the input itself.

For instance, consider the grand_total program, which calculates the sum of all numbers in collections xs, ys.

```
grand_total = λxs. λys. fold (+) 0 (merge xs ys)
output = grand_total \{\{1, 1\}\} \{\{2, 3, 4\}\} = 11
```

With \{\ldots\} we represent a multiset or bag, that is an unordered collection (like a set) where elements are allowed to appear more than once (unlike a set). Now assume that the input xs changes from \{\{1, 1\}\} to \{\{1\}\}, and ys changes from \{\{2, 3, 4\}\} to \{\{2, 3, 4, 5\}\}. Instead of recomputing output from scratch, we could also compute it incrementally. If we have a representation for the changes to the inputs (say, dxs = \{\{remove 1\}\}, dys = \{\{add 5\}\}), we can compute the new result through a function grand_total' that takes the old inputs xs = \{\{1\}\}, ys = \{\{2, 3, 4\}\} and the changes dxs, dys to produce the output change. In this case, it would compute the change grand_total' xs dxs ys dys = \text{plus} 4, which can then be used to update the original output 11 to yield the updated result 15. We call grand_total' the derivative of grand_total. It is a function in the same language as grand_total, accepting and producing changes, which are simple first-class values of this language. If we increase the size of the original inputs xs and ys, the time complexity of grand_total xs ys increases linearly, while the time complexity of grand_total' xs dxs ys dys only depends on the size of dxs and dys, which is smaller both in our example and in general.

To support automatic incrementalization, in this paper we introduce the ILC (incrementalizing λ-calculus) framework. We define an automatic program transformation Derive that differentiates programs, that is, computes their derivatives; Derive guarantees that

\[
f (a + da) \equiv (f a) \oplus (\text{Derive}(f) a da).
\]

where \equiv is denotational equality, da is a change on a and a + da denotes a updated with change da, that is, the updated input of f. Hence, we can optimize programs by replacing the left-hand side, which recomputes the output from scratch, with the right-hand side, which computes the output incrementally using derivatives.

ILC is based on a simply-typed λ-calculus parameterized by plugins. A plugin defines (a) base types and primitive operations, and (b) a change representation for each base type, and an incremental version for each primitive. In other words, the plugin specifies the primitives and their respective derivatives, and ILC can glue together these simple derivatives in such a way that derivatives for arbitrary simply-typed λ-calculus expressions using these primitives can be computed. Both our implementation and our correctness proof is parametric in the plugins, hence it is easy to support (and prove correct) new plugins.

This paper makes the following contributions:
- We present a novel mathematical theory of changes and derivatives, which is more general than other work in the field because changes are first-class entities, they are distinct from base values and they are defined also for functions (Sec. 2).
- We present the first approach to incremental computation for pure λ-calculi by a source-to-source transformation, Derive, that requires no run-time support. The transformation produces an incremental program in the same language; all optimization techniques for the original program are applicable to the incremental program as well. We prove that our incrementalizing
transformation Derive is correct (Eq. (1)) by a machine-checked formalization in Agda [6]. The proof gives rise to the definition of Derive: we first construct the derivative \(\frac{d}{dx} \) of the denotational semantics of a simply-typed \(\Lambda \)-calculus term, that is, its change semantics. Then, we show that Derive is produced by erasing \(\frac{d}{dx} \) to a simply-typed program (Sec. 3).

While we focus mainly on the theory of changes and derivatives, we also perform a performance case study. We implement the plugin to incrementalize a variant of the MapReduce programming model [10]. Benchmarks show that on this program, incrementalization can reduce asymptotic complexity and can turn \(O(n) \) performance into \(O(1) \), improving running time by over 4 orders of magnitude on realistic inputs (Sec. 3).

Our Agda formalization, Scala implementation and benchmark results are available at the URL \(\text{http://inc-lc.github.io/} \). All lemmas and theorems presented in this paper have been proven in Agda. In the paper, we present an overview of the formalization in more human-readable form, glossing over some technical details.

2. A theory of changes

This section introduces a formal concept of changes; this concept was already used informally in Eq. (1) and is central to our approach. We first define change structures formally, then construct change structures for functions between change structures, and conclude with a theorem that relates function changes to derivatives.

2.1 Change structures

Consider a set of values, for instance the set of natural numbers \(\mathbb{N} \). A change \(dv \) for \(v \in \mathbb{N} \) should describe the difference between \(v \) and another natural \(v_{\text{new}} \in \mathbb{N} \). We do not define changes directly, but we specify operations which must be defined on them. They are:

- We can update a base value \(v \) with a change \(dv \) to obtain an updated or new value \(v_{\text{new}} \). We write \(v_{\text{new}} = v + dv \).
- We can compute a change between two arbitrary values \(v_{\text{old}} \) and \(v_{\text{new}} \) of the set we are considering. We write \(dv = v_{\text{new}} \ominus v_{\text{old}} \).

For naturals, it is usual to describe changes using standard subtraction and addition. That is, for naturals we can define \(v + dv = v + dv \) and \(v_{\text{new}} \ominus v_{\text{old}} = v_{\text{new}} - v_{\text{old}} \). To ensure that \(\oplus \) and \(\ominus \) are always defined, we need to define the set of changes carefully. \(\mathbb{N} \) is too small, because subtraction does not always produce a natural; the set of integers \(\mathbb{Z} \) is too small, and the set of integers \(\mathbb{Z} \) is too small. Since adding a natural and an integer does not always produce a natural. In fact, we cannot use the same set of all changes for all naturals. Hence we must adjust the requirements: for each base value \(v \) we introduce a set \(\Delta v \) of changes for \(v \), and require \(v_{\text{new}} \ominus v_{\text{old}} \) to produce values in \(\Delta v_{\text{old}} \), and \(v + dv \) to be defined for \(dv \in \Delta v \). For natural \(v \), we set \(\Delta v = \{ dv \mid v + dv \geq 0 \}; \ominus \) and \(\oplus \) are then always defined.

The following definition sums up the discussion so far:

Definition 2.1 (Change structures). A tuple \(\hat{V} = (V, \Delta, \oplus, \ominus) \) is a change structure (for \(V \)) if:

- \(V \) is a set, called the base set.
- Given \(v \in V \), \(\Delta v \) is a set, called the change set.
- Given \(v \in V \) and \(dv \in \Delta v \), \(v + dv \in V \).
- (d) Given \(u, v \in V \), \(u \ominus v \in \Delta v \).
- (e) Given \(u, v \in V \), \(u \oplus (u \ominus v) \) equals \(u \).

One might expect a further assumption that \((v + dv) \ominus v = dv \). While it does hold for the change structure of \(\mathbb{N} \), it is not needed in general. In particular, this changes can represent the difference between the same two base values. Throughout our theory, we only discuss equality of base values, not of changes.

