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Abstract
Oliveira and Cook (2012) and Oliveira et al. (2013) have
recently introduced object algebras as a program structur-
ing technique to improve the modularity and extensibility
of programs. We analyze the relationship between object al-
gebras and attribute grammars (AGs), a formalism to aug-
ment context-free grammars with attributes. We present an
extension of the object algebra technique with which the
full class of L-attributed grammars – an important class of
AGs that corresponds to one-pass compilers – can be en-
coded in Scala. The encoding is modular (attributes can be
defined and type-checked separately), scalable (the size of
the encoding is linear in the size of the AG specification) and
compositional (each AG artifact is represented as a seman-
tic object of the host language). To evaluate these claims,
we have formalized the encoding and re-implemented a one-
pass compiler for a subset of C with our technique. We also
discuss how advanced features of modern AG systems, such
as higher-order and parameterized attributes, reference at-
tributes, and forwarding can be supported.

Categories and Subject Descriptors D.1.5 [Programming
Techniques]: Object-oriented Programming; D.3.1 [Pro-
gramming Languages]: Formal Definitions and Theory

Keywords Object Algebras; Visitor Pattern; Attribute Gram-
mars; Church-encoding; Embedded Domain-Specific Lan-
guages; Modularity; One-Pass Compilers; Scala

1. Introduction
The last years have seen a revival of program structuring
techniques based on Church encodings for such topics as
data-type generic programming (Hinze 2004, 2006), ad-
hoc polymorphic functions (Oliveira and Gibbons 2005),
the “finally tagless” embedding of typed languages (Carette
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Folds vs Church Hinze (2006)

Folds vs AGs Johnsson (1987);
Chirica and Martin (1979)

Folds vs Visitors Gibbons (2006)

Visitors vs Church Buchlovsky and Thielecke (2006);
Oliveira et al. (2008);
Oliveira et al. (2013)

Visitors vs AGs Middelkoop et al. (2011)

Table 1. Excerpt of previous work on relations between
approaches from Table 2

et al. 2007, 2009), polymorphic embedding of domain-
specific languages (Hofer et al. 2008), and object algebras
(Oliveira and Cook 2012; Oliveira et al. 2013). In these ap-
proaches, data is not represented as physical data but rather
as “recipes” of how to perform computations on the data.

Church encodings are similar to folds/catamorphisms on
algebraic datatypes in functional programming, to internal
visitors in object-oriented programming, and to synthesized
attributes in AGs (Table 2). The relationships between al-
most all of these approaches have been analyzed in detail
in previous works, see Table 1; only one pair is missing:
Church encodings vs AGs. This paper is supposed to fill that
gap. Since object algebras are the variant of Church encod-
ings that is most similar to AGs, we will concentrate on the
relation between object algebras and AGs in the remainder
of this paper.

We consider the exploration of this relationship a worth-
while endeavour. On one hand, our attempts to encode AGs
have significantly extended the expressive power of the ob-
ject algebra technique. Concepts that are very natural in the
AG world, such as grammars with multiple non-terminals,
inherited attributes, or various classes of allowed depen-
dencies between attributes have not or only insufficiently
been explored in the OA world. Advanced AG features, such
as RAGs (Hedin 2000), higher-order attributes (Vogt et al.
1989), or forwarding (Van Wyk et al. 2002) are all poten-
tially useful and interesting to consider from an object alge-
bra perspective as well.



Folds Visitors Church Encodings Attribute Grammars

algebraic datatype class hierarchy algebra signature CFG
catamorphism/fold visit/accept methods the value itself traversal
fold args / algebras concrete visitor algebra attribute
instance of datatype instance of class algebra-polymorphic traversal sentence in language

Table 2. Similarities between program structuring approaches

On the other hand, AGs can benefit from an embedding
into a statically typed general purpose language by new pos-
sibilities, such as modular type checking, compositional pro-
gram understanding, and the ability to abstract over entities
that are usually not first-class in the AG world. AG systems,
such as JastAdd (Hedin 2011), Silver (Van Wyk et al. 2007),
and UUAGC (Swierstra et al. 1998) are often implemented
as non-compositional source-to-source translations, which
hinders compositional program understanding (for example,
when static or dynamic errors occur in the generated code).
Also, having a proper semantic representation (as semantic
objects of the base language) of AG artifacts improves the
distinction between syntax and semantics; semantic objects
can be composed regardless of the syntax that was used to
synthesize them.

Most importantly, object algebras are a quite powerful
modularization technique. They provide an elegant solution
to the expression problem (Wadler 1998), and they can be
used to decompose traversal algorithms in a modular and
composable way. We discuss the various dimensions of mod-
ularity in Section 2. Broadening object algebras to encode
AGs means that object algebras are potentially useful as a
novel and highly modular way of building extensible com-
pilers. The core idea of Church-encoding AGs is also what
distinguishes this work from many other previous works on
compiling or embedding AGs. We use the programming lan-
guage Scala in this paper, but there is only one feature spe-
cific to Scala that is essential for our approach, namely in-
tersection types (A with B ). Variance annotations are also
important for our approach, but similar features (for exam-
ple, wildcards) also exist for other languages.

In our encoding, we strive for three important and non-
trivial properties: modularity, scalability, and composition-
ality. By modularity we mean that attributes can be defined
and type-checked separately, while still guaranteeing stati-
cally that the invariants (with respect to dependencies be-
tween attributes and termination) of the AG class we encode
are preserved. By scalability we refer to the property that the
size of the encoding is linear in the size of the grammar and
the number and size of the attributes. By compositionality
we mean that each AG artifact is represented as a semantic
object of the host language.

This paper makes the following contributions:

• Section 3 observes that object algebras can be seen as
Church-encodings of S-attributed grammars (Lewis et al.
1974).
• Section 4 improves the modularity of this encoding of

S-attributed grammars by introducing context-sensitive
object algebras.
• Section 5 extends the encoding to L-attributed grammars

by encoding context decorators as object algebras, inher-
iting their modularity properties.
• Section 6 generalizes the example from the previous sec-

tions and discusses how any L-attributed grammar can
be encoded in terms of object algebras. To this end, we
present a program generator that takes the representa-
tion of a datatype (grammar) as input and produces the
support code required for our encoding. The attributes
and their equations are then encoded as ordinary Scala
code that uses the support code. We also discuss why our
encoding fulfills the three properties mentioned above,
modularity, scalability, and compositionality.
• Section 7 evaluates our technique experimentally. We

have taken an existing one-pass compiler for a subset of C
and reformulated and modularized it with the technique
shown in this paper. The case study suggests that our
approach scales to programs of realistic size.
• Section 8 discusses how the advanced AG features men-

tioned above (RAGs, higher-order attributes, forwarding)
could be supported by our encoding.

We defer the discussion of related work to Section 9. The
implementation of our program generator, the case study,
and examples that illustrate the techniques to encode ad-
vanced AG features are available online1.

2. Attribute Grammars and the
Expression Problem

Wadler (1998) asks for a representation of tree-shaped data
that supports two dimensions of extensibility: Extension
with new data variants and extension with new tree traver-
sals. A solution to this expression problem should allow
extensions to reuse old data variants or traversals without

1 http://www.informatik.uni-marburg.de/~rendel/oa2ag/

http://www.informatik.uni-marburg.de/~rendel/oa2ag/


e0 → n {Lit}
e0 → e1 "+" e2 {Add}

(a) Grammar productions.

e0.value = n
e0.value = e1.value + e2.value

(b) Attribute equations.

e0.pp = intToString(n)
e0.pp = e1.pp + " + " + e2.pp

(c) Attribute equations for additional attribute.

e0 → e1 "-" e2 {Sub}
(d) Additional grammar productions.

e0.value = e1.value− e2.value

(e) Additional attribute equations.

e0.pp = e1.pp + " - " + e2.pp

(f) Additional attribute equations for additional attribute.

additional attributes
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Figure 1. Two dimensions of extensibility for an attributed grammar.

changing or recompiling their implementation on the one
hand, and it should statically ensure that all traversals sup-
port all data variants on the other hand. Odersky and Zenger
(2005) also require independent extensibility, that is, the
combination of independently developed extensions. In this
work, we focus on a third dimension of modularity that has
been somewhat less studied: Composition of traversal oper-
ations from components.

2.1 Two Dimensions of Extensibility
An important example of tree-shaped data is the abstract
syntax of a programming language. In this context, the two
dimensions of extensibility correspond to an extension of the
language with additional syntactic forms and to an extension
of an implementation for the language with additional traver-
sals of the abstact syntax tree. For example, Figures 1a and
1b specify a simple language of arithmetic expressions and
its evaluation to numbers as an attribute grammar.

Attribute grammars are context-free grammars augmented
with attribute definitions. In this example, the non-terminal
e is augmented with an attribute value. In AG terminology,
value is a synthesized attribute: It is an attribute of non-
terminals that is computed (or “synthesized”) from attributes
of its children, as can be seen by the attribute equations in
Figure 1b. Here, in the second equation value is expressed
in terms of the values for e1 and e2, child nodes of e0.

Our example contains two extensions of this basic sys-
tem, exemplifying the two dimensions of extensibility:
Figure 1c adds the additional operation of pretty printing,
and Figures 1d and 1e extend the grammar with an addi-
tional syntactic form for subtraction. To use both extensions
together as required for independent extensibility, we spec-
ify how the pretty printing behaves for subtraction nodes in
the abstract syntax tree, as shown in Figure 1f.

