
Invertible Syntax Descriptions:
Unifying Parsing and Pretty Printing

Tillmann Rendel Klaus Ostermann
University of Marburg, Germany

Abstract
Parsers and pretty-printers for a language are often quite similar,
yet both are typically implemented separately, leading to redun-
dancy and potential inconsistency. We propose a new interface of
syntactic descriptions, with which both parser and pretty-printer
can be described as a single program. Whether a syntactic descrip-
tion is used as a parser or as a pretty-printer is determined by the
implementation of the interface. Syntactic descriptions enable pro-
grammers to describe the connection between concrete and abstract
syntax once and for all, and use these descriptions for parsing or
pretty-printing as needed. We also discuss the generalization of
our programming technique towards an algebra of partial isomor-
phisms.

Categories and Subject Descriptors D.3.4 [Programming Tech-
niques]: Applicative (Functional) Programming

General Terms Design, Languages

Keywords embedded domain specific languages, invertible com-
putation, parser combinators, pretty printing

1. Introduction
Formal languages are defined with a concrete and an abstract syn-
tax. The concrete syntax specifies how words from the language
are to be written as sequences of characters, while the abstract syn-
tax specifies a structural representation of the words well-suited for
automatic processing by a computer program. The conversion of
concrete syntax to abstract syntax is called parsing, and the conver-
sion of abstract syntax into concrete syntax is called unparsing or
pretty printing.

These operations are not inverses, however, because the relation
between abstract and concrete syntax is complicated by the fact
that a single abstract value usually corresponds to multiple concrete
representations. An unparser or pretty printer has to choose among
these alternative representations, and pretty printing has been char-
acterized as choosing the “nicest” representation (Hughes 1995).

Several libraries and embedded domain-specific languages (ED-
SLs) for both parsing and pretty printing have been proposed and
are in wide-spread use. For example, the standard libraries of the
Glasgow Haskell Compiler suite include both Parsec, an embedded

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell’10, September 30, 2010, Baltimore, Maryland, USA.
Copyright c© 2010 ACM 978-1-4503-0252-4/10/09. . . $10.00

parser DSL (Leijen and Meijer 2001), and a pretty printer EDSL
(Hughes 1995). However, these EDSLs are completely indepen-
dent, which precludes the use of a single embedded program to
specify both parsing and pretty printing. This means that due to the
dual nature of parsing and pretty-printing a separate specification of
both is at least partially redundant and hence a source of potential
inconsistency.

This work addresses both invertible computation and the unifi-
cation of parsing and pretty printing as separate, but related chal-
lenges. We introduce the notion of partial isomorphisms to capture
invertible computations, and on top of that, we propose a language
of syntax descriptions to unify parsing and pretty printing EDSLs.
A syntax description specifies a relation between abstract and con-
crete syntax, which can be interpreted as parsing a concrete string
into an abstract syntax tree in one direction, and pretty printing an
abstract syntax tree into a concrete string in the other direction. This
dual use of syntax descriptions allows a programmer to specify the
relation between abstract and concrete syntax once and for all, and
use these descriptions for parsing or printing as needed.

After reviewing the differences between parsing and pretty
printing in Sec. 2, the following are the main contributions of this
paper:

• We propose partial isomorphisms as a notion of invertible com-
putation (Sec. 3.1).

• On top of partial isomorphisms, we present the polymorphi-
cally embedded DSL of syntax descriptions (Sec. 3) to elim-
inate the redundancy between parser and pretty-printer spec-
ifications while still leaving open the choice of parser/pretty-
printer implementation.

• We provide proof-of-concept implementations of the language
of syntax descriptions and discuss the adaption of existing
parser or pretty printer combinators to our interface (Sec. 4).

• We illustrate the feasibility of syntactic descriptions in a case
study, showing that real-world requirements for parsing and
pretty-printing such as the handling of whitespace and infix
operators with priorities can be supported (Sec. 4).

• We present a semantics of syntactic descriptions as a relation
between abstract and concrete syntax as a possible correctness
criterion for parsers and pretty-printers (Sec. 4.3).

• We explore the expressivity of partial isomorphisms by present-
ing fold and unfold as an operation on partial isomorphisms,
implemented as a single function (Sec. 5).