Notation We overload operators \(\Delta, \oplus \) and \(\ominus \) to refer to the corresponding operations of different change structures; we will subscript these symbols when needed to prevent ambiguity. For any \(\hat{S} \), we write \(S \) for its first component, as above. We make \(\oplus \) left-associative, that is, \(v \oplus dv1 \oplus dv2 \) means \((v \oplus dv1) \oplus dv2 \). We assign precedence to function application over \(\ominus \) and \(\oplus \), that is, \(f a \ominus g a \cdot da \) means \((f a) \ominus (g a) \cdot da \).

Examples We demonstrate a change structure on bags with signed multiplicities [15]. These are unordered collections where each element can appear an integer number of times.

(a) Let \(S \) be any set. The base set \(V = \text{Bag} S \) is the set of bags of elements of \(S \) with signed multiplicities. The bag \(\{\{1, 1, 2\}\} \) contains two positive occurrences of 1 and a negative occurrence of 2.

(b) For each bag \(v \in V \), set the change set \(\Delta v = V \). Every bag can be a change to any other bag. The bag \(\{\{1, 1, 5\}\} \) represents two insertions of 1 and one deletion of 5.

(c) The update operator is bag merge: \(\oplus = \text{merge} \). The merge of two bags is the element-wise sum of multiplicities:

\[
\text{merge} \{\{1, 2\}\} \{\{1, 1, 5\}\} = \{\{1, 2, 5\}\}.
\]

(d) Let \(\ominus \) be the negation of multiplicities:

\[
\ominus \{\{1, 1, 5\}\} = \{\{1, -1, -5\}\}.
\]

To compute the difference of two bags, compute the merge with a negated bag:

\[
u \oplus v = \text{merge} u (\ominus v).
\]

(e) Given the above definition of \(\oplus \) and \(\ominus \), it is not hard to show that \(v \oplus (u \ominus v) \) for all bags \(u, v \in V \).

The change structure we just described is written succinctly:

\[
\text{Bag} S = (\text{Bag} S, (\lambda v. \text{Bag} S), \\
\text{merge}, (\lambda x y. \text{merge} x (\ominus y))).
\]

This change structure is an instance of a general construction: we can build a change structure from an arbitrary abelian group. An abelian group is a tuple \((G, \oplus, e) \), where \(\oplus \) is a commutative and associative binary operation, \(e \) is its identity element, and \(G \) produces inverses of elements \(g \in G \) such that \((\ominus g) \oplus g = e \). For instance, integers, unlike naturals, form the abelian group \((\mathbb{Z}, +, 0) \) (where \(- \) represents the unary minus).

Each abelian group \((G, \oplus, e) \) induces a change structure, namely \((G, \lambda x. G, \Theta, \lambda g h. g \Theta (\Theta h)) \), where the change set for any \(g \in G \) is the whole \(G \). Change structures are more general, though, as the example with natural numbers illustrates. If \(\emptyset \) represents the empty bag, then \((\text{Bag} S, \text{merge}, \ominus, \emptyset) \) is an abelian group, which induces the change structure we have just seen.

The abelian group on integers induces also a change structure on integers, namely \(\hat{Z} = (\mathbb{Z}, (\lambda v. \mathbb{Z}), +, -) \).

Nil changes and derivatives A particularly important change is the nil change of a value:

Definition 2.2 (Nil change). Given a change structure \(\hat{V} \) and a value \(v \in V \), the change \(v \ominus v \) is the nil change for \(v \).

\[
\Theta v = v \ominus v
\]

The nil change for a value does indeed not change it.
Allowing values to change is useful, but we need to enable also that is, ∂_s maps a bag and a bag change to another bag change. Condition (b) makes this possible. A function change (∂f) to compute the difference ∂f must be a function such that $\partial f(a) = \partial f(a)$, which simplifies to $\partial (\partial f(a) da) = merge(merge(a da))$. Neither merge nor any constant function is a change to id, but the function $\partial(a da) = merge(da) \{1,2\}$ is.

The change-structure operations on functions can now be defined similarly to a distributive law.

Definition 2.7 (Operations on function changes). Given change structures \hat{A} and \hat{B}, the operations $\hat{A} \oplus \hat{B}$ and $\hat{A} \rightarrow \hat{B}$ are defined as follows.

\[
(f \oplus \hat{A} \rightarrow \hat{B} f)v = f v \oplus_B dv \oplus 0_v \\
(f_2 \oplus \hat{A} \rightarrow \hat{B} f_1)dv = f_2 (v \oplus_B dv) \oplus_B f_1 \oplus_B 0_v
\]

All these definitions have been carefully set up to ensure that we have in fact lifted change structures to function spaces.

Theorem 2.8. Given change structures \hat{A} and \hat{B}, the tuple $(A \rightarrow B, \Delta_{\hat{A} \rightarrow \hat{B}}, \oplus_{\hat{A} \rightarrow \hat{B}}, \oplus_{\hat{A} \rightarrow \hat{B}})$ is a change structure, which we denote by $A \rightarrow B$.

After defining this change structure, we can talk about $f \oplus df$.

In particular, different functions of the same type can have different sets of changes. Consider two functions of type $\text{Bag} \ S \rightarrow \text{Bag} \ S$.

\[
f x = 0 \quad id x = x
\]

The set $\Delta_{\text{Bag} \ S \rightarrow \text{Bag} \ S}(f)$ contains “changes” to f, namely all binary bag functions df satisfying (b): $df(a da) = df(a + da) 0_{(a,da)} = df(merge(a da))$. Such binary functions include merge and all constant functions.

The set $\Delta_{\text{Bag} \ S \rightarrow \text{Bag} \ S}(id)$ contains changes to id, namely all binary bag functions did satisfying (b): $id(a da) = id(a + da) 0_{(a,da)}$, which simplifies to $merge(a + did(a da)) = merge(merge(a da))(did + merge(a da))$. Neither merge nor any constant function is a change to id, but the function $did(a da) = merge(da) \{1,2\}$ is.

Theorem 2.9 (Incrementalization). Given change structures \hat{A} and \hat{B}, a function $f \in A \rightarrow B$ and a value $a \in A$ with corresponding changes $df \in \Delta_{\text{A} \rightarrow \hat{B}} f$ and $da \in \Delta_{\hat{A} a}$, we have that

\[
(f \oplus df) (a + da) = f a + df a da.
\]

For instance, incrementalizing

\[
\text{app} = \lambda f \lambda x. f x
\]

with respect to the input changes df, dx amounts to calling df on the original second argument xa and on the change dx. In other words, incrementalizing app gives $\lambda f \lambda x. f x$.