2.2 A Third Dimension of Modularity
In this paper, we focus on a third dimension of modular-
ity that is relevant to the traversal of tree-shaped data: The
composition of traversal operations from components. Such
a decomposition of traversal operations is relevant in prac-
tice because operations can be large and complex. With at-
tribute grammars, equations for one attribute can mention

e0.pp =

if (e2.value ≡ 0)

e1.pp

else

e1.pp + " + " e2.pp

(a) Accessing the value attribute of
a child of the current node.

e0.pp =

if (e0.value ≡ 0)

"0"

else

e1.pp + " + " e2.pp

(b) Accessing the value attribute of
the current node itself.

Figure 2. Two ways of using the value attribute in an equa-
tion for the pp attribute.

other attributes, and an attribute grammar will usually define
dozens of such interdependent attributes.

For example, we present two variants of the simple pretty
printer from Figure 1c which use the value attribute in an
equation for the pp attribute. The variant in Figure 2a just
emits the first operand of an addition if the value of the
second one is zero, and the variant in Figure 2b prints "0" for
expressions with overall value zero. These variants need to
access already computed attributes on a child of the current
node or on the current node itself, respectively.

One task of AG implementations is to order the compu-
tation of the various attributes in an attribute grammar so
that all attribute values are available when they are required.
If possible, this should happen without performing unneces-
sary traversals of the abstract syntax tree. For example, the
attribute grammars in Figures 1 and 2 can all be computed
in one traversal of the abstract syntax tree, interleaving the
computation of the value and pp attributes.

Decomposing a traversal into multiple components should
not result in additional traversals at runtime. This suggests
that we should distinguish full traversals from reusable com-
ponents of traversals. In the encoding presented in this paper,
the difference between traversals and reusable components
of traversals is expressed via the type parameters of a generic
interface. These type parameters are also used to encode the
dependencies between the reusable components. This allows
us to statically check in the Scala type system that all oper-
ations expressible with our encoding can be run as a single
terminating traversal provided the equations themselves are
written in a pure and strongly normalizing subset of Scala. 2

2 There are two potential sources of nontermination in attribute grammars:
Cyclic attribute dependencies and nonterminating equations, given a suffi-



ExprSig[E ]

trait ExprSig[E ] {

def Lit: Int⇒ E

def Add:(E ,E)⇒ E

}

(a) Algebraic signature

trait ExprCompose[E1,E2 ] extends ExprSig[E1 with E2 ] {

val alg1: ExprSig[E1 ]

val alg2: ExprSig[E2 ]

}

(b) Composition of algebras

Figure 3. Encoding an S1-attributed grammar.

2.3 The Benefits of Encoding
As a source language, it appears as if attribute grammars al-
ready solve the expression problem, including the decom-
position of traversals into multiple attributes. However, at-
tribute grammar implementations often lack modular rea-
soning and separate compilation, which are key ingredients
to a solution to the expression problem. The encoding we
present in this paper combines the source-language modular-
ity properties of attribute grammars with the target-language
modularity properties of object algebras in Scala.

Beyond the potential practical use of the encoding as the
foundation for an attribute grammar compiler, the encoding
serves as a bridge between the two fields of study. The
area of attribute grammars is much more developed, so we
believe that at first, this work will help to understand object
algebras better in the light of what we already know about
attribute grammars.

3. Encoding Synthesized Attributes
In this section, as well as in the following two sections 4
and 5, we illustrate our encoding informally by means of
a simple example. We will introduce the components of
the encoding step-by-step, starting with synthesized single-
attribute grammars, and ending with L-attributed grammars.
The example grammar considered in this section consists of
a single non-terminal only. In Section 6, we will formalize
the informal findings from this section and also generalize to
the case of multiple non-terminals.

3.1 S1-Attributed Grammars
Oliveira and Cook (2012) present a solution to the expres-
sion problem based on the technique of objects algebras. Ob-
ject algebras address the problem by interpreting variants of
an algebraic data type as constructors of an algebraic signa-
ture and operations on the data type as implementations of
such signatures. It is important to note that a function han-
dling different variants of a type (possibly by pattern match-
ing) is hereby turned into a record containing one function

cently strong equation language. Our encoding statically avoids the former
but is liable to the latter, because it uses the general-purpose language Scala
as an equation language. Statically checking whether the Scala equations
terminate and are free of side effects is out of scope for this paper.

val Expr value = new ExprSig[Int] {
def Lit = n ⇒ n

def Add =(e1, e2)⇒ e1 + e2
}

Figure 4. Equations encoded as Algebra

per variant. This transformation then allows usage of object
oriented methodology to structure reusable and extensible
components.

Following the translation scheme above, we can define
the attribute grammar (modulo the concrete syntax) as an
object algebra. The structure of the language is defined in
terms of the object algebra signature in Figure 3a3. We are
using Scala’s support for function types to closely model the
corresponding algebraic signature4. Thus Lit is defined to be
a unary operation from Int to E . E represents the carrier set
and is encoded as type parameter of the trait. We also use
upper-case method names for the members of the algebraic
signature because these members are used like constructors.
This has the additional benefit of avoiding ambiguities with
keywords of the host language.

The equations of the attribute grammar translate to im-
plementations of the signature methods. Figure 4 shows the
object algebra implementing the value attribute for the lan-
guage Expr. To this end the above algebraic signature is in-
stantiated, defining the carrier type to be Int. Programs of
Expr such as 3 + 5 are represented as functions that are
parametric in the object algebra.

def threeplusfive[E ](alg : ExprSig[E ]):E =

alg .Add(alg .Lit(3), alg .Lit(5))

Calling threeplusfive(Expr value) corresponds to com-
puting the value attribute on the input program using the
original attribute grammar defined in Figures 1a and 1b.

3 The figure shows the first step of the development of our encoding. Sub-
sequent figures will add to the definitions and refine existing ones. To il-
lustrate the differences, additions and changes are highlighted with a gray
background.
4 We choose an encoding like def Lit: Int ⇒ E over an encoding like
def Lit (n: Int):E because definition site type inference is better for
functions and thus allows more concise implementations.



To also support the same concrete syntax as the attribute
grammar, one would have to add a parser that calls the
functions of the object algebra signature, but we are not
interested in concrete syntax at this point.

The above encoding is straightforward if the AG consists
only of a single synthesized attribute. Purely synthesized
AGs are equivalent to first-order folds (Duris et al. 1996).
As we have seen in the above example, any AG with only
a single synthesized attribute (S1-AGs) can immediately be
expressed as an object algebra.

3.2 S-Attributed Grammars
One way to encode multiple attributes is to instantiate the
type parameter E from above with a tuple or record type,
whereby each attribute corresponds to one tuple/record com-
ponent. However, AG systems usually allow to define each
attribute separately. To achieve a similar kind of modu-
larity, we can adapt the technique for feature-oriented de-
composition of object algebras by Oliveira et al. (2013),
which uses intersection types. In Scala this is realized by
trait composition which resembles a form of multiple in-
heritance with the order of super classes linearized by the
compiler at compile time. For example in the declaration
trait C extends A with B the type C is a subtype of
both A and B .

In Figure 5a, we adapt the evaluation attribute to this
style and also consider the extension of adding a second
attribute pp for pretty-printing. This implementation above
differs from Oliveira et al.’s proposal because the HasValue
and HasPP helper functions are strict, so the attributes are
computed during the traversal, not when pp or value are
called. Both attributes are now defined separately, but how
can they be combined such that they can be computed in a
single, simple traversal? Oliveira et al. propose to use the
generic composition trait in Figure 3b, which composes two
algebras “pointwise”. The instantiation for the two interfaces
HasValue and HasPP can be found in Figure 5b. Using
ComposeValuePP and defining alg1 to be Expr value and
alg2 to be Expr pp, we can compute the values of both
attributes in a single traversal.

In this way, S-attributed grammars (Lewis et al. 1974)
with independent attributes and a single non-terminal can be
encoded.

3.3 Extensibility
Since our encoding is based on object algebras, it also in-
herits the extensibility properties (Oliveira and Cook 2012).
The remainder of this subsection briefly recapitulates how
extensibility manifests itself in our setting. For this purpose,
let us consider the addition of the grammar production Sub
as introduced in Figure 1d. The new algebraic signature ex-
tends the existing one, which can be modeled in Scala with
inheritance:

trait HasValue {def value: Int}
def HasValue(v : Int) = new HasValue {val value = v }
trait HasPP {def pp: String}
def HasPP(p: String) = new HasPP {val pp = p}
val Expr value = new ExprSig[HasValue] {
def Lit = n ⇒ HasValue(n)

def Add =(e1, e2)⇒ HasValue(e1.value + e2.value)

}
val Expr pp = new ExprSig[HasPP] {

def Lit = n ⇒ HasPP(n.toString)

def Add =(e1, e2)⇒ HasPP(e1.pp + "+" + e2.pp)

}
(a) Two attribute equation-sets

trait ComposeValuePP

extends ExprCompose[HasValue,HasPP] {
val alg1: ExprSig[HasValue]

val alg2: ExprSig[HasPP]

def Lit = n ⇒ new HasValue with HasPP {
val value = alg1.Lit(n).value

val pp = alg2.Lit(n).pp

}
def Add =(e1, e2)⇒ new HasValue with HasPP {

val value = alg1.Add(e1, e2).value

val pp = alg2.Add(e1, e2).pp

}
}

(b) Composition

Figure 5. Composing two algebras to compute two synthe-
sized attributes at once.

trait ExprSubSig [E ] extends ExprSig[E ] {
def Sub:(E ,E )⇒ E

}

The algebra for ExprSub value can reuse the algebra for
Expr value from Figure 5a as follows:5

trait ExprSub value

extends Expr value with ExprSubSig [HasValue] {
def Sub =(e1, e2)⇒ HasValue(e1.value− e2.value)

}
val ExprSub value = new ExprSub value { }

Independent extensibility is provided by multiple inheri-
tance. The same kind of extensibility holds for all further
developments of the encoding as they are presented in the
remainder of this paper.