Section 7 discusses related and future work, and the last section
concludes. This paper has been written as literate Haskell and
contains the full implementation. The source code is available
for download at http://www.informatik.uni-marburg.de/
~rendel/unparse/.

2. Parsing versus Pretty-Printing
EDSLs for parsing such as Parsec tend to be structured as parser
combinator libraries, providing both elementary parsers and com-
binators to combine parsers into more complex ones. In a typed
language, the type of a parser is usually a type constructor taking
one argument, so that Parser α is the type of parsers which produce
a value of type α when successfully run on appropriate input.

We will present parsers and pretty-printers in a style that makes
it easy to see their commonalities and differences. Using the com-
binators for applicative functors (McBride and Paterson 2008), one
can implement a parser for an algebraic datatype in such a way
that the structure of the parser follows the structure of the datatype.
Here is an example for a parser combinator producing a list:

data List α

= Nil
| Cons α (List α)

parseMany :: Parser α → Parser (List α)
parseMany p

= const Nil $ text ""
| Cons $ p

∗ parseMany p

The combinator | is used to choose between the possible
constructors, $ is used to associate constructors with their argu-
ments, and ∗ is used to handle constructors with more than one
field. Since Nil does not take any arguments, const is used to ignore
the result of parsing the empty string.

The structure of parseMany follows the structure of List:
parseMany is composed of a parser for empty lists, and a parser
for non-empty lists, just like List is composed of a constructor for
empty lists, and a constructor for non-empty lists.

On the other hand, EDSLs for pretty printing such as the library
by Hughes (1995) are usually structured around a proper type Doc
with elementary documents and combinators for the construction of
more complex documents. These combinators can be used to write
a pretty printer for a datatype such that the structure of the pretty
printer follows the structure of the datatype.

printMany :: (α → Doc)→ (List α → Doc)
printMany p list

= case list of
Nil → text ""
Cons x xs→ p x

♦ printMany p xs

The structure of printMany follows the structure of List, but this
time, pattern matching is used to give alternative pretty printers for
different constructors. The combinator ♦ is used to combine two
documents side by side.

We introduce a type synonym Printer to show the similarity
between the types of parseMany and printMany even more clearly.

type Printer α = α → Doc
printMany :: Printer α → Printer (List α)

These code snippets show how the structure of both parsers and
pretty printers are similar in following the structure of a datatype.
Jansson and Jeuring (2002) have used this structural similarity be-
tween datatype declarations, and parsers and pretty printers for the
same datatypes, to derive serialization and deserialization functions
generically from the shape of the datatype. We offer the program-
mer more freedom in the choice of parser and pretty printer by
using the structural similarity between parsers and pretty printers
to unify these concepts without depending directly on the shape of
some datatype.

But these snippets also show the remaining syntactic differences
between parsers and pretty printers. Parsers use combinators $,
∗ and | to apply functions and branch into the alternatives

of the data type, while pretty printing uses the usual function
application and pattern matching. This syntactic difference has to
be resolved in order to unify parsing and pretty printing.

3. A language of syntax descriptions
We adapt polymorphic embedding of DSLs (Hofer et al. 2008)
to Haskell by specifying an abstract language interface as a set
of type classes. This interface can be implemented by various
implementations, i.e., type class instances. A program in the DSL
is then a polymorphic value, which can be used at different use sites
with different type class instances, that is, which can be interpreted
polysemantically.

In this section, we are concerned with the definition of the
language interface for syntax descriptions as a set of type classes.
Our goal is to capture the similarities and resolve the differences
between parsing and pretty printing so that a single polymorphic
program can be used as both a parser and a pretty printer.

The combinators $, ∗ and | as shown in the previous sec-
tion are at the core of parser combinator libraries structured with
applicative functors. The combinator $ is used to associate se-
mantic actions with parsers, the combinator ∗ is used to com-
bine two parsers in sequentially, and the combinator | is used
to combine two parsers as alternatives. As we will see in the next
subsection, these combinators cannot be implemented directly for
Printer. Therefore, our goal in the following subsections is to find
variants of $, ∗ and | which can be implemented both for
type constructors like Parser and for type constructors like Printer.
These combinators will be assembled in type classes to form the
language interface of the language of syntax descriptions.