Understanding function changes To understand function changes, we can decompose them into two orthogonal concepts. With a function change df, we can compute at once $df a da$, the difference between $(f \oplus df) (a + da)$ and $f a$. Even though both the function and its argument change. But the effect of those two changes can be described separately. We can account for changes to a using f, the derivative of f: $f(a + da) = f a + df a da$. We can account for changes to f using the pointwise difference of two functions, $\nabla f = da.$ $(f \oplus df) a + df a$; in particular, $(f \oplus df)(a + da) \oplus (a + da) = \nabla f(a + da)$. Using then the incrementalization theorem, we can show that a function change simply combines a derivative with a pointwise change:

\[
f f a + df a da = f a + \nabla f a
\]

One can also compute a pointwise change from a function change:

\[
f a + df a da = f a + \nabla f a
\]
We could implement Derive (Nil changes are derivatives)

Theorem 2.9 becomes

Theorem 2.9 tells us about the form an incremental program may take. If df doesn’t change f at all, that is, if $f \oplus df = f$, then Theorem 2.9 becomes

$$f (a \oplus da) = f a \oplus df da.$$

It says that df computes the change upon the input of f given a change da upon the input a of f. In other words, the nil change to a function is exactly its derivative (see Definition 2.4):

Theorem 2.10 (Nil changes are derivatives). Given change structures Δ and ∇ and a function $f : A \rightarrow B$, the change Θ_f is the derivative f' of f.

In this section, we developed the theory of changes to define formally what a derivative is (Definition 2.4) and to recognize that in order to find the derivative of a function, we only have to find its nil change (Theorem 2.10). Next, we want to provide a fully automatic method for finding the nil change of a given function.

3. Incrementalizing λ-calculi

In this section, we show how to incrementalize an arbitrary program in simply-typed λ-calculus. To this end, we define the source-to-source transformation Derive. Using the denotational semantics $\llbracket \cdot \rrbracket$ we define later in (Sec. 3.2) and 3.3, we can specify Derive’s intended behavior: to ensure Eq. 2.3, $\llbracket \text{Derive}(f) \rrbracket$ must be the derivative of $\llbracket f \rrbracket$ for any closed term $f : A \rightarrow B$. We will overload the word “derivative” and say simply that Derive(f) is the derivative of f.

It is easy to define derivatives of arbitrary functions as:

$$f' x dx = f (x \oplus dx) \ominus f x.$$

We could implement Derive following the same strategy. However, the resulting incremental programs would be no faster than recomputation. We cannot do better for arbitrary mathematical functions, since they are infinite objects which we cannot fully inspect. Therefore, we resort to a source-to-source transformation on simply-typed λ-calculus as defined in Fig. 1. In this section, we focus on the incrementalization of the features that are shared among all instances of the plugin interface, that is, function types and the associated syntactic forms, λ-abstraction, application and variable references.

The sets of base types and primitive constants, as well as the typing rules for primitive constants, are on purpose left unspecified and only defined by plugins — they are extensions points. Definitions provided by the plugin are replaced, in figures, by ellipses (“...”). Defining different plugins allows to experiment with sets of base types, associated primitives and incrementalization strategies. We summarize requirements on plugins in Sec. 3.7. Satisfying these requirements is sufficient to ensure correct incrementalization. We show an example plugin in our case study (Sec. 4.4).

Figure 1. Our base calculus.

$$\text{Δ} : * \rightarrow *$$ the type of changes

$$\ominus : \tau \rightarrow \Delta \tau \rightarrow \tau$$ update a value with a change

$$\Theta : \tau \rightarrow \tau \rightarrow \Delta \tau$$ the change between two values

Figure 2. Erased change structures on simple types.

$$\Delta (\sigma \rightarrow \tau) = \sigma \rightarrow \Delta \sigma \rightarrow \Delta \tau$$

$$\ominus \Theta_\sigma \Theta_\tau = \lambda g f x. dx. (g (x \oplus dx)) \ominus (f x)$$

$$\Theta_\sigma \Theta_\tau = \lambda f df x. (f x) \ominus (df x (x \ominus x))$$

Figure 3. The erased change structures for function types.

3.1 Change types and erased change structures

We developed the theory of change structures in the previous section to guide our implementation of Derive. By Theorem 2.10 Derive has only to find the nil change to the program itself, because nil changes are derivatives. However, the theory of change structures is not directly applicable to the simply-typed λ-calculus, because a precise implementation of change structures requires dependent types. For instance, we cannot describe the set of changes Δv precisely as a non-dependent type, because it depends on the value we plan to update with these changes.

To work around this limitation of our object language, we use a form of erasure of dependent types to simple types. In Fig. 2 and Fig. 3(a) we define change types $\Delta \tau$ as an approximate description of change sets Δv. In particular, all changes in Δv correspond to values of terms with type $\Delta \tau$, but not necessarily the other way around. For instance, the change structure in natural numbers described in Sec. 2.1 we would have $\Delta \text{Nat} = \text{Int}$, even though not every integer is a change for every natural number. For primitive types ι, $\Delta \iota$ and its associated \ominus and Θ operator must be provided by the plugin developer. For function types, erased change structures are given by Fig. 3. Erasing dependent types in all components of a change structure, we obtain erased change structures, which represent change structures as simply-typed λ-terms where \ominus and Θ are families of λ-terms.

Erased change structures are not change structures themselves. However, we will show how change structures and erased change structures have “almost the same” behavior (Sec. 5.6). We will hence be able to apply our theory of changes.

3.2 Differentiation

When f is a closed term of function type, Derive(f) should be its derivative, that is, its nil change. Since Derive recurses on open terms, we need a more general specification. We require that if $\Gamma \vdash t : \tau$, then Derive(t) represents the change in t (of type $\Delta \tau$) in terms of changes to the values of its free variables. As a special case, when t is a closed term, there is no free variable to change; hence, the change to t will be, as desired, the nil change of t.

$$\text{Δ} (\sigma \rightarrow \tau) = \sigma \rightarrow \Delta \sigma \rightarrow \Delta \tau$$

$$\Theta_\sigma \Theta_\tau = \lambda g f x. dx. (g (x \oplus dx)) \ominus (f x)$$

$$\Theta_\sigma \Theta_\tau = \lambda f df x. (f x) \ominus (df x (x \ominus x))$$
This derivative is inefficient because it needlessly recomputes

The names containing no variable names that start with d means binding of values, leaving “real work” to primitives; likewise, consequently, the change of x by using dx. For simplicity, we assume that the original program contains no variable names that start with d. The definition of Derive will ensure that the dx variables are bound if the original term is closed.