5 We use Expr value as a trait here, even though it was defined as a value
in Figure 5a. In practice, we would follow the standard Scala pattern of
defining both a trait and an equally named value instantiation the trait,
as we do for Expr2 value here. We avoided this extra complexity for
presentation purposes in Figure 5a.



PreExprSig[E ,Out ] Extends Figure 3

type ExprSig[E ] = PreExprSig[E ,E ]

trait PreExprSig[−E ,+Out ] {

def Lit: Int⇒ Out

def Add:(E ,E)⇒ Out

}

(a) Algebraic signature

trait ExprCompose[ I1 ,O1, I2 ,O2 ]

extends PreExprSig[ I1 with I2 ,O1 with O2 ] {

val alg1: PreExprSig[ I1, O1 ]

val alg2: PreExprSig[ I2, O2 ]

def Lit = n ⇒ {

val out1 = alg1.Lit(n)

val out2 = alg2.Lit(n)

mix[O1,O2 ](out1, out2)

}

...

...

def Add =(e1, e2)⇒ {

val out1 = alg1.Add(e1, e2)

val out2 = alg2.Add(e1, e2)

mix[O1,O2 ](out1, out2)

}
}

(b) Composition of pre-algebras

Figure 6. Modularizing attribute definitions.

4. Modularity of the Encoding
With the above coding scheme it is possible to define mul-
tiple isolated synthesized attributes in parallel. In order to
also support modular definition of multiple attributes with
dependencies we have to modify the encoding some more.

There are two ways of modularizing the definition of syn-
thesized attributes. An attribute equation for a given nonter-
minal production can access other attributes that either

1. have already been computed for the children of the non-
terminal production or

2. have already been computed for the same nonterminal.

In this section we will develop step-by-step an encoding
that supports both modularity aspects.

4.1 Accessing other attributes of children
In the examples of object algebras we have seen so far, both
the type of child nodes and the result of the computation
have been the same. This is a crucial requirement to be able
to use the algebra for folding or in an embedded style as for
threeplusfive.

To facilitate reuse of existing components in a type safe
way we need a means to specify the required interface for
attributes computed on child nodes. By separating the con-
travariant (input to the current computation) and the covari-
ant (output of the current computation) occurrences of the
sort we create a more fine grained signature interface, thus
turning the algebra into a pre-algebra.

An example of a pre-algebra for the expression language
is PreExprAlg , defined in Figure 6a. The contravariant type
−E specifies requirements on the type of the children6,

6 All child nodes in this example are expressions, hence the name E .
Choosing distinct names for the contravariant type parameters is important
in a setting with multiple non-terminals as can be seen in Section 6

independent of the covariant output +Out which is being
computed. In Scala− and + are used to denote contravariant
and covariant type arguments respectively.

For instance, let us implement the pretty-printer as intro-
duced in Figure 2a which only emits the first operand of an
addition if the value of the second is zero.

trait Expr ppOpt extends

PreExprSig[HasPP with HasValue,HasPP] {
def Lit = n ⇒ HasPP(n.toString)

def Add =(e1, e2)⇒
if (e2.value ≡ 0) e1 else

HasPP(e1.pp + "+" + e2.pp)

}

Obviously, a pre-algebra is in general not complete: It
cannot be used for actual computations unless input and
output agree. Hence we reconstruct ExprSig as a special
case of PreExprSig as defined in Figure 6a.

Pre-algebras are useful for modularization, though. A
generalization of the above mentioned ExprCompose trait
can be used to compose pre-algebraic fragments and thereby
satisfying (potentially mutually recursive) dependencies.

To define the composition trait (and other future defini-
tions), we need a right-biased object composition function
which takes two objects and merges them, whereby the right
object “wins” if both objects define the same method:

def mix[A,B ](a:A, b:B):A with B

This function cannot be defined directly in Scala, but it
can be simulated using a combination of macros and implicit
parameters. For clarity, we use mix instead of the more
elaborate simulation in the remainder of this section.

Using mix, we can define a general algebra composition
trait for pre-algebras as can be seen in Figure 6b. There is



CtxExprSig[E ,Ctx ,Out ] Extends Figure 6

type CtxExprSig[−E ,−Ctx ,+Out ] = PreExprSig[E ,Ctx ⇒ Out ]

type ExprSig[E ] ...

trait PreExprSig[−E ,+Out ] ...

(a) Algebraic signature

trait ExprAssemble[Ctx ,Out ] extends ExprSig[Ctx ⇒ Out ] {

val alg1: CtxExprSig[Out ,Ctx ,Out ]

def Lit = n ⇒ ctx ⇒ alg1.Lit(n)(ctx )

def Add =(e1, e2)⇒ ctx ⇒ {

val outL = e1(ctx )

val outR = e2(ctx )

alg1.Add(outL, outR)(ctx )

}

}

(c) Assembly of pre-algebras

trait ExprCompose[

E1,C1, O1, E2,C2 >: C1 with O1, O2 ]

extends CtxExprSig[E1 with E2,C1, O1 with O2 ] {

val alg1: CtxExprSig[E1,C1, O1 ]

val alg2: CtxExprSig[E2,C2, O2 ]

def Lit = n ⇒ ctx ⇒ {
val out1 = alg1.Lit(n)(ctx )

val out2 = alg2.Lit(n)(mix[C1,O1 ](ctx , out1))

mix[O1,O2 ](out1, out2)

}
def Add =(e1, e2)⇒ ctx ⇒ {

val out1 = alg1.Add(e1, e2)(ctx )

val out2 = alg2.Add(e1, e2)(mix[C1,O1 ](ctx , out1))

mix[O1,O2 ](out1, out2)

}
}

(b) Composition of pre-algebras

Figure 7. Depending on information about the same node.

no need to manually define instances for particular sorts as
in Figure 5b. It thus allows us to abstract over the imple-
mentation details for composing traits and at the same time
helps us to concentrate on the dependency structure between
object algebras.

Equipped with this composition facility, we can combine
Expr ppOpt and Expr value to yield a complete:

ExprSig[HasPP with HasValue]

4.2 Accessing other attributes on the current node
In the last subsection we have seen how to encode depen-
dencies on attributes which are already computed for the
children of the current node. The next step is to also allow
modularization with respect to the computation already per-
formed on the current node. An example where this proves
useful is the pretty printer in Figure 2b that only prints the
full subtree, if the value of the current node is not zero. We
already have defined a component to compute the value of
expressions that we now should be able to reuse.

To allow referencing already computed attributes such as
value in this example we treat them as as input for the cur-
rent computation. To this end, we instantiate the type param-
eter Out with a function type Ctx ⇒ Out using the addi-
tional type parameter Ctx . Figure 7a shows the definition of
the new context aware signature CtxExprSig.

When creating an algebra for CtxExprSig this way it
is possible to separately specify which attributes should al-
ready be computed for the child nonterminals (E ) as well

as for the current node (Ctx ) in order to compute the result
(Out). As an example, here is a version of the above men-
tioned pretty-printer (Figure 2b) that requires to know the
value of the current node:

trait Expr ppOpt2 extends

CtxExprSig[HasPP,HasValue,HasPP] {
def Lit = n ⇒ ctx ⇒ HasPP(n.toString)

def Add =(e1, e2)⇒ ctx ⇒
if (ctx .value ≡ 0) HasPP("0") else

HasPP(e1.pp + "+" + e2.pp)

}

How can we compose algebras such as Expr ppOpt2
with other algebras after having defined them in a modu-
lar manner? Figure 7b illustrates the modifications to the
composition trait ExprCompose necessary in order to ac-
count for the additional computational context. The lower
bound C2>:C1 with O1 (read as “C2 is some supertype of
C1 with O1”) restricts the required context of the second
attribute alg2 to either also be contained in the required con-
text for the first attribute or to be part of the computed result
of alg1. The type of the composed attribute shows that it still
requires the first context C1 but now computes O1 as well as
O2.

The implementation of the operations immediately fol-
lows from the types. For computing the first attribute the
outer context is passed on to alg1. The second attribute alg2

then is invoked with a composition of the outer context and
the output of the first algebra. The final result then again



InhSig[Out ] Extends Figure 7

type CtxExprSig[−E ,−Ctx ,+Out ] ...

type ExprSig[E ] ...

trait PreExprSig[−E ,+Out ] ...

(a) Algebraic signature

trait ExprCompose[

E1,C1,O1,E2,C2 >: C1 with O1,O2 ] ...

(b) Composition of pre-algebras

trait ExprAssemble[Ctx ,Out ] extends ExprSig[Ctx ⇒ Ctx with Out ] {
val alg1: CtxExprSig[Ctx with Out ,Ctx ,Out ]

val alg2: CtxInhSig[Ctx ]

def Lit = n ⇒ ctx ⇒ mix[Ctx ,Out ](ctx , alg1.Lit(n)(ctx ) )

def Add =(l , r)⇒ ctx ⇒ {
val outL =( alg2.Add1 andThen l)(ctx )

val outR =( alg2.Add2 andThen r)(ctx )

mix[Ctx ,Out ](ctx , alg1.Add(outL, outR)(ctx ) )

}
}

(c) Assembly of pre-algebras and their context transformed counterpart

type CtxInhSig[Ctx ] = InhSig[Ctx ⇒ Ctx ]

trait InhSig[+Out ] {

def Add1:Out

def Add2:Out

}

(d) Algebraic signature of context decorator

Figure 8. Encoding inherited attributes by transformation of the grammar.

is composed. Our composition operator mix is right biased.
Thus definitions in alg2 can override the ones in alg1.