3.1 The category of partial isomorphisms and the $
combinator

The fmap combinator for Parser (or its synonym $) is used to
apply a pure function α → β to the eventual results of a Parser α ,
producing a Parser β . The behavior of a f $ p parser is to first use
p to parse a value of some type α , then use f to convert it into a
value of some other type β , and finally return that value of type β .

($) :: (α → β)→ Parser α → Parser β

Unfortunately, we cannot implement the same $ function for
Printer, because there is no point in first printing a value, and
then apply some transformation. Instead we would like to apply the
transformation first, then print the transformed values. However,
this would require a function of type β → α . The behavior of a
f $ p pretty printer could be to first get hold of a value of type β ,
then use f to convert it into a value of some other type α , and finally
use p to print that value of type α .

($) :: (β → α)→ Printer α → Printer β

How can we hope to unify the types of $ for parsers and pretty
printers? Our idea is to have functions that can be used both for-
wards and backwards. A f $ p parser could use f forwards to
convert values after parsing, and a f $ p pretty printer could use
f backwards before printing. Clearly, this would work for invert-
ible functions, but not all functions expressible in Haskell, or any
general-purpose programming language, are invertible. Since we
cannot invert all functions, we have to restrict the $ operator to
work with only such functions which can be used forwards and
backwards.

An invertible function is also called an isomorphism. We define
a data type constructor Iso so that Iso α β is the type of isomor-
phisms between α and β . More precisely, the type Iso α β captures

what we call partial isomorphisms. A partial isomorphism between
α and β is represented as a pair of functions f of type α→Maybe β

and g of type β →Maybe α so that if f a returns Just b, g b returns
Just a, and the other way around.

data Iso α β

= Iso (α →Maybe β) (β →Maybe α)

We are interested in partial isomorphisms because we want to
modularly compose isomorphisms for the whole extension of a
type from isomorphisms for subsets of the extension. For example,
each constructor of an algebraic data type gives rise to a partial
isomorphism, and these partial isomorphisms can be composed to
the (total) isomorphism described by the data equation.

The partial isomorphisms corresponding to the constructors of
an algebraic data type can be mechanically derived by a system like
Template Haskell (Sheard and Jones 2002). For example, with the
Template Haskell code in Appendix A, the macro call

$(defineIsomorphisms ′′List)

expands to the following definitions.

nil :: Iso () (List α)
cons :: Iso (α,List α) (List α)

nil = Iso
(λ () → Just Nil)
(λxs → case xs of

Nil → Just ()
Cons x xs→ Nothing)

cons = Iso
(λ (x,xs)→ Just (Cons x xs))
(λxs → case xs of

Nil → Nothing
Cons x xs→ Just (x,xs))

Partial isomorphisms can be inverted and applied in both direc-
tions.

inverse :: Iso α β → Iso β α

inverse (Iso f g) = Iso g f

apply :: Iso α β → α →Maybe β

apply (Iso f g) = f

unapply :: Iso α β → β →Maybe α

unapply = apply◦ inverse

We will generally not be very strict with the invariant stated above
(if f a returns Just b, g b returns Just a, and the other way around).
In particular we will sometimes interpret this condition modulo
equivalence classes. A typical example from our domain is that a
partial isomorphism maps strings of blanks of arbitrary length to
a unit value but maps the unit value back to a string of blanks of
length one—that is, all strings of blanks of arbitrary length are in
the same equivalence class.

The need for invertible functions can also be understood from
a categorical point of view. In category theory, a type constructor
such as Parser can be seen as a covariant functor from the category
Hask of Haskell types and Haskell functions to the same category.
This notion is captured in the standard Haskell Functor class, which
provides the fmap function. Note that the usual $ for parsers is
simply an alias for fmap.

class Functor f where
fmap :: (α → β)→ (f α → f β)

This kind of functor is called covariant because the direction of the
arrow does not change between α → β and f α → f β .

Unfortunately, Printer is not a covariant functor, because the
type variable occurs in a contravariant position, to the left of a
function arrow. Instead, it is a contravariant functor, which could
be captured in Haskell by the following type class.

class ContravariantFunctor f where
contrafmap :: (β → α)→ (f α → f β)

This kind of functor is called contravariant because the direction
of the arrow is flipped between β → α and f α → f β . In general,
value producers such as Parser are covariant functors, while value
consumers such as Printer are contravariant functors.