Let us analyze each case of the definition of Derive(u) (Fig. 4(d)).

- If u = x, Derive(x) must be the change of x, that is dx.
- If u = λx. t, Derive(t) is the change of u given the change in its free variables. The change of u is then the change of t as a function of the base input x and its change dx, with respect to changes in other open variables. Hence, we simply need to bind dx by defining Derive(λx. t) = λx. λdx. Derive(t).
- If u = s t, Derive(s) is the change of s as a function of its base input and change. Hence, we simply apply Derive(s) to the actual base input t and change Derive(t), giving Derive(s t) = Derive(s) t Derive(t).
- If t = c: since c is a closed term, its change is a nil change, hence (by Theorem 2.10) c’s derivative. We can obtain a correct derivative for constants by setting:

\[
\text{Derive}(c) = c \oplus c = O_c = c'\]

This definition is inefficient for functional constants; hence plugins must provide derivatives of the primitives they define. This might seem deceptively simple. But λ-calculus only implements binding of values, leaving “real work” to primitives; likewise, differentiation for λ-calculus only implements binding of changes, leaving “real work” to derivatives of primitives. However, our support for λ-calculus allows to "glue" the primitives together.

Examples Let us apply the transformation on the program grand_total defined in Sec. 4.

\[
\text{grand_total} = \lambda x. \lambda y. \lambda z. \text{fold}(+) 0 (\text{merge} x z y)
\]

\[
\text{Derive(grand_total)} = \\
\lambda x. \lambda y. \lambda z. \lambda d y. \lambda d z. \\
\text{fold'}(+) (\text{merge} x z y) (\text{merge'} x z d y z y)
\]

The names fold’, merge’, +’, 0’ stand for the derivatives of the corresponding primitives. The variables dx and dy are systematically named after xs and ys to stand for their changes. As we shall see in Sec. 3.7

\[
\text{merge'} = \lambda u. \lambda d u. \lambda v. \lambda d v. \text{merge du dv},
\]

so the derivative of grand_total is β-equivalent to

\[
\lambda x. \lambda y. \lambda z. \lambda d x. \lambda d y. \\
\text{fold'}(+) (\text{merge} x z y) (\text{merge } d x y z y)
\]

This derivative is inefficient because it needlessly recomputes merge xs yzs. But we still need to inline the derivatives of fold and other primitives to complete derivation. We’ll complete the derivation process and see how to avoid this waste in Sec. 4.3.

We have now informally defined the derivation (Fig. 4(g)) from its specification (Eq. 1) and its typing. But formally speaking, Derive is instead a definition. So in the rest of this section, we’ll have to prove that Derive satisfies Eq. 1.

3.3 Architecture of the proof

Derive(t) is defined using change types. As discussed in Sec. 3.1, change types impose on their members less restrictions than corresponding change structures – they contain “junk” (such as the change –5 for the natural number 3). We cannot constrain the behavior of Derive(t) on such junk; a direct correctness proof fails. To avoid this problem, our proof defines a version of Derive which uses change structures instead.

To this end, we first present a standard denotational semantics for simply-typed λ-calculus. Using our theory of changes, we associate change structures to our domains. We define a non-standard denotational semantics [[–]]Δ, which is analogous to Derive but operates on elements of change structures, so that it needn’t deal with junk. As a consequence, we can prove that [[t]]Δ is the derivative of [[t]]; this is our key result.

Finally, we define a correspondence between change sets and domains associated with change types, and show that whenever [[t]]Δ has a certain behavior on an input, [[Derive(t)]] has the corresponding behavior on the corresponding input. Our correctness property follows as a corollary.

3.4 Denotational semantics

In order to prove that incrementalization preserves the meaning of terms, we define a denotational semantics of the object language. We first associate a domain with every type, given the domains of base types provided by the plugin. Since our calculus is strongly normalizing and all functions are total, we can avoid using domain theory to model partiality: our domains are simply sets. Likewise, we can use functions as the domain of function types.

Definition 3.1 (Domains). The domain [[σ]] of a type σ is defined as in Fig. 4(e).

Given this domain construction, we can now define an evaluation function for terms. The plugin has to provide the evaluation function for constants. In general, the evaluation function [[t]] computes the value of a well-typed term t given the values of all free variables in t. The values of the free variables are provided in an environment.

Definition 3.2 (Environments). An environment ρ assigns values to the names of free variables.

\[
\rho ::= \varepsilon \mid \rho, x = v
\]

We write [[Γ]] for the set of environments that assign values to the names bound in Γ (see Fig. 4(f)).

Definition 3.3 (Evaluation). Given Γ ⊢ t : σ, the meaning of t is defined by the function [[t]] of type [[Γ]] → [[σ]] in Fig. 4(h).

This is the standard semantics of the simply-typed λ-calculus. We can now specify what it means to incrementalize the simply-typed λ-calculus with respect to this semantics.

3.5 Change semantics

The informal specification of differentiation is to map changes in a program’s input to changes in the program’s output. In order to formalize this specification in terms of change structures and the denotational semantics of the object language, we now define a non-standard denotational semantics of the object language that computes changes. The evaluation function [[t]]Δ computes how the value of a well-typed term t changes given both the values and
the changes of all free variables in \(t \). In the special case that none of the free variables change, \([t]^{\Delta}\) computes the nil change. By Theorem 2.10 this is the derivative of \([t]\) which maps changes to the input of \([t]\) to changes of the output of \([t]\), as required.

First, we define a change structure on \([\tau]\) for all \(\tau \). The carrier \(\Delta_\tau \) of these change structures will serve as non-standard domain for the change semantics. The plugin provides a change structure \(C_\tau \) on the corresponding environments \(\Gamma \). In the special case that none are defined as follows.

Definition 3.4 (Changes). Given a type \(\tau \), we define a change structure \(C_\tau \) for \([\tau]\) by induction on the structure of \(\tau \). If \(\tau \) is a base type \(\iota \), then the result \(C_\iota \) is supplied by the plugin. Otherwise we use the construction from Theorem 2.8 and define

\[
\tilde{C}_{\iota \to \tau} = \tilde{C}_{\iota} \to \tilde{C}_{\tau}.
\]

To talk about the derivative of \([t]^{\Delta}\), we need a change structure on its domain, the set of environments. Since environments are (heterogeneous) lists of values, we can lift operations on change structures to change structures on environments acting pointwise.

Definition 3.5 (Change environments). Given a context \(\Gamma \), we define a change structure \(C_\Gamma \) on the corresponding environments \([\Gamma]\) and change environments \(\Delta_\tau \rho \) in Fig. 4(e).