ExprCompose has some nice properties. Algebras for
the very same attribute can be composed together with the
second one overriding and possibly decorating the first one
due to the right biased nature of mix.

Dependencies to other attributes are articulated clearly
and might improve modular reasoning. On the other hand,
the very explicit composition of pre-algebras forces the user
to perform a linearisation of the dependencies. Attributes
have to be composed in topological order from left to right to
allow attributes on the right to depend on already computed
attributes to the left. The Scala type system enforces this lin-
earisation, that is, it is impossible to encode attribute gram-
mars with cyclic dependency graphs between attributes. This
leaves two ways of implementing non-terminating traver-
sals: Using Scala recursion or side effects inside an equa-
tion, or using Scala recursion or side effects to construct a
traversal with a cyclic pointer structure on the Scala heap.
Neither is considered to be in the image of our encoding,
that is, starting from an attribute grammar with a pure and
strongly-normalizing equation language, one cannot reach
such non-terminating Scala programs by following our en-
coding.

An instance of CtxExprSig cannot immediately be used
for folding since the types of the contravariant E and co-
variant Ctx ⇒ Out carriers do not agree. Eventually, after
having composed enough algebras using ExprCompose we
will end up with an instance of CtxExprSig where E = Out
and the type parameter Ctx only resembles the residual

state necessary for computation. Figure 7c illustrates how
to close such a signature CtxExprSig [Out ,Ctx ,Out ] to
ExprSig[Ctx ⇒ Out ] by passing down the ctx to all com-
putations without modification, which is reminiscent of how
reader monads are implemented. This process is named
closing of the context algebra, since simple algebras cannot
be composed with another context algebras anymore.

This specialized form of pre-algebras described by
CtxExprSig is the final shape of our encoding of synthe-
sized attributes in this paper. We also call such algebras
pre-function-algebras, because they are pre-algebras whose
domain has a function type.

5. Encoding Inherited Attributes
5.1 I-Attributed Grammars
Inherited attributes, are attributes that are defined in terms of
the parent nodes. Hence, they require evaluating the depen-
dencies on the parent before computing the children. In con-
trast to synthesized attributes, inherited attributes thus repre-
sent top-down computations during a traversal. By choosing
the synthesized attribute to be a function we also can try to
encode inherited attributes as synthesized attributes (Chirica
and Martin 1979), similar to how a Reader monad in func-
tional programming is used to represent context-dependent
computations. However, this encoding is not suitable for a
modular encoding of inherited attributes, because then the
definition of the inherited attributes is tangled with the defi-
nition of synthesized attributes that depend on them.

The class of I-Attributed Grammars is rather artificial
since inherited attributes on their own are not very useful.



Nevertheless, we consider an attribution of the grammar in
Figures 1a and 1b by adding the inherited attribute indent
defined in Figure 9b. This attribute might be later used by
a synthesized pretty-printer attribute to add a line break
after emitting the + and further indent the right-hand-side
of the addition. A pretty-printer that would use this inherited
attribute might have an equation of the form:

e0.pp = e0.pp "+" "\n" e0.indent e1.pp {Add}

Using the alternative encoding described above, the
pretty-printer attribute would become a function String ⇒
String, expecting the indentation as an argument. The equa-
tions for the indentation attribute indent would need to be
entangled with those for the pretty-printer; for instance, in
the Add case, this would result in:

def Add =(l , r)⇒ indent ⇒
l (indent) + "+" + "\n" + r (indent + " ")

If the inherited attribute is used in multiple other attribute
definitions, we would even need to replicate the definition.

We have designed a modular and direct encoding of in-
herited attributes instead. We will first consider the simplest
case where the equations for inherited attributes refer to the
parent node only (but not to sibling nodes). To specify equa-
tions for inherited attributes modularly, we define a derived
object algebra signature for inherited attributes. The signa-
ture is defined as a transformation of the above signature
ExprSig: Inherited attributes are defined in terms of nonter-
minal occurrences on the right hand side of a production (i.e.
e1 and e2). Thus it appears necessary to allow specification
of equations for those nonterminal occurrences by turning
them into operations of our transformed algebra. The result
of this transformation is shown in Figure 8d.

Applying the same technique we have used to account
for the computational context, CtxInhSig can be defined by
instantiating the type parameter E with a simple function
type Ctx ⇒ Ctx . This allows us to encode the class of AGs
where an inherited attribute can only refer to the inherited
attributes of its parent.

As above, the input type of the function Ctx ⇒ Ctx re-
sembles contextual information so we call this type param-
eter again Ctx . An important difference of the algebras en-
coding synthesized on the one hand and inherited attributes
on the other hand is the usage of their outputs. The first im-
mediately reflects the synthesized output of the overall pro-
gram. The second serves purely as input for further compu-
tation.

Finally, Figure 8d shows the translation of the attribute
grammar to this encoding of inherited attributes.

Standing on their own, inherited attributes do not provide
much value. However, they are useful when being combined
with synthesized attributes. As discussed above, inherited at-
tributes can serve as context decorators for computation per-
formed by synthesized attributes. For this purpose, we can

e0 → n {Lit}
e0 → e1 "+" e2 {Add}

(a) Grammar

e1.indent = e0.indent

e2.indent = e0.indent + " "

(b) Equations

val Expr indent = new CtxInhSig[HasIndent ] {
def Add1 = ctx ⇒ HasIndent (ctx .indent)

def Add2 = ctx ⇒ HasIndent (ctx .indent + " ")

}
(c) Algebra

Figure 9. Encoding an inherited attribute.

extend the assembly trait from Figure 7c to not only close
a pre-function-algebra, but also take an inherited attribute
as context decorator into account. The improved version of
ExprAssemble in Figure 8c combines an instance of a pre-
function-algebra CtxExprSig and an instance of its trans-
formed inh-algebra CtxInhSig to produce a new instance of
the closed algebra ExprSig. As can be seen from the type
signatures, the synthesized attribute is provided with context
information of type Ctx . For already processed children of a
node both context, and the synthesized output are available
(Ctx with Out). The implementation shows that the in-
herited attribute algebra just serves as decorator for the con-
text provided to the synthesized attribute. At first the cor-
responding method on the transformed signature (such as
alg2.Add1 ) is called with the parent context, and then the
result is passed as decorated context to the children (here l )
in order to compute the synthesized output. 7.

Inherited attributes allow a decomposition of programs
which is folklore to the attribute grammar community but
represents a novel program structuring technique within gen-
eral purpose programming languages. Our encoding of at-
tribute grammars as object algebras brings these to software
developers. At the same time, by means of embedding in a
general purpose language, it offers new abstraction mech-
anisms to attribute grammar designers, as we will see in
Section 7.

Before we talk about other ways to use and compose alge-
bras for inherited attributes, we will first generalize our en-
coding such that inherited algebras can depend on attributes
of siblings to the left. Such AGs are called L-attributed.

5.2 L-Attributed Grammars
In this subsection we will see how to encode L-attributed
attribute grammars (L-AGs) within the framework of object
algebras.

The pos attribute in Figure 11b represents the index of
a node as assigned by a pre-order traversal. The second
equation for the inherited pos attribute uses a synthesized
attribute count of its sibling e1, which is defined by the
equations e0.count = e1.count + e2.count for the addition
case and e0.count = 1 for the literal case.

7 The method andThen represents composition of functions and is part of
the Scala standard library. It assures that (f andThen g)(x) = g(f (x))



PreInhSig[E ,Out ] Extends Figure 8

type CtxExprSig[−E ,−Ctx ,+Out ] ...

type ExprSig[E ] ...

trait PreExprSig[−E ,+Out ] ...

(a) Algebraic signature

trait ExprCompose[

E1,C1,O1,E2,C2 >: C1 with O1,O2 ] ...

(b) Composition of pre-algebras

trait ExprAssemble[Ctx ,Out ] extends ExprSig[Ctx ⇒ Ctx with Out ] {
val alg1: CtxExprSig[Ctx with Out ,Ctx ,Out ]

val alg2: CtxInhSig[ Ctx with Out ,Ctx ,Ctx ]

def Lit = n ⇒ ctx ⇒ mix[Ctx ,Out ](ctx , alg1.Lit(n)(ctx ))

def Add =(e1, e2)⇒ ctx ⇒ {
val outL =(alg2.Add1 andThen e1)(ctx )

val outR =(alg2.Add2 (outL) andThen e2)(ctx )

mix[Ctx ,Out ](ctx , alg1.Add(outL, outR)(ctx ))

}
}

(c) Assembly of pre-algebras and their context transformed counterpart

type CtxInhSig[ −E ,−Ctx , +Out ] =

PreInhSig[E ,Ctx ⇒ Out ]

type InhSig[E ] = PreInhSig[E ,E ]

trait PreInhSig[−E ,+Out ] {

def Add1:Out

def Add2:E ⇒ Out

}

(d) Algebraic signature of context decorators

Figure 10. Encoding of an L-attributed grammar.