Partial isomorphisms can be understood as the arrows in a new
category different from Hask. Categories which differ from Hask
in the type of arrows can be expressed as instances of the type class
Category, which is defined in Control.Category as follows.

class Category cat where
id :: cat a a
(◦) :: cat b c→ cat a b→ cat a c

The category of partial isomorphisms has the same objects as Hask,
but contains only the invertible functions as arrows. It can be
expressed in Haskell using the following instance declaration.

instance Category Iso where
g◦ f = Iso (apply f >=> apply g)

(unapply g >=> unapply f)
id = Iso Just Just

The >=> combinator is defined in Control.Monad as

(>=>) :: Monad m⇒ (a→ m b)→ (b→ m c)→ (a→ m c)
f >=> g = λx→ f x>>=g

and implements Kleisli composition for a monad, here, the Maybe
monad.

We want to abstract over functors from Iso to Hask to specify
our $ operator which works for both Parser and Printer, but
Haskell does only provide the Functor typeclass for functors from
Hask to Hask. To capture our variant of functors, we introduce the
IsoFunctor typeclass.

class IsoFunctor f where
($) :: Iso α β → (f α → f β)

The type class IsoFunctor and its $ method forms the first com-
ponent of the language interface of our language of syntax descrip-
tions.

3.2 Uncurried application and the ∗ combinator
The ∗ combinator for Parser is used to combine a Parser (α →
β) and a Parser α into a Parser β . The behavior of the (p ∗ q)
parser is to first use p to parse a function of type α→ β , then use q
to parse a value of type α , then apply the function to the value, and
finally return the result of type β .

(∗) :: Parser (α → β)→ (Parser α → Parser β)

The Applicative type class specifies such a ∗ operator for func-
tors from Hask to Hask, i.e. instances of the Functor type class. But
since our language of syntax descriptions is based on functors from
Iso to Hask, we cannot use the standard Applicative type class as a
component in our language interface. We would like to generalize
the notion of applicative functors to functors from Iso to Hask.

class IsoApplicative f where
(∗) :: f (Iso α β)→ (f α → f β)

Unfortunately, this version of ∗ cannot be implemented by
Printer. Expanding the definition of Printer, we see that we would
have to implement the following function.

(∗) :: (Iso α β → Doc)→ (α → Doc)→ (β → Doc)
(∗) p q b = ...

We have b of type β and want to produce a document. Our only
means of producing documents would be to call p or q, but neither
of them accepts β . We furthermore have no isomorphism Iso α β

available to convert b into a value of type α . Instead, we could print
such an isomorphism, if only we had one.

Since Printer does not support the applicative ∗ combinator,
we have to specify an alternative version of ∗ to combine two
syntax descriptions side by side. Note that in our parseMany code,
∗ is always used together with $ in an expression like the

following.

f $ p1 ∗ ... ∗ pn

In this restricted usage, the role of ∗ is simply to support curried
function application. We do support the (f $ p1 ∗ ... ∗ pn) pat-
tern through a different definition of ∗ . Our operator ∗ will not
be used to express curried function application, but it will be used
to express uncurried function application. Therefore, our ∗ has
the following type.

(∗) :: Printer α → Printer β → Printer (α,β)

This ∗ operator is supported by both printing and parsing. Print-
ing with (p ∗ q) means printing the first component of the in-
put with p, and the second component with q. And parsing with
(p ∗ q) means parsing a first value with p, then a second value
with q, and returning these values as components of a tuple.

The applicative version of ∗ supports the pattern

(f $ p1 ∗ ... ∗ pn)

as left-associative nested application of a curried function

(((f $ p1) ∗ ...) ∗ pn),

whereas our ∗ supports the same pattern as right-associative
tupling and application of an uncurried function

(f $ (p1 ∗ (... ∗ pn))).

by appropriately changing the associativity and relative priority of
the $ and ∗ operators.

For normal functors, the pairing variant and the currying variant
of ∗ are inter-derivable (McBride and Paterson 2008), but for Iso
functors it makes a real difference.