The operations \(\ominus \) and \(\ominus_\rho \) are defined as follows.

\[
\epsilon \ominus \epsilon = \epsilon
\]

\[
(\rho, x = v) \ominus (d\rho, dx = dv) = (\rho \ominus d\rho), x = (v \ominus dv)
\]

\[
\epsilon \ominus \epsilon = \epsilon
\]

The properties in Definition 2.1 follow directly from the same properties for the underlying change structures \(C_\tau \).

At this point, we can define the change semantics of terms and prove that \([t]^{\Delta}\) it is the derivative of \([t]\). For each constant \(c \), the plugin provides \(\llbracket c \rrbracket^{\Delta}\), the derivative of \([c]\).

Definition 3.6 (Change semantics). The function \([t]^{\Delta}\) is defined in Fig. 4(h).

Lemma 3.7. Given \(\Gamma \vdash t : \tau \), \([t]^{\Delta}\) is the derivative of \([t]\).

3.6 Correctness of differentiation

We can now prove that the behavior of \([\text{Derive}(t)]\) is consistent with the behavior of \([t]^{\Delta}\). This leads us to the proof of the correctness theorem mentioned in the introduction.

The logical relation [19] Chapter 8 of *erasure* captures the idea that an element of a change structure stays almost the same after we erase all traces of dependent types from it.

Definition 3.8 (Erasure). Let \(dv \in \Delta_\tau v \) and \(dv' \in \Delta_\tau v \). We say \(dv \) erases to \(dv' \), or \(dv \sim_\epsilon dv' \), if one of the following holds:

(a) \(\tau \) is a base type and \(dv = dv' \).
(b) \(\tau = \sigma_0 \to \sigma_1 \) and for all \(w, dw, dw' \) such that \(dw \sim_\epsilon w \), \(dw' \), we have \((dw w dw) \sim_\epsilon (dw' w dw') \).
Sometimes we shall also say that \(dv \in \Delta_v \), \(v \) erases to a closed term \(dt : \Delta_t \), in which case we mean \(dv \) erases to \((\{ dt \} \otimes \emptyset) \).

The following lemma makes precise what we meant by “almost the same”.

Lemma 3.9. Suppose \(dv \sim_v d'v \). If \(\odot' \) is the erased version of the update operator \(\odot \) of the change structure of \(\tau \) (Sec. 3.1), then

\[
v \odot dv = v \odot' d'v.
\]

It turns out that \([t]^\Delta \) and \(\text{Derive}(t) \) are “almost the same”. For closed terms, we make this precise by:

Lemma 3.10. If \((t : \tau) \) is closed, then \(([t]^\Delta \otimes \emptyset) \) erases to \(\text{Derive}(t) \).

We omit for lack of space a more general version of Lemma 3.10, which holds also for open terms, but requires defining erasure on environments. The main correctness theorem is a corollary of Lemmas 3.7, 3.9 and 3.10.

Theorem 3.11 (Correctness of differentiation). Let \(f : \sigma \rightarrow \tau \) be a closed term of function type. For every closed base term \(s : \sigma \) and for every closed change term \(ds : \Delta \sigma \) such that some change \(dv \in \Delta_v \) erases to \(ds \), we have

\[
f(s \odot ds) \cong (f s) \odot (\text{Derive}(f) s ds),
\]

where \(\cong \) is denotational equality (\(a \cong b \) if \([a] = [b] \)).

Theorem 3.11 is a more precise restatement of Eq. (1). Requiring the existence of \(dv \) ensures that \(ds \) evaluates to a change, and not to junk in \(\Delta_\tau \).

3.7 Plugins

Both our correctness proof and the differentiation framework (which is the basis for our implementation) are parametric in the plugin. Instantiating the differentiation framework requires a differentiation plugin; instantiating the correctness proof for it requires a proof plugin, containing additional definitions and lemmas.

To allow executing and differentiating \(\lambda \)-terms, a differentiation plugin must provide:

- base types, and for each base type \(\iota \), the erased change structure of \(\iota \) as specified in Fig. 2.

- primitives, and for each primitive \(c \), the term \(\text{Derive}(c) \).

Examples With bags of numbers as a primitive type, and a change structure erased from Bag \(S \) (defined in Sec. 2.1), the derivative of merge is easy to write down:

\[
\text{Derive(merge)} = \lambda u. \lambda du. \lambda v. \lambda dv. \text{merge} du dv
\]

In other words, the change to the merge of two bags is the merge of changes to each bag.

For each base type \(\iota \), a proof plugin must provide:

- a semantic domain \([\iota] \).

- a change structure \(\hat{C}_\iota \), such that \(\forall v : \Delta_v. v \subseteq [\Delta_\iota] \).

- a proof that \(\hat{C}_\iota \) erases to the corresponding erased change structure in the differentiation plugin.

For each primitive \(c : \tau \), the proof plugin must provide:

- its value \([c] \) in the domain \([\tau] \).

- its derivative \(([c]^\Delta \otimes \emptyset)^t \) in the change set of \(\tau \),

1 To evaluate a closed term \(t \), we need no environment entries, so the empty environment \(\otimes \) suffices: \(([t] \otimes \emptyset) \) is the value of \(t \) in the empty environment, and \(([t]^\Delta \otimes \emptyset) \) is the value of \(t \) using the change semantics, the empty environment and the empty change environment.

- a proof that \(([c]^\Delta \otimes \emptyset) \) erases to the term \(\text{Derive}(c) \).

To show that the interface for proof plugins can be implemented, we wrote a small proof plugin with integers and bags of integers. To show that differentiation plugins are practicable, we have implemented the transformation and a differentiation plugin which allows the incrementalization of non-trivial programs. This is presented in the next section.

4. Differentiation in practice

In practice, successful incrementalization requires both correctness and performance of the derivatives. Correctness of derivatives is guaranteed by the theoretical development the previous sections, together with the interface for differentiation and proof plugins, whereas performance of derivatives has to come from careful design and implementation of differentiation plugins.

4.1 The role of differentiation plugins

Users of our approach need to (1) choose which base types and primitives they need, (2) implement suitable differentiation plugins for these base types and primitives, (3) rewrite (relevant parts of) their programs in terms of these primitives and (4) arrange for their program to be called on changes instead of updated inputs.

As discussed in Sec. 3.2, differentiation supports abstraction, application and variables, but since computation on base types is performed by primitives for those types, efficient derivatives for primitives are essential for good performance.

To make such derivatives efficient, change types must also have efficient implementations, and allow describing precisely what changed. The efficient derivative of sum in Sec. 1){\footnote {To evaluate a closed term \(t \), we need no environment entries, so the empty environment \(\otimes \) suffices: \(([t] \otimes \emptyset) \) is the value of \(t \) in the empty environment, and \(([t]^\Delta \otimes \emptyset) \) is the value of \(t \) using the change semantics, the empty environment and the empty change environment.}} is possible only if bag changes can describe deletions and insertions, and integer changes can describe additive differences.