Since the value of e2.pos is defined in terms of the already
computed attributes on e1, this example grammar falls in
the class of L-attributed grammars. This class of grammars
allows attributes being defined in terms of already processed
left neighbours to allow attribute evaluation in one top-down
left-to-right pass (Bochmann 1976).

In order to support L-attributed grammars we need to
adapt both the transformation of object algebra signatures
into inherited attribute signatures as well as the assembly of
an object algebra for synthesized attributes and its inherited
attribute counterpart.

To address the first, we modify the transformation scheme
to allow referencing left neighbours. At the same time, in or-
der to allow modular composition of multiple inherited at-
tributes, where dependencies can be expressed for the cur-
rent node, we use pre-function-algebras from Section 4.

type CtxInhSig[−E ,−Ctx ,+Out ] =

PreInhSig[E ,Ctx ⇒ Out ]

The important difference between Figures 8d and 10d
is the signature of operation Add2. The argument of type
E represents the already calculated attributes for the left
neighbour e1 within the addition. Again, this contravariant
occurrence of a sort motivates the usage of pre-algebras.

In Figure 11c it becomes clear that the translation from
the attribute grammar to an instance of the pre-function-
algebra now is straightforward. The main difference to the
attribute grammar specification is the list of type parameters
allowing to interface with other attribute implementations to
support modular definition of a larger system.

In order to compose the above inherited attribute algebra
with a synthesized attribute algebra, the changes in the trans-

e0 → n {Lit}
e0 → e1 "+" e2 {Add}

(a) Grammar

e1.pos = e0.pos + 1

e2.pos = e0.pos + e1.count + 1

(b) Equations

val Expr pos = new CtxInhSig[HasCount,HasPos,HasPos] {
def Add1 = ctx ⇒ HasPos(ctx .pos + 1)

def Add2 = e1 ⇒ ctx ⇒ HasPos(ctx .pos + e1.count + 1)

}
(c) Algebra

Figure 11. Encoding of an L-attributed grammar.

formation also have to be reflected in the signature of the
ExprAssemble trait, see Figure 10c. Since we know that for
already traversed children the context as well as the synthe-
sized attributes have been calculated, the pre-algebraic input
sort of the inherited attribute algebra alg2 has to be changed
to Ctx with Out . It now becomes visible that at assembly
time the type members of synthesized and inherited attribute
algebras only differ in their result type. Synthesized attribute
algebras calculate the overall output while inherited attribute
algebras compute necessary context information.

Comparing the implementation of Add with the previous
one the reader will notice only one small change. In order to
compute the context information for the right hand side of
the addition outL, the computation result of the left neigh-
bour, is passed to the call of alg2.Add2.

Since we encoded inherited attributes as pre-function-
algebras, the same infrastructure for algebra composition
can be used for inherited as well as synthesized attribute
algebras. The only difference is the concrete shape of the
algebra in terms of operations. As we have seen in this



section, the algebraic signature used to encode inherited
attributes is a straightforward transformation of the algebraic
signature encoding synthesized attributes.

5.3 Three ways to construct sentences
In the beginning of Section 3, we have seen one way to
encode sentences in the language defined by the context
free grammar, namely as a function that is parametric in the
object algebra:

def threeplusfive[E ](alg : ExprSig[E ]) =

alg .Add(alg .Lit(3), alg .Lit(5))

This is the typical style for Church-encodings known
from previous works, such as polymorphic embedding or the
“finally tagless” approach. Due to the ExprAssemble trait,
we can continue to use this approach even in the presence
of inherited attributes. ExprAssemble wires the two object
algebras representing synthesized and inherited attributes
and closes them, resulting in an instance of ExprSig. Here
both covariant and contravariant occurrences of the carrier
are the same.

A second possibility is to have a physical tree and then
define a function that folds the algebra over the tree:

trait Expr {
def fold[E ](alg : ExprSig[E ]):E

}
case class Lit(n: Int) extends Expr {

def fold[E ](alg : ExprSig[E ]):E = alg .Lit(n)

}
case class Add(l : Expr, r : Expr) extends Expr {
def fold[E ](alg : ExprSig[E ]):E =

alg .Add(l .fold(alg), r .fold(alg))

}

This use of our encoding follows the Visitor pattern. The
algebra corresponds to the (internal) visitor, and fold corre-
sponds to the accept method often used with the Visitor pat-
tern. This style enables easy use of our with physical trees
such as Expr.

However, it is important to note that also in the Church
encoded style, such as the sentence threeplusfive, trees are
created under the cover: a tree of function closures represent-
ing the term is constructed in memory. This is undesirable if
the goal is to construct an algorithm that works like a one-
pass compiler, that is, the output is constructed just in time
while the input is read, and the memory consumption is in-
dependent of the input size.

It is, however, possible to encode sentences in a third, dif-
ferent way, namely by partially evaluating ExprAssemble
with a concrete input. For instance, we can encode the pro-
gram threeplusfive in this style as follows.

def threeplusfive2[Ctx ,Out ]

(alg1: CtxInhSig[Ctx with Out ,Ctx ,Ctx ],

alg2: CtxExprSig[Ctx with Out ,Ctx ,Out ])

:Ctx ⇒ Ctx with Out =

ctx ⇒ {
val in3 = alg1.Add1(ctx )

val out3 = alg2.Lit(3)(in3)

val all3 = mix[Ctx ,Out ](in3, out3)

val in5 = alg1.Add2(all3)(ctx )

val out5 = alg2.Lit(5)(in5)

val all5 = mix[Ctx ,Out ](in5, out5)

mix[Ctx ,Out ](ctx , alg2.Add(all3, all5)(ctx ))

}

Once the initial context ctx is passed to the function,
all function closures are immediately evaluated. If this new
representation of the sentence was used in a parser for the
language (and given an initial context Ctx ), the attributes
would be computed while the parser runs.

Writing programs in this style is to cumbersome to be
done for concrete input. However, handwritten parsers can
easily be adapted to represent the parsed program as calls
to the object algebras. As follow up work, a set of parser
combinators could be designed that automatically performs
the above partial evaluation of the parsed input.

When calling the algebra functions during parsing, it is
important that the grammar class recognized by the parsing
technology fits the attribute grammar class (Deransart et al.
1988, Sec. 4.3). For instance, in a recursive-descent parser,
one would not know whether to call the alg1.Add1 (ctx )
function when a numeral is encountered, because it is not yet
clear whether it will turn out to be the operand of an addition.
When the grammar is refactored to LL(k), the problem does
not occur anymore. The problem can also be avoided by
using the first variant described in this subsection, but then
it would no longer be a true one-pass compiler.

5.4 Summary
In the preceding three sections 3 to 5 we have seen how
different classes of attribute grammars correspond to differ-
ent encodings of object algebras. The simplest class of S1-
attributed grammars corresponds to a single sorted signature,
known from polymorphic embedding. Multiple, isolated at-
tributes defined in parallel can be composed using a compo-
sition trait. In order to support modular definition of synthe-
sized attributes we introduced pre-function-algebras, which
allow to separately interface with the requirements on child
computation as well as computation on the same nontermi-
nal. Inherited attributes can be encoded by a transformation
of the algebraic signature, introducing an operation for ev-
ery right hand side occurrence of a nonterminal. Using pre-
function-algebras for both synthesized as well as inherited
attributes and adapting the assembly of the two we can en-
code L-attributed AGs in the framework of object algebras.



6. Formalization
In this section, we formalize the encoding of L-attributed
grammars that we introduced by example in Section 3. This
formalization allows us to

• unambiguously communicate the details of our encoding,
• meaningfully discuss modularity, scalability and compo-

sitionality of the encoding, and
• support experiments with the encoding by automating the

generation of code fragments.

The formalization is based on a generator that we wrote to
support our experiments with the encoding. The generator
accepts the abstract syntax of a context-free language as in-
put, and generates the Scala source code of the various al-
gebra interfaces and combinators as output. In addition to
the features exemplified in the previous section, this formal-
ization as well as the generator also support grammars with
multiple nonterminal symbols.

6.1 Grammars and Signatures
We formalize how to encode the L-attribution of a given
context-free grammar. For each nonterminal symbol in the
grammar, we want to extract the signatures of the corre-
sponding algebras for computing synthesized and inherited
attributes.

For this extraction, we have to distinguish nonterminal
symbols whose meaning is defined by the grammar, termi-
nal symbols, and built-in symbols that denote primitive types
such as integers or strings. With respect to attribution, the
difference between these three categories of symbols is what
information the corresponding derivations contain: Nonter-
minal symbols carry attributes, terminal symbols contain no
information, and built-in symbols contain a single value of
the corresponding primitive type. We also have to label each
production in the grammar with a constructor symbol. Since
we extract the same information from all non-terminal sym-
bols, we don’t have to select a start symbol.

For our purposes, we therefore define that a context-free
grammarG is a quintuple (N,T,B,C, P ) whereN is the set
of nonterminal symbols, T is the set of terminal symbols, B
is the set of built-in types,C is the set of constructor symbols
and

P ⊂ N × (N ∪ T ∪B)
∗ × C

is the set of productions so that there is exactly one produc-
tion for every symbol c ∈ C. We use the meta-variable s for
symbols in N ∪ T ∪B and write productions as

n→ s1 . . . sk {c}

We call the nonterminal symbol n the head and the se-
quence of symbols s1 . . . sk the body of the production. We
say that a nonterminal symbol n0 depends on a nonterminal
symbol n1 if n1 occurs in the body of a production with n0
as head. For example, an extension of the grammar of the

E → N {Lit}
E → E "+" E {Add}
E → X {Var}
S → X "=" E ";" S {Set}
S → "return" E ";" {Exp}

(a) Grammar

Lit :N → E

Add:E × E → E

Var :X → E

Set :X × E × S → S

Exp:E → S

(b) Operations

Figure 12. Example grammar and algebraic signature.

example language from Section 3 is shown in Figure 12a. It
uses the nonterminal symbols E and S , the terminal sym-
bols "+", "=", ";", and "return", and built-in types X for
variable names and N for numbers. The nonterminal symbol
S depends on S and E , but E only depends on itself.