We abstract over the class of functors supporting ∗ by intro-
ducing the ProductFunctor typeclass.

class ProductFunctor f where
(∗) :: f α → f β → f (α,β)

ProductFunctor does not have any superclasses, so that it can
be used together with the new IsoFunctor type class or together
with the ordinary Functor type class. ProductFunctor and its ∗
method form the second component of the language interface for
our language of syntax descriptions.

3.3 Expressing choices and the | operator
In the parseMany code shown above, alternatives are expressed
using the | combinator of type Parser α→Parser α→Parser α .
This combinator is used to compose parsers for the variants of a
datatype into a parser for the full datatype. The | combinator
has been generalized in the standard Alternative type class. But
Alternative declares a superclass constraint to Applicative, which
is not suitable for syntax descriptions. We therefore need a version
of Alternative which is superclass independent.

class Alternative f where
(|) :: f α → f α → f α

empty :: f α

This class can be readily instantiated with Parser. The | com-
binator will typically try both parsers, implementing a backtrack-
ing semantics. The empty function is a parser which always fails.
For Printer, | will try to print with the left printer. If this is not
successful, it will print with the right printer instead. The empty
function is the printer which always fails.

3.4 The class of syntax descriptions
So far, we have provided the combinators $, ∗ and | to com-
bine smaller syntax descriptions into larger syntax descriptions, but
we still have to provide a means to describe elementary syntax de-
scriptions. We use two elementary syntax descriptions: token and
pure. The token function relates each character with itself. The pure
function takes an α and the resulting parser/printer will relate the
empty string with that α value. A pure x parser returns x without
consuming any input, while a pure x printer silently discards values
equal to x. The Eq α constraint on the type pure is needed so that a
printer can check a value to be discarded for equality to x.

Together with the typeclasses already introduced, these func-
tions are sufficient to state the language interface that unifies pars-
ing and prettyprinting. The type class Syntax pulls in the $, ∗ ,
and | combinators via superclass constraints, and adds the pure
and token functions.

class (IsoFunctor δ ,ProductFunctor δ ,Alternative δ)
⇒ Syntax δ where

-- ($) :: Iso α β → δ α → δ β

-- (∗) :: δ α → δ β → δ (α,β)
-- (|) :: δ α → δ α → δ α

-- empty :: δ α

pure :: Eq α ⇒ α → δ α

token :: δ Char

With this typeclass, we can now state a function many which unifies
parseMany and prettyMany as follows:

many :: Syntax δ ⇒ δ α → δ [α]
many p

= nil $ pure ()
| cons $ p

∗ many p

This implementation looks essentially like the implementation of
parseMany, but instead of constructors Nil and Cons, we use par-
tial isomorpisms nil and cons. Note that we do not have to use
const nil, because our partial isomorphisms treat constructors with-
out arguments like constructors with a single () argument. Unlike
the code for parseMany, which was usable only for parsing, this
implementation of many uses the polymorphically embedded lan-
guage of syntax descriptions, which can be instantiated for both
parsing and printing.

4. Implementing syntax descriptions
In the last section, we derived a language interface for syntax de-
scriptions to unify parsers and printers syntactically. For example,
at the end of the section, we have shown how to write parseMany
and printMany as a single function many. To support our claim that
many really implements both parseMany and printMany semanti-
cally, we now have to implement the language of syntax descrip-
tions twice: First for parsing and then for printing.

An implementation of the language of syntax descriptions con-
sists of a parametric data type with instances for IsoFunctor,

ProductFunctor, Alternative and Syntax. In this paper, we present
rather inefficient proof-of-concept implementations for both pars-
ing and pretty printing, but appropriate instance declarations could
add more efficient implementations (see Sec. 4.4 for a discussion).

4.1 Implementing parsing
In our implementation, a Parser is a function from input text to a
list of pairs of results and remaining text.

newtype Parser α

= Parser (String→ [(α,String)])

A value of type Parser α can be used to parse an α value from a
string by applying the function and filtering out results where the
remaining text is not empty. The parse function returns a list of
α’s because our parser implementation supports nondeterminism
through the list monad, and therefore can return several possible
results.

parse :: Parser α → String→ [α]
parse (Parser p) s = [x | (x,"")← p s]