For many conceivable base types, we do not have to design the differentiation plugins from scratch. Instead, we can reuse the large body of existing research on incrementalization in first-order and domain-specific settings. For instance, we reuse the approach from Gluche et al. {\footnote {To evaluate a closed term \(t \), we need no environment entries, so the empty environment \(\otimes \) suffices: \(([t] \otimes \emptyset) \) is the value of \(t \) in the empty environment, and \(([t]^\Delta \otimes \emptyset) \) is the value of \(t \) using the change semantics, the empty environment and the empty change environment.}} to support incremental bags and maps. By wrapping a domain-specific incrementalization result in a differentiation plugin, we adapt it to be usable in the context of a higher-order and general-purpose programming language, and in interaction with other differentiation plugins for the other base types of that language.

For base types with no known incrementalization strategy, the precise interfaces for differentiation and proof plugins can guide the implementation effort. These interfaces could also from the basis for a library of differentiation plugins that work well together.

Rewriting whole programs in our language would be an excessive requirement. Instead, we embed our object language as an EDSL in some more expressive meta-language (Scala in our case study), so that embedded programs are reified. The embedded language can be made to resemble the metalamguage {\footnote {To evaluate a closed term \(t \), we need no environment entries, so the empty environment \(\otimes \) suffices: \(([t] \otimes \emptyset) \) is the value of \(t \) in the empty environment, and \(([t]^\Delta \otimes \emptyset) \) is the value of \(t \) using the change semantics, the empty environment and the empty change environment.}}. To incrementalize a part of a computation, we write it in our embedded object language, invoke \text{Derive} on the embedded program, optionally optimize the resulting programs and finally invoke them. The metalamguage also acts as a macro system for the object language, as usual. This allows us to simulate polymorphic collections such as \(\text{Bag \ \iota} \) even though the object language is simply-typed; technically, our plugin exposes a family of base types to the object language.

4.2 Predicting nil changes

Handling changes to all inputs can induce excessive overhead in incremental programs {\footnote {To evaluate a closed term \(t \), we need no environment entries, so the empty environment \(\otimes \) suffices: \(([t] \otimes \emptyset) \) is the value of \(t \) in the empty environment, and \(([t]^\Delta \otimes \emptyset) \) is the value of \(t \) using the change semantics, the empty environment and the empty change environment.}}. It is also often unnecessary; for instance, the function argument of \text{fold} in Sec. 1\footnote {To evaluate a closed term \(t \), we need no environment entries, so the empty environment \(\otimes \) suffices: \(([t] \otimes \emptyset) \) is the value of \(t \) in the empty environment, and \(([t]^\Delta \otimes \emptyset) \) is the value of \(t \) using the change semantics, the empty environment and the empty change environment.} does not change since it is a closed subterm of the program, so \text{fold} will receive a nil change for it. A (conservative) static analysis can detect changes that are
guaranteed to be nil at runtime. We can then specialize derivatives that receive this change, so that they need not inspect the change at runtime.

For our case study, we have implemented a simple static analysis which detects and propagates information about closed terms. The analysis is not interesting and we omit details for lack of space.

4.3 Self-maintainability

In databases, a self-maintainable view [13] is a function that can update its result from input changes alone, without looking at the actual input. By analogy, we call a derivative self-maintainable if it uses no base parameters, only their changes. Self-maintainable derivatives describe efficient incremental computations: since they do not use their base input, their running time does not have to depend on the input size.

Examples Derive (merge) = \(\lambda x \, dy \, dz \, dy \). \(\text{merge} \, dx \, dy \) is self-maintainable with the change structure \(\text{Bag} \, S \) described in Sec. 2.1 because it does not use the base inputs \(x \) and \(y \). Other derivatives are self-maintainable only in certain contexts. The derivative of elementwise function application \((\text{map} \, f \, x) \) ignores the original value of the bag \(x \) if the changes to \(f \) are always nil, because the underlying primitive \(\text{foldBag} \) is self-maintainable in this case (as discussed in next section). We take advantage of this by implementing a specialized derivative for \(\text{foldBag} \).

We have seen in Sec. 3.2 that \texttt{grand_total} needlessly recomputes \(\text{merge} \, x \, y \) in \texttt{next}. However, the result is a base input to \texttt{fold} in \texttt{next}. In next section, we’ll replace \texttt{fold} by a self-maintainable derivative (based again on \texttt{foldBag}) and will avoid this recomputation.

To conservatively predict whether a derivative is going to be self-maintainable (and thus efficient), one can inspect whether the program restricts itself to (conditionally) self-maintainable primitives, like \(\text{merge} \) (always) or \(\text{map} \, f \) (only if \(df \) is nil, which is guaranteed when \(f \) is a closed term).

To avoid recomputing base arguments for self-maintainable derivatives (which never need them), we currently employ lazy evaluation. Since we could use standard techniques for dead-code elimination [7] instead, laziness is not central to our approach.

A significant restriction is that not-self-maintainable derivatives can require expensive computations to supply their base arguments, which can be expensive to compute. Since they are also computed while running the base program, one could reuse the previously computed value through memoization or extensions of static caching (as discussed in Sec. 5.2). We leave implementing these optimizations for future work. As a consequence, our current implementation delivers good results only if most derivatives are self-maintainable.

4.4 Case study

We perform a case study on a nontrivial realistic program to demonstrate that ILC can speed it up. We take the MapReduce-based skeleton of the word-count example [1]. We define a suitable differentiation plugin, adapt the program to use it and show that incremental computation is faster than recomputation. We designed and implemented the differentiation plugin following the requirements of the corresponding proof plugin, even though we did not formalize the proof plugin (e.g. in Agda). For lack of space, we focus on base types which are crucial for our example and its performance, that is, collections. The plugin also implements tuples, tagged unions, Booleans and integers with the usual introduction and elimination forms, with few optimizations for their derivatives.

\texttt{wordcount} takes a map from document IDs to documents and produces a map from words appearing in the input to the count of their appearances, that is, a histogram:

\[
\text{histogram} : \text{Map} \, \text{Int} \, (\text{Bag} \, \text{word}) \rightarrow \text{Map} \, \text{word} \, \text{Int}
\]

For simplicity, instead of modeling strings, we model documents as bags of words and document IDs as integers. Hence, what we implement is:

\[
\text{histogram} : \text{Map} \, \text{Int} \, (\text{Bag} \, a) \rightarrow \text{Bag} \, a \, \text{Int}
\]

We model words by integers \((a = \text{Int})\), but treat them parametrically. Other than that, we adapt directly \texttt{Limmel}s code to our language. Figure 5 shows the \(\lambda \)-term \texttt{histogram}.