A context-free grammar for a language directly corre-
sponds to an algebraic signature for the language. For the
signature, only the abstract syntax of the language is rele-
vant, so we ignore the terminal symbols from the grammar.
The other kinds of symbols are treated as follows:

• Constructor symbols are used as function symbols,
• Nonterminal symbols are used as sorts and
• Built-in symbols are used as predefined types.

With respect to algebraic signatures, the difference between
the latter two is that the carrier types for nonterminal sym-
bols are left open for each algebra to decide, whereas the
carrier types for predefined types are fixed for all algebras of
the same signature.

For our purposes, we also define that an algebraic signa-
ture Σ is a quadruple (N,B,C,D) where N , B and C are
defined as for grammars, and

D ⊂ C × (N ∪B)
∗ ×N

is the set of type declarations so that there is exactly one
type declaration for every symbol c ∈ C. In the context of
signatures, we sometimes call N the set of sorts. We use
the meta-variable τ for symbols in N ∪ B and write type
declarations as:

c : τ1 × . . .× τk → n

We call n the return type and τ1, τ2, . . . the argument types
of c. Every grammar (N,T,B,C, P ) induces an algebraic
signature (N,B,C,D) with D defined as follows.

D = {c : τ1 × τ2 × . . .→ n | (n→ s1s2 . . . {c}) ∈ P,
τ1τ2 . . . is s1s2 . . . without terminal symbols}

For example, the signature induced by the grammar from
Figure 12a is shown in Figure 12b. This signature is well
suited for the implementation of S1-attributed algebras as
discussed in Section 3.1, but in order to modularly encode
multiple synthesized and inherited attributes, we have to
transform this signature into a variant for context-sensitive
operations.



already about to
computed compute

about subtree n n ′

about context ñ ñ′

(a) Naming scheme for sorts

Lit :N × Ẽ → E ′

Add:E × E × Ẽ → E ′

Var :X × Ẽ → E ′

Set :X × E × S × S̃ → S ′

Exp:E × S̃ → S ′

(b) Context-sensitive operations

Add1: Ẽ → Ẽ′

Add2:E × Ẽ → Ẽ′

Set1 :X × S̃ → Ẽ′

Set2 :X × E × S̃ → S̃′

Exp1 : S̃ → Ẽ′

(c) Context decorators

Figure 13. Adapting the signature to encode context-sensitive operations and context decorators.

6.2 Context-Sensitivity and Context Decorators
In order to allow operations to compute and access the con-
text of each node, we want to transform the above devel-
oped signature for context-free operations into two different
signatures: A signature of context-sensitive operations that
allows operations to access the context of the current node,
and a signature of context decorators that specify the context
of each child of a node in terms of the information about
the child’s left neighbours as well as the context of the cur-
rent node, that is, the parent of the child in question. This
also motivates the name “context decorators”: They allow
decorating the context of the current node with additional
information.

Before we can present the signature transformation, we
have to introduce additional sorts to distinguish information
available for different parts of a tree, as seen from the “cur-
rent node” during a tree traversal. We distinguish informa-
tion that is already computed from information that we are
about to compute, and information about a subtree from in-
formation about the context of a subtree, for a total of four
different sorts per nonterminal symbol. These fine-grained
distinctions allow us to specify exact interfaces for the com-
ponents that together specify a tree traversal.

For every nonterminal n in the grammar, we use the
sort n to represent information about already traversed n-
children of the current node, ñ to represent information
about the context of the current n-node, n ′ to represent
the information about the current n-node we are about to
compute, and ñ′ to represent information about the context
of n-children of the current node we are about to traverse.
For example, the nonterminal symbol E induces the sorts
E , E ′, Ẽ, and Ẽ′. Figure 13a illustrates how this naming
scheme for sorts encodes the two dimensions of “already
computed” vs. “about to compute” on the one hand, and
information about subtrees vs. information about the context
on the other hand.

The signature of context-sensitive operations contains the
same function symbols as the signature from Section 6.1,
that is, one function symbol per production of the gram-
mar. This relates to the fact that for synthesized attributes,
we have to provide one equation for each occurrence of a
nonterminal symbol in the head of a production, that is, one
equation for each production. If a function symbol f in the
signature of context-free operations has the type declaration

f : τ1 × ...× τk → n

then the corresponding function symbol in the signature of
context-sensitive operations has the type declaration

f : τ1 × ...× τk × ñ→ n ′,

that is, we add an argument to account for the already known
information about the current node, and we change the re-
sult to mark that we are about to compute it. For exam-
ple, Figure 13b shows the signature of context-sensitive op-
erations that correspond to the context-free operations in
Figure 12b. The alert reader might have noticed that earlier
in this paper in Section 4.2 a similar development lead to the
introduction of pre-function-algebras.

The signature of context decorators contains different
function symbols than the other signatures. We need one
context decorator for every context of a child we have to
compute. That is, one for every nonterminal argument of any
function symbol in the signature of context-free operations.
This relates to the fact that for inherited attributes, we have to
provide one equation for each occurrence of a nonterminal
symbol in the body of a production. If a function symbol
f in the signature of context-free operations has the type
declaration

f : τ1 × ...× ni × ...× τk → n

then the corresponding function symbols in the signature of
context decorators have the type declarations

fi: τ1 × ...× ñ→ ñ′i

for i = 1 ... k . In other words, we create a symbol fi if
the type of the i th argument of f is a nonterminal. This
symbol fi first takes i − 1 arguments of types τ1, . . ., τi−1
and an additional argument to account for the context of the
current node. We then set the return type to ñ′i in order to
reflect that we are computing the context for the traversal of
the i th child. For example, Figure 13c shows the signature
of context decorators that correspond to the context-free
operations in Figure 12b.

6.3 Object Algebras and Combinators
The context-sensitive operations and the context decorators
play different roles during computation of the attributes for



trait SSig[E ,S ] {
def Set(x :X , e:E , s:S):S

def Exp(e:E): S

}
(a) Direct translation of the context-free variant.

trait CtxSSig[−E ,−S ,−S̃,+S ′ ] {
def Set(x :X , e:E , s:S , s̃: S̃):S ′

def Exp(e:E , s̃: S̃):S ′

}
(b) Direct translation of the context-sensitive
variant.

trait CtxSSig[−E ,−S ,−S̃,+S ′ ] {
def Set(x :X , e:E , s:S): S̃ ⇒ S ′

def Exp(e:E): S̃ ⇒ S ′

}
(c) Currying to separate the common part from
the varying part.

trait PreSSig[−E ,−S ,+Out ] {
def Set(x :X , e:E , s:S):Out

def Exp(e:E): Out

}
(d) Abstraction over the varying part

type SSig[E ,S ] = PreSSig[E ,S ,S ]

type CtxSSig[−E ,−S ,−S̃,+S ′ ] = PreSSig[E ,S , S̃ ⇒ S ′ ]

(e) Instantiations for the context-free and the context-sensitive variant.

Figure 14. Different variants of encoding the object algebra that contains Set and Exp.

an abstract syntax tree. The former account for the compu-
tation of synthesized attributes, and the latter account for the
computation of inherited attributes. However, this difference
only matters for the final assembly of a system of attributes,
where we have to compose definitions of context-sensitive
operations and the corresponding definitions of context dec-
orators to compute both synthesized and inherited attributes
in the same traversal over the syntax tree.

Apart from their role in the final assembly, the type decla-
rations of the different kinds of operations are quite similar.
They all accept a series of arguments of the form n with in-
formation about the children of the current node and a final
argument of the form ñwith information about the context of
the current node. And they all return something of the form
n ′ (or ñ′) with some information that is about to be com-
puted. These similarities between the type declaration allow
us to encode both context-sensitive operations and context
decorators as object algebras in the same way, with the same
combinators that allow for the same modular decomposition
mechanisms.

To exploit the similarities between the operations, we
group operations into object algebra signatures based on
their return type and on the type of their context argument.
For example, the function symbols in Figures 13b and c are
grouped into five object algebra signatures: {Lit,Add,Var},
{Set,Exp}, {Add1,Add2}, {Set1,Exp1} and {Set1}.
This grouping has the benefit that the methods in an object
algebra signature have a more uniform type, which makes it
easier to define the object algebra combinators.

Since all methods in an object algebra share the same re-
turn type and the type of the context argument, we curry the
method declarations in order to abstract over the common-
ality. This also allows us to express both the signature of
context-free operations and the signature of the correspond-
ing context-sensitive operations as instantiations of the same
generic interface. Here, the context-sensitive variant corre-
sponds to pre-function-algebras as introduced in Figure 7a.

For example, Figure 14 shows the various stages of this
abstraction process for the object algebra that contains Set
and Exp. Please note that the type X represents the built-in
type for names as introduced above.