We now provide the necessary instances to use Parser as an imple-
mentation of syntax descriptions. A parser of the form iso $ p is
implemented by mapping apply iso over the first component of the
value-text-tuples in the returned list, and silently ignoring elements
where apply iso returns Nothing. Note that failed pattern matching
(in this case: Just y) in a list comprehension is filtering out that el-
ement.

instance IsoFunctor Parser where
iso $ Parser p

= Parser (λ s→ [(y,s′)
| (x,s′)← p s
, Just y← [apply iso x]])

A parser of the form (p ∗ q) is implemented by threading the
remaining text through the applications of p and q, and tupling the
resulting values.

instance ProductFunctor Parser where
Parser p ∗ Parser q

= Parser (λ s→ [((x,y),s′′)
| (x,s′) ← p s
, (y,s′′)← q s′])

A parser of the form (p | q) is implemented by concatenating the
result lists of the two parsers. The empty parser returns no results.

instance Alternative Parser where
Parser p | Parser q

= Parser (λ s→ p s++q s)
empty = Parser (λ s→ [])

Finally, the elementary parsers pure and token are implemented by
returning the appropriate singleton lists. pure x always succeeds
returning x and the full text as remaining text. token fails if there
is no more input text, and returns the first character of the input text
otherwise.

instance Syntax Parser where
pure x = Parser (λ s→ [(x,s)])
token = Parser f where

f [] = []
f (t : ts) = [(t, ts)]

This concludes our proof-of-concept implementation of the lan-
guage interface of syntax descriptions with parsers.

4.2 Implementing printing
Our implementations of pretty printers are partial functions from
values to text, modelled using the Maybe type constructor.

newtype Printer α = Printer (α →Maybe String)

This is different from the preliminary Printer type we presented
in Sec. 3, where we used Doc instead of String, and did not men-
tion the Maybe. Here, we are using String because we are only
interested in a simple implementation, and do not want to adapt an
existing pretty printing library with a first-order Doc type to our in-
terface. We are dealing with partial functions because a Printer α

should represent a pretty printer for a subset of the extension of α .
We then want to use the | combinator to combine pretty print-
ers for several subsets into a pretty printer of all of α . This allows
us to specify syntax descriptions for algebraic data types one con-
structor at a time, instead of having to specify a monolithic syntax
description for the full data type at once.

A value of type Printer α can be used to pretty print a value of
type α simply by applying the function.

print :: Printer α → α →Maybe String
print (Printer p) x = p x

We now provide the necessary instances to use Printer as an imple-
mentation of syntax descriptions. A printer of the form iso $ p is
implemented by converting the value to be printed with unapply iso
before printing it with p, silently failing if unapply iso returns
Nothing.

instance IsoFunctor Printer where
iso $ Printer p

= Printer (λb→ unapply iso b>>=p)

A printer of the form (p ∗ q) is implemented by monadically
lifting the string concatenation operator ++ over the results of
printing the first component of the value to be printed with p, and
the second component with q. This returns Nothing if one or both
of p or q return Nothing, and returns the concatenated results of p
and q otherwise.

instance ProductFunctor Printer where
Printer p ∗ Printer q

= Printer (λ (x,y)→ liftM2 (++) (p x) (q y))

A printer of the form p | q is implemented by using p if it suc-
ceeds, and using q otherwise. The empty printer always fails.

instance Alternative Printer where
Printer p | Printer q

= Printer (λ s→ mplus (p s) (q s))
empty = Printer (λ s→ Nothing)

A printer of the form pure x is implemented by comparing the
value to be printed with x, returning the empty string if it matches,
and Nothing otherwise. Finally, token is implemented by always
returning the singleton string consisting just of the token to be
printed.

instance Syntax Printer where
pure x = Printer (λy→ if x≡ y

then Just ""
else Nothing)

token = Printer (λ t→ Just [t])

This concludes our proof-of-concept implementation of the lan-
guage interface of syntax descriptions with printers. We have
shown that it is possible to implement syntax descriptions with
both parsers and printers.

4.3 What syntax descriptions mean
A syntax description denotes a relation between abstract and con-
crete syntax. We can represent such a relation as its graph, i.e., as
a list of pairs of abstract and concrete values. Since our interface
design allows us to add a new meaning to the interface by corre-
sponding instance declarations, we formulate our semantics as a
set of type class instances in Haskell, too. This instance declaration
is not useful as an executable implementation because it will gen-
erate and concatenate infinite lists. Rather, it should be read as a
declarative denotational semantics.