Figure 6 shows a simplified Scala implementation of the primitives used in Fig. 3. As bag primitives, we provide constructors and a fold operation, following Gluche et al. [12]. The constructors for bags are \(\emptyset \) (constructing the empty bag), \texttt{singleton} (constructing a bag with one element), \texttt{merge} (constructing the merge of two bags) and \texttt{negate} (negate \(b \) constructs a bag with the same elements as \(b \) but negated multiplicities); all but \texttt{singleton} represent abelian group operations. Unlike for usual ADT constructors, the same bag can be constructed in different ways, which are equivalent by the equations defining abelian groups; for instance, since \texttt{merge} is commutative, \(\texttt{merge} \, x \, y = \texttt{merge} \, y \, x \). Folding on a bag will represent the bag through constructors in an arbitrary way, and then replace constructors with arguments; to ensure a well-defined result, the arguments of fold should respect the same equations, that is, they should form an abelian group; for instance, the binary operator should be commutative. Hence, the fold operator \texttt{foldBag} can be defined to take a function (corresponding to \texttt{singleton}) and an abelian group (for the other constructors). \texttt{foldBag} is then defined by equations:

\[
\begin{align*}
\text{foldBag} : \text{Group} \, \tau \rightarrow (\sigma \rightarrow \tau) & \rightarrow \text{Bag} \, \sigma \rightarrow \tau \\
\text{foldBag} \, g @ (_ \mapsto _, _ \mapsto _, _ \mapsto e) \, f \, \emptyset & = e \\
\text{foldBag} \, g @ (_ \mapsto _, _ \mapsto _, _ \mapsto e) \, f \, (\text{merge} \, b_1 \, b_2) & = \text{foldBag} \, g \, f \, b_1 \\
& \quad \text{foldBag} \, g \, f \, b_1 \\
\text{foldBag} \, g @ (_ \mapsto _, _ \mapsto _, _ \mapsto e) \, f \, (\text{negate} \, b) & = \emptyset \, (\text{foldBag} \, g \, f \, b) \\
\text{foldBag} \, g @ (_ \mapsto _, _ \mapsto _, _ \mapsto e) \, f \, (\text{singleton} \, v) & = f \, v
\end{align*}
\]

If \(g \) is a group, these equations specify \texttt{foldBag} \(g \) precisely [12]. Moreover, the first three equations mean that \texttt{foldBag} \(g \, f \) is abelian.
We will describe the `GroupChange` change constructor in a moment. Before that, we note that as a consequence, the derivative of `foldBag g f` is

\[\lambda b \cdot \text{GroupChange } g (\text{foldBag } g f b) \]

and we can see it does not use \(b \); as desired, it is self-maintainable. Additional restrictions are required to make `foldMap`'s derivative self-maintainable. Those restrictions require the precondition on `mapReduce` in Fig. [5] `foldMapGen` has the same implementation but without those restrictions; as a consequence, its derivative is not self-maintainable, but it is more generally applicable. Lack of space prevents us from giving more details.

To define `GroupChange`, we need a suitable erased change structure on \(\tau \), such that \(\oplus \) will be equivalent to \(\oplus \). Since there might be multiple groups on \(\tau \), we allow the changes to specify a group, and have \(\oplus \) delegate to \(\oplus \):

\[
\Delta \tau = \text{Replace } \tau \cdot \text{GroupChange } (\text{AbelianGroup } \tau) \tau \\
v \oplus (\text{Replace } u) = u \\
v \oplus (\text{GroupChange } (\oplus, \text{inverse}, \text{zero}) \cdot dv) = v \cdot dv \\
v \oplus u = \text{Replace } v
\]

That is, a change between two values is either simply the new value (which replaces the old one, triggering recomputation), or their difference (computed with abelian group operations, like in the changes structures for groups from Sec. [27]). The operator \(\oplus \) does not know which group to use, so it does not take advantage of the group structure. However, `foldBag` is now able to generate a group change.

We rewrite `grand_total` in terms of `foldBag` to take advantage of group-based changes.

\[
\text{id} = \lambda x \cdot x \\
G = (\mathbb{Z}, +, -, 0) \\
\text{grand_total} = \lambda x s. \text{foldBag } G \cdot \text{id} (\text{merge } x s y s) \\
\text{Derive} (\text{grand_total}) = \\
\lambda x s. \lambda d x s. \lambda y s. \lambda d y s. \\
\text{foldBag'} G \cdot G \cdot \text{id} (x s y s) \\
\text{merge' } x s d x s y s d y s
\]

It is now possible to write down the derivative of `foldBag`.

If (static analysis detects that \(dG \) and \(df \) are nil changes)

\[
\text{foldBag'} = \text{Derive} (\text{foldBag}) = \\
\lambda G. \lambda d G. \lambda f. \lambda d f. \lambda x s. \lambda d x s. \lambda y s. \lambda d y s. \\
\text{GroupChange } G (\text{foldBag } G f d x s)
\]

We know from Sec. [27] that

\[
\text{merge'} = \lambda u. \lambda d u. \lambda v. \lambda d v. \text{merge du dv}
\]

Inlining `foldBag'` and `merge'` gives us a more readable term \(\beta \)-equivalent to the derivative of `grand_total`:

\[
\text{Derive} (\text{grand_total}) = \\
\lambda x s. \lambda d x s. \lambda y s. \lambda d y s. \text{foldBag } G \cdot \text{id} (\text{merge dy dz dx dy dz})
\]

4.5 Benchmark results

Our results show (Fig. [7]) that our program reacts to input changes in essentially constant time, as expected, hence orders of magnitude faster than recomputation. Constant factors are small enough that the speedup is apparent on realistic input sizes.

For lack of space, details on benchmarking results and inputs are available in the extended version of our paper (Appendix A).
Two important lessons from the evaluations are:

- As anticipated in Sec. 4.3 to achieve good performance our current implementation requires some form of dead code elimination, such as laziness.
- Incrementalization increases code size significantly. Analyzing and addressing this increase is left for future work.

5. Related work

Existing work on incremental computation can be divided into two groups: static incrementalization and dynamic incrementalization. Static approaches analyze a program statically and generate an incremental version of it. Dynamic approaches create dynamic dependency graphs while the program runs and propagate changes along these graphs.

The trade-off between the two is that static approaches have the potential to be faster because no dependency tracking at runtime is needed, whereas dynamic approaches can support more expressive programming languages. ILC is a static approach, but compared to the other static approaches it supports more expressive languages.