Given the translation from grammars to context-sensitive
operations and context decorators described in Section 6.2,
we know that for every distinct nonterminal h that occurs
in the head of a production, we need one object algebra
signature because the h productions give rise to context-
sensitive operations with type declarations ...× h̃→ h ′ and
all of them should be grouped in one signature. We use the
name of the nonterminal h in the naming scheme for the
Scala definitions related to this object algebra, that is, we
generate PrehSig and define hSig and CtxhSig in terms of
PrehSig.

Additionally, for every distinct nonterminal b that oc-
curs in the body of a production of h , we need one object
algebra signature for the context decorators between these
two nonterminals, because the h productions with b occur-
rences give rise to context transformers with a type declara-
tion ... × h̃ → b̃′ and all of them should be grouped in one
signature. We use the phrase “b in h” in the naming scheme
for the Scala definitions related to this object algebra, be-
cause these definitions relate to the fact that the nonterminal
b occurs in the body of a production of h , that is, we generate
PrebinhSig and define binhSig and CtxbinhSig in terms of
PrebinhSig.

The definitions generated for context-sensitive operations
and the definitions generated for context decorators only dif-
fer in the naming scheme. We use the meta variable Obj
to abstract over the naming scheme, that is, we talk gener-
ally about PreObjSig, ObjSig, and CtxObjSig. Figure 15a
shows how the code generated for an CtxObjSig looks
like in general. This common template allows us to uni-
formly generate object algebra combinators for these object
algebras, independently of whether they represent context-
sensitive operations or context decorators.

An object algebra CtxObjSig represents only a fragment
of a tree traversal. To compose these fragments into larger
components, we generate a ObjCompose trait that can be
used to compose two CtxObjSig instances so that during the
traversal, operations in the second algebra can access the in-
formation computed by the first algebra. The ObjCompose
combinator is shown in Figure 15b.



CtxObjSig[−n1, ...,−Ctx ,+Out]

type CtxObjSig[−n1, ...,−Ctx ,+Out ] =

PreObjSig[n1, ...,Ctx ⇒ Out ]

type ObjSig[n1, ...,ni ] =

PreObjSig[n1, ...,ni,ni ]

trait PreObjSig[−n1, ...,+Out ] {
def Ctor1:(τ11, τ12, ...)⇒ Out

def Ctor2:(τ21, τ22, ...)⇒ Out

...

}

(a) Object algebra signature.

trait ObjCompose[A1,B1, ...,C1,Out1,A2,B2, ...,C2 :> C1 with O1, O2 ]

extends CtxObjSig[A1 with A2,B1 with B2, ...,C1, O1 with O2 ] {
val alg1: CtxObjSig[A1,B1, ...,C1, O1 ]

val alg2: CtxObjSig[A2,B2, ...,C2, O2 ]

def Ctor1 =(x1, x2, ...)⇒ ctx1 ⇒ {
val out1 = alg1.Ctor1(x1, x2, ...)(ctx1)

val ctx2 = mix[C1, O1 ](ctx1, out1)

val out2 = alg2.Ctor1(x1, x2, ...)(ctx2)

mix[O1, O2 ](out1, out2)}
...

}
(b) Composition.

trait n0Assemble[n0, ñ0,n1, ñ1, ... ] extends n0Sig[ñ0 ⇒ ñ0 with n0, ñ1 ⇒ ñ1 with n1, ... ] {
val algn0: Ctxn0Sig[ñ0 with n0, ñ1 with n1, ..., ñ0,n0 ]

val algn0inn0: Ctxn0inn0Sig[ñ0 with n0, ..., ñ0, ñ0 ]

val algn1inn0: Ctxn1inn0Sig[ñ0 with n0, ..., ñ0, ñ1 ]

...

def Ctor1 =(x1, x2, ...)⇒ ctx ⇒ {
val y1 = ...;val y2 = ...; ... // see (d)
val y = algn0.Ctor1(y1, y2, ...)(ctx )

mix[ñ0,n0 ](ctx , y)

}
}

(c) Skeleton of n0Assemble.

// if τi is a built-in type:
val yi = xi

// if τi is a nonterminal symbol:
val yi =(algτiinn0.fi(y1, ..., yi−1) andThen xi)(ctx )

(d) The computation of yi depends on the type τi of the ith argument of f .

Figure 15. General form of object algebra signatures, composition of object algebras and their final assembly.

Finally, the assembly of all context-sensitive operations
and context decorators for a nonterminal n0 is shown in
Figure 15c. Note that this trait extends n0Sig which is im-
portant for two reasons: On the one hand, we cannot further
compose instances of this trait, because object algebra com-
position is not defined for n0Sig. But on the other hand, we
can use instances of this trait to fold over ASTs or poly-
morphically embed sentences, as discussed in Section 5.3.
Therefore, the intended usage is that in a compiler that is
modularized with object algebras, each module exports ob-
ject algebras with context-sensitive operations or context
decorators. Modules are free to compose such object alge-
bras and return the result, but the final closing assembly
should be deferred to the main program.

7. Modularizing a Compiler
To evaluate our claims made in the introduction we con-
ducted a case study and translated a one-pass compiler for
a subset of C into our encoding. The chosen compiler C0
is a handwritten, monolithic compiler used for educational
purposes at Aarhus University, Denmark8. The authors were

8 The source is available at http://cs.au.dk/~mis/dOvs/Czero.java

not involved in the design of the compiler. C0 is restricted to
a subset of the C language consisting of only integer types,
a few control structures (while, if, return), function declara-
tion and definition as well as basic I/O. It is implemented in
Java as a recursive decent parser with inline semantic actions
using function arguments to pass down context information.
Due to inlining various aspects of the implementation are
highly entangled. The usage of arguments to pass down con-
text information hinders modularity and extensibility.

By translating the C0 compiler to our encoding we were
able to support our claims from Section 1, showing that the
encoding is modular, scalable and compositional. In partic-
ular it showed that a) attributes can be defined and type-
checked separately since they are encoded as traits commu-
nicating their dependencies over type parameters. The en-
coding of the dependencies within the type system helps
to safely assemble the overall system after modularization.
b) The encoding scales linearly in the number of nonter-
minals. For every dependent nonterminal only a constant
amount of type parameters has to be introduced. In partic-
ular only immediate child nonterminals have to be consid-
ered. c) The embedding into a high level language allows
introducing novel abstractions not anticipated by the origi-

http://cs.au.dk/~mis/dOvs/Czero.java


# AG Artifact Implementation Artifact LoC LoC

Generic 140 Generic or could be generated 698
9 Nonterminals Signatures and Combinators 534

Trees 24

9 Nonterminal Dependencies Composition and Assembly 101 Semantic, handwritten code 352
5 Attributes Attribute Interfaces 32

20 Equationsets Equation implementations (Algebras) 191
Utility 28

Parser 423 Syntactic, handwritten code 540
Scanner 117

Bytecode Prelude 25 Other 30
Main 5

Total 1620 1620

Table 3. Lines of code for the C0 case study grouped by category

nal encoding. We have been able to abstract over lists and
thus reuse attribute definitions for several instances of lists.

In the remainder of this section, we discuss the evaluation
of these claims in further detail.

7.1 Modularity
Leveraging the modularity of our encoding the implementa-
tion of the case study spans over around 25 source files. The
attribute equation sets, representing the implementation of
attributes, are grouped on a nonterminal basis. With our en-
coding, this choice is up to the developer and other clustering
dimensions (for instance, by attribute) are equally possible.

The dependencies between the different components are
kept minimal. Two pairs of nonterminals are mutually recur-
sive and hence required some attention. The different nonter-
minal algebras can be implemented without referencing con-
crete instances of other nonterminals. References to other
nonterminals are only required in order to delegate folding
over physical trees to the dependent nonterminals. In order
to assemble dependent nonterminals for folding, we used
Scala’s lazy val to model the mutually recursive structure.

7.2 Scalability
In order to experimentally evaluate the scalability of our ap-
proach, we measured the lines of code for both the origi-
nal monolithic program as well as the translation into our
modular encoding. An overview of the results can be found
in Table 4 for the original source code and in Table 3 for
our translation. In Table 3 the center column illustrates how
many lines of code each implementation artifact provides.
Additionally, the main column is annotated from both sides.
The left hand column relates the attribute grammar artifacts
to the implementation artifacts and thereby provides insights
on how the approach scales in the number of AG artifacts. In
order to assist better estimating the implementation effort,
the artifacts are grouped in the right hand column.

The four types of attribute grammar artifacts in the table
represent possible dimensions of scalability as follows.

Implementation Artifact LoC LoC

Entangled Parser/Compiler 351 Semantic and 580
Scanner 229 Syntactic

Bytecode 213 Other 227
Main 14

Total 807 807

Table 4. Lines of code for original C0 Compiler (in Java).

Nonterminals Our encoding of attribute grammars is scal-
able in terms of the overall number of nonterminals occur-
ring in a grammar. Our encoding of the C0 compiler is based
on a grammar with 9 nonterminals. For every nonterminal
only a moderate amount code, that in fact can be generated,
is necessary. The case study has been conducted in parallel
to the implementation of a code generator for generating this
support code. It hereby guided the design of the generator
and also assisted the formalization as presented in Section 6.
Since the generator had not been completed when imple-
menting the case study, the necessary support code is still
handwritten rather than generated. After having finished the
code generator, the support code now could be automatically
generated given a description similar to that of Figure 12b as
input. Thus adding a nonterminal does not require any addi-
tional handwritten code.