An abstract value in this relation is of some type α , while a
concrete value is of type String.

data Rel α = Rel [(α,String)]

To provide a semantics for syntax descriptions, we have to imple-
ment the methods of Syntax. The $ operator applies the first com-
ponent of the partial isomorphism to the abstract values, filtering
out abstract values which are not in the domain of the partial iso-
morphism.

instance IsoFunctor Rel where
Iso f g $ Rel graph

= Rel [(a′,c)
| (a,c)← graph
,Just a′← return (f a)]

The ∗ operator returns the cross product of the graphs of its ar-
guments, tupling the abstract values, but concatenating the concrete
values.

instance ProductFunctor Rel where
Rel graph ∗ Rel graph′

= Rel [((a,a′),c++ c′)
| (a,c)← graph
,(a′,c′)← graph′]

The | operator returns the union of the graphs, and empty is the
empty relation, i.e. the empty graph.

instance Alternative Rel where
Rel graph | Rel graph′

= Rel (graph++graph′)
empty = Rel []

Finally, pure x is the singleton graph relating x to the empty string,
and token relates all characters to themselves.

instance Syntax Rel where
pure x = Rel [(x,"")]
token = Rel [(t, [t]) | t← characters]

where characters = [minBound . .maxBound]

This denotational semantics of syntax descriptions can be used to
describe the behavior of printing and parsing in a declarative way.
Printing an abstract value x according to a syntax description d
means to produce a string s so that (x,s) is an element of the graph
of d. Parsing a concrete string s according to a syntax description d
means to produce an abstract value x so that (x,s) is an element of
the graph of d. Both printing and parsing are under-specified here,
because it is not specified how to choose the s or the x to produce.

Understanding syntax descriptions as relations also allows us
to compare our approach to logic programming, where relations
(defined via predicates) can also theoretically be used “both ways”,
since each variable in a logic rule can operationally be used as both
input and output. In practice, however, most predicates work only in
one direction, because “unpure” features (such as cuts or primitive
arithmetic) and the search strategy of the solver often require a clear
designation of input and output variables.

Using a syntax description in both ways requires more work
than in logic programming, since explicit instance declarations for
each direction have to be specified. They have to be specified once
only, though, and then inversion in that direction works for any syn-
tax description. The instance declarations also provide more control
than the fixed DFS strategy of typical logic solvers, which means
that in contrast to logic programming invertibility can actually be
made to work in practice.

4.4 Adapting existing libraries
The implementations of syntax descriptions for parsing and print-
ing in the previous subsections are proofs-of-concept, lacking many
features available in “real-world” parsers and pretty printers. The
parser implementation also suffers from an exponential worst-case
complexity and a space leak due to unlimited backtracking, which
limits its applicability to large inputs.

The former problem is a problem of any interface design. We
could add more features to our interfaces, but this would also
limit the number of parsers and pretty printers that can implement
this interface. This is, for example, also a problem of the existing
designs of the Applicative and Alternative type classes in Haskell.

We propose two different strategies to deal with this problem.
One strategy is to extend the interfaces via type class subclassing
and then write additional instance declarations for more sophisti-
cated parsers and pretty printers. Another strategy is to split a gram-
mar specification into those parts that can be expressed with the
Syntax interface and its derived operations alone, and those parts
that are specific to a fixed parser or pretty-printer implementation.
In this case, the automatic inversion still works for the first part,
and manual intervention is necessary to invert the second part.

The latter problem can be solved by instantiating Syntax for
more advanced parser combinator and/or pretty printer approaches,
such as . . ., which exhibit better time or memory behavior. How-
ever, such existing parser/pretty printer libraries may not match the
semantics expected by syntax descriptions. We have identified two
categories of such semantic mismatches.

Firstly, an existing library may not provide combinators with
the exact semantics of the combinators in the language interface for
syntax descriptions, but only combinators with a similar semantics.
For example, Parsec provides a | combinator, but its semantics
implements predictive parsing with a look ahead of 1, whereas our
implementation supports unlimited backtracking. This means that
with Parsec, p | q may fail, even if q would succeed, whereas the
syntax description p | q should not be empty if q is nonempty. If
one would use the Parsec | to implement the Syntax | , then
syntax descriptions have to be written with the Parsec semantics in
mind.