In the remainder of this section, we analyze the relation to the most closely related prior works. Ramalingam and Reps [21]. Gupta and Mumick [13] and Acar et al. [3] discuss further related work.

5.1 Dynamic approaches

One of the most advanced dynamic approach to incrementalization is self-adjusting computation, which has been applied to Standard ML and large subsets of C [2, 14]. In this approach, programs execute on the original input in an enhanced runtime environment that tracks the dependencies between values in a dynamic dependence graph [3]: intermediate results are memoized. Later, changes to the input propagate through dependency graphs from changed inputs to results, updating both intermediate and final results; this processing is often more efficient than recomputation.

However, creating dynamic dependence graphs imposes a large constant-factor overhead during runtime, ranging from 2 to 30 in reported experiments [4, 5], and affecting the initial run of the program on its base input. Acar et al. [5] show how to support high-level data types in the context of self-adjusting computation; however, the approach still requires expensive runtime bookkeeping during the initial run. Our approach, like other static ones, uses a standard runtime environment and has no overhead during base computation, but may be less efficient when processing changes. This pays off if the initial input is big compared to its changes.

Chen et al. [9] have developed a static transformation for purely functional programs, but this transformation just provides a superior interface to use the runtime support with less boilerplate, and does not reduce this performance overhead. Hence, it is still a dynamic approach, unlike the transformation this work presents.

Another property of self-adjusting computation is that incrementalization is only efficient if the program has a suitable computation structure. For instance, a program folding the elements of a bag with a left or right fold will not have efficient incremental behavior; instead, it’s necessary that the fold be shaped like a balanced tree. In general, incremental computations become efficient only if they are stable [11]. Hence one may need to massage the program to make it efficient. Our methodology is different: Since we do not aim to incrementalize arbitrary programs written in standard programming languages, we can select primitives that have efficient derivatives and thereby require the programmer to use them.

Functional reactive programming [10] can also be seen as a dynamic approach to incremental computation; recent work by Maier and Odersky [18] has focused on speeding up reactions to input changes by making them incremental on collections. Willis et al. [24] use dynamic techniques to incrementalize JQL queries.

5.2 Static approaches

Static approaches analyze a program at compile-time and produce an incremental version that efficiently updates the output of the original program according to changing inputs.

Static approaches have the potential to be more efficient than dynamic approaches, because no bookkeeping at runtime is required. Also, the computed incremental versions can often be optimized using standard compiler techniques such as constant folding or inlining. However, none of them support first-class functions; some approaches have further restrictions.

Our aim is to apply static incrementalization to more expressive languages; in particular, ILC supports first-class functions and an open set of base types with associated primitive operations.

5.2.1 Finite differencing

Paige and Koenig [20] present derivatives for a first-order language with a fixed set of primitives. Blakeley et al. [8] apply these ideas to a class of relational queries. The database community extended this work to queries on relational data, such as in algebraic differencing [13], which inspired our work and terminology. However, most of this work does not apply to nested collections or algebraic data types, but only to relational (flat) data, and no previous approach handles first-class functions. Incremental support is typically designed monolithically for a whole language, rather than piecewise. Improving on algebraic differencing, Koch guarantees asymptotic speedups with a compositional query transformation and delivers huge speedup in realistic benchmarks, though still for a first-order database language.

More general (non-relational) data types are considered in the work by Gluche et al. [12]: our support for bags and the use of groups is inspired by their work, but their architecture is still rather restrictive: they lack support for function changes and restrict incrementalization to self-maintainable views, without hinting at a possible solution.

5.2.2 Static memoization

Li and work [17] allows to incrementalize a first-order base program $f(x_{old})$ to compute $f(x_{new})$, knowing how x_{new} is related to x_{old}. To this end, they transform $f(x_{new})$ into an incremental program
which reuses the intermediate results produced while computing $f(x_{\text{old}})$, the base program. To this end, (i) first the base program is transformed to save all its intermediate results, then (ii) the incremental program is transformed to reuse those intermediate results, and finally (iii) intermediate results which are not needed are pruned from the base program. However, to reuse intermediate results, the incremental program must often be rearranged, using some form of equational reasoning, into some equivalent program where partial results appear literally. For instance, if the base program f uses a left fold to sum the elements of a list of integers x_{old}, accessing them from the head onwards, and x_{new} prepends a new element h to the list, at no point does $f(x_{\text{new}})$ recompute the same results. But since addition is commutative on integers, we can rewrite $f(x_{\text{new}})$ as $f(x_{\text{old}}) + h$. The author’s CACHET system will try to perform such rewritings automatically, but it is not guaranteed to succeed. Similarly, CACHET will try to synthesize any additional results which can be computed cheaply by the base program to help make the incremental program more efficient.

Since it is hard to fully automate such reasoning, we move equational reasoning to the plugin design phase. A plugin provides general-purpose higher-order primitives for which the plugin authors have devised efficient derivatives (by using equational reasoning in the design phase). Then, the differentiation algorithm computes incremental versions of user programs without requiring further user intervention. It would be useful to combine ILC with some form of static caching to make the computation of derivatives which are not self-maintainable more efficient. We plan to do so in future work.

6. Conclusions and future work
We have presented ILC, an approach to lifting incremental computations on first-order programs to incremental computations on higher-order programs. We have presented a machine-checked correctness proof of a formalization of ILC and an initial experimental evaluation in the form of an implementation, a sample plugin for maps and bags, and a non-trivial example that was incrementalized successfully and efficiently.

Our work opens several avenues of future work. Our current implementation is not efficient on derivatives that are not self-maintainable. However, as discussed (Sec. 4.3), we will study how to memoize intermediate results to address this limitation. Our next step will be to develop language plugins which have efficient non-self-maintainable primitives.

Another area of future work is adding support for algebraic data types (including recursive types), polymorphism, subtyping, general recursion and other collection types. While support for algebraic data types could subsume support for specific collections, many collections have additional algebraic properties that enable faster incrementalization (like bags). Even lists (which have fewer algebraic properties) can benefit from special support [13].

Moreover, we intend to apply ILC to optimize queries on collections in the context of the SQUOPT project [11], which was a motivation for this work; in particular, SQUOPT can automatically rewire queries to use database-style indexes, and ILC enables updating those indexes when input data changes.

Finally, we intend to perform a full and thorough experimental evaluation to demonstrate that ILC can incrementalize large-scale practical programs.

Acknowledgments
We would like to thank Ingo Maier, Erik Ernst, Tiark Rompf, other ECOOP 2013 participants, Sebastian Erdweg, Christoph Koch and the PLDI ’14 anonymous reviewers for helpful discussions and/or comments on previous drafts. This work is supported by the European Research Council, grant #203099 “ScalPL”.

References