Nonterminal Dependencies Adding nonterminals to the
right hand side of a production has two effects in our encod-
ing. Firstly, in order to use an algebra for folding, all its de-
pendent nonterminal algebras have to be referenced and thus
the assembly code might require adaption. Secondly, every
dependent nonterminal contributes at most 2 additional type
parameters in the corresponding context algebra as can be
seen in Section 6. In our case the assembly of all algebras
required 101 LoC.



Attributes Adding a new attribute only requires writing an
attribute interface like the one for HasValue introduced in
Section 3. More interestingly, adding an attribute as depen-
dency when implementing an algebra amounts to adding it
to one of the contravariant type parameters. Only when com-
posing algebras it is then checked whether attribute depen-
dencies are fulfilled.

Equation Sets In our implementation a set of equations
mostly coincides with the implementation of an object al-
gebra signature or its context variant. We implemented the
5 attributes for the corresponding nonterminals by providing
the necessary definitions in 20 equation sets, hereby con-
tributing 191 LoC. We were able to generically implement
some reoccurring attribute definition schemes such as pass-
ing on the context

def add(e1, e2)⇒ ctx ⇒ ctx

using the last computed synthesized attribute as result for
inherited attributes

def add2 = e1 ⇒ ctx ⇒ e1

and decorating the provided context using a function f .

def add(e1, e2)⇒ ctx ⇒ f (ctx )

Abstracting over these definition schemes enabled us to use
them as a simple function call during assembly. Six of the 20
equation sets are hence implemented as one liners.

Parsing The parser has been ported to Scala and has been
split into one component per nonterminal. The computation
of inherited and synthesized attributes is performed during
parsing following the “partial evaluation” usage scheme of
threeplusfive2 in Section 5.3. The scanner is implemented
as a lazy stream of tokens and thus a few lines of code could
be saved here.

Other This section includes a static bytecode prelude,
emitted by both implementations but packed in its repre-
sentation in Scala and the implementation of the main entry
point for the compiler.

Not counting generatable, generic code as well as the
auxiliary code (bytecode prelude and main) the handwritten
code in our encoding amounts to overall 892 LoC9. Com-
pared with 580 LoC of the original entangled parser & com-
piler implementation we are confident in the scalability of
our encoding.

It is not clear how to compare lines-of-code meaningfully
across languages. A strong argument for the scalability of
our approach, however, is given by the fact that there exists a
simple, direct mapping between each artifact of the attribute
grammar and the implementing artifacts in Scala.

9 As illustrated in Section 7.1 our implementation spans over 25 files. This
modularity comes with a cost of additional package declarations and import
statements ranging from 2 up to 10 LoC per file. This, as well as additional
signatures for traits and methods, are the price for reasonably modularized
software artifacts.

7.3 Compositionality
Following the translation scheme as formalized in Section 6
for 9 nonterminals we introduced the corresponding al-
gebraic signatures and their context decorator variants as
Scala traits. The algebras for statements and functions are
parametrized with 3 sorts representing the maximum in this
case study. The count of operations varies between 1 and 5
per signature. Sixteen different attribute equation sets im-
plementing 5 different attributes for corresponding algebraic
signatures have been defined independent of each other. Ev-
ery equation is represented as a method implementation in
the respective algebra. Since the dependencies are stated ex-
plicitly in the type signature of the algebras they can be type
checked and compiled individually.

Since our encoding is based on pure embedding into a
general purpose language, high level structuring features of
the host language can be used to organize the code base.
By conducting this case study we discovered a dimension
of modularity we did not anticipate: Parametrized Nonter-
minals. The most common example of parametrized nonter-
minals are lists. While implementing C0 we encountered
four instances of lists for the nonterminals Declaration ,
Statement , Expression and Function all structurally very
similar. This becomes immediately visible when inspecting
the signature for one particular list.

trait DeclListSig[−Decl ,−List ,+Out ] {
def Empty:Out

def Cons:(Decl ,List)⇒ Out

}

Comparing the algebraic signatures of the four instances
of lists we notice that they are alpha equivalent and hence the
sort Decl in the example above can just be renamed to Elem
to account for its generality. Thus, the algebraic signature of
List is not special. It is just a multi sorted abstract algebra
signature as introduced in Section 6. Also comparing the
necessary support code for the four instances we notice that
only the fold function needs modification, since it has to be
parametrized by the type of syntax to fold over.

Hence, due to the embedded nature of our encoding, we
were able to introduce this novel abstraction without having
to modify our translation scheme from attribute grammars
to object algebras. Using this newly introduced abstraction
one can implement generic attributes and reusable attribute
implementations for lists. Examples for such attributes in-
clude list size and other operations available on monoids
such as sum or concatenation. By means of parametrized
nonterminals we were able to abstract over 4 out of 9 nonter-
minals and thus reduce some complexity of the implementa-
tion while facilitating reuse.

In this section we have seen evidence that our encoding
is modular, scalable and compositional. Our experience with
the development of the C0 case study suggest that it might
even be practical to structure programs in this way by hand,



but further experiments have to investigate the notational
and conceptual overhead more. We are confident that our
embedding opens the door to carry over concepts, methods
and techniques from the area of attribute grammars to the
area of programming with visitors and Church encodings
such as object algebras.

8. Other Forms of Attributes
We sketch briefly how some advanced AG features could
carry over to our encoding. Our experiments with these fea-
tures can be found at the URL given in Section 1.

Higher Order Attributes allow the result of an attribute to
be an attributed tree (Vogt et al. 1989). Our approach is based
on Church encodings and hence a higher order attribute can
be encoded as a Church encoded value with a parameterized
return type. To construct attributed trees within an attribute
equation a technique similar to example threeplusfive in
Section 5.3 can be used. Just as in this example, the attribute
implementation has to be polymorphic in the type of the
algebra used for creating the Church encoded result.

Forwarding enables default definitions for attributes by
redirection to another implementation (Van Wyk et al. 2002).
Explicit forwarding, that is forwarding for specific attributes,
can be implemented as reusable decorator by delegating the
attribute implementation to a given higher order attribute.

Reference Attributed Grammars allow attributes to refer
to (the attributes of) other nodes in the tree (Hedin 2000).
We have reimplemented the TINY RAG from Hedin in our
object algebra style. The encoding does not change when
reference-valued attributes are present, but the objects con-
taining the computed attributes refer to each other. To allow
this, it was sufficient to turn the attribute objects into Scala
lazy vals and make the involved mix functions non-strict.

Parameterized Attributes accept arguments to compute
their value (Hedin 2000). By using first class functions as
attribute result type, parameterized attributes can be emu-
lated quite easily. Since we embedded the attribute specifica-
tion into a general purpose programming language it seems
straightforward to add support for memoization within the
attribute trait in order to avoid recomputation.

Circular Attributes enable iterative fix point construc-
tion by recursive definitions (Magnusson and Hedin 2007).
Oliveira et al. (2013) present an object algebra for computing
first and follow sets of a context-free grammar. We believe
that their code can be translated to our encoding and that it
can be generalized to support arbitrary circular attributes.

More General Dependencies. We focus on L-attributed
grammars, but in the general case, the dependencies be-
tween attributes can be arbitrary; as long as the dependency
graph is acyclic, the attributes can be evaluated in topologi-
cal order. A standard way to allow arbitrary dependencies is

to make attribute evaluation lazy (Johnsson 1987), and this
would work in our approach, too. In future work, we also
consider explicit sequencing operators for multiple passes,
such that well-definedness is guaranteed and the program-
mer has better control over the evaluation order.

9. Related Work
There is an enormous amount of related work on Church
encodings and in particular on attribute grammars, hence we
will discuss only the most closely related works.

Object algebras were proposed by Oliveira and Cook
(2012) and Oliveira et al. (2013) as a way to modularize al-
gorithms on structured data. The first paper shows how to
solve the expression problem with object algebras, while the
second paper concentrates on a decomposition of algebras
into “features”. What we have called pre-algebras are called
generalized object algebras by Oliveira et al. (2013). Com-
pared to these works, the main technical novelty of our ap-
proach is the incorporation of inherited attributes, the shift
of computation to traversal-time and associated possibility
of one-pass compilation, and our algebra composition op-
erator which encodes well-definedness into the type system
(whereas the one used by Oliveira et al. (2013) can lead to
circular dependencies and thus non-termination).

There are many works on compiling or embedding AGs
(in)to various programming language paradigms (Paakki
1995, Sec. 3). The aim of first-class attribute grammars (De
Moor et al. 2000), Kiama (Sloane et al. 2013), and Aspect-
AG (Viera et al. 2009) is quite similar to ours, namely
to achieve a compositional encoding of AGs into a pro-
gramming language, including composition operators for at-
tributes. Technically, these works are rather different, since
they all operate on physical trees in memory. Achieving a
similar kind of modularity as in our encoding would require
a solution to the expression problem for algorithms on phys-
ical trees for the respective languages. In AspectAG, this
is achieved by quite sophisticated type-level programming.
Dependencies in these works are not as explicitly repre-
sented as in our approach; for instance, circular equations
are not rejected by the type checker.

In general, to the best of our knowledge this is the first ap-
proach to Church-encode attribute grammars in a functional
language. Due to the careful generalization of the object al-
gebra technique, the well-known modularity and extensibil-
ity benefits of object algebras carry over to our AG encoding.

10. Conclusion
Based on previous work on object algebras, we successfully
Church-encode L-attributed grammars. We formalize the en-
coding and gain initial experimental evidence that the en-
coding is modular, scalable and compositional as well as po-
tentially useful in practical applications. In future work, we
want to extend our technique to support more forms of at-
tributes and to apply it to the design of extensible compilers.
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