The design of an interface that is rich enough to specify efficient
and sophisticated parsers and pretty printers without committing
to a particular implementation is in our point of view an open re-
search (and standardization) question and part of our future work.
However, our design of syntax descriptions can serve as a com-
mon framework for such interfaces which combine several pars-
ing and pretty printing libraries, similar to how the Applicative and
Alternative classes provide a common framework for parsing.

5. Programming with partial isomorphisms
Since our language of syntax descriptions is based upon the notion
of partial isomorphisms, programming with partial isomorphisms
is an important part of programming with syntax descriptions.
In this section, we evaluate whether programming with partial
isomorpisms is practical. The abstractions developed in this section
are reused in the next section as the basis for some derived syntax
combinators.

Every partial isomorphism expressible in Haskell can be writ-
ten by implementing both directions of the isomorphism indepen-
dently, and combining them using the Iso constructor. However,
this approach is neither safe nor convenient. It is not safe because
it is not checked that the two directions are really inverse to each
other, and it is not convenient because one has to essentially pro-
gram the same function twice, although in two different directions.
We call such a partial isomorphism implemented directly with Iso a
primitive partial isomorphism, and we hope to mostly avoid having
to define such primitives.

Instead of defining every partial isomorphism of interest as a
primitive, we provide elementary partial isomorphisms for the con-
structors of algebraic datatypes, and an algebra of partial isomor-
phism combinators which can be used to implement more complex
partial isomorphisms. We call such a partial isomorphisms imple-
mented in terms of a small set of primitives a derived partial iso-
morphism, and we hope to implement most partial isomorphisms
of interest as derived isomorphisms.

5.1 An algebra of partial isomorphisms
An algebra of partial isomorphisms can be implemented using
primitives. The specification and implementation of a full algebra
of partial isomorphisms is beyond the scope of this paper. However,
we present sample elementary partial isomorphisms and partial
isomorphism combinators to show how the development of such an
algebra could reflect well-known type isomorphism and categorical
constructs.

We have already seen the implementation of the ◦ and id com-
binators in the Category instance declaration in Sec. 3.1.

id :: Iso α α

(◦) :: Iso β γ → Iso α β → Iso α γ

Other categorical constructions can be reified as partial isomor-
phisms as well. For example, the product type constructor (,) is
a bifunctor from Iso × Iso to Iso, so that we have the bifunctorial
map×which allows two separate isomorphisms to work on the two
components of a tuple.

(×) :: Iso α β → Iso γ δ → Iso (α,γ) (β ,δ)
i× j = Iso f g where

f (a,b) = liftM2 (,) (apply i a) (apply j b)
g (c,d) = liftM2 (,) (unapply i c) (unapply j d)

We reify some more facts about product and sum types as partial
isomorphisms. Nested products associate.

associate :: Iso (α,(β ,γ)) ((α,β),γ)
associate = Iso f g where

f (a,(b,c)) = Just ((a,b),c)
g ((a,b),c) = Just (a,(b,c))

Products commute.

commute :: Iso (α,β) (β ,α)
commute = Iso f f where

f (a,b) = Just (b,a)

() is the unit element for products.

unit :: Iso α (α,())
unit = Iso f g where

f a = Just (a,())
g (a,()) = Just a

element x is the partial isomorphism between () and the singleton
set which contains just x. Note that this is an isomorphism only up
to the equivalence class defined by the Eq instance, as discussed in
Sec. 3.1.

element :: Eq α ⇒ α → Iso () α

element x = Iso
(λa→ Just x)
(λb→ if x≡ b then Just () else Nothing)

For a predicate p, subset p is the identity isomorphism restricted
to elements matching the predicate.

subset :: (α → Bool)→ Iso α α

subset p = Iso f f where
f x | p x = Just x | otherwise = Nothing

Numerous more partial isomorphisms primitives could be defined,
reflecting other categorical constructions or type isomorphisms.
However, the primitives defined so far are sufficient for the ex-
amples in this paper. Therefore, the following subsections are de-
voted to the derivation of a non-trivial partial isomorphism using
the primitives implemented so far.

5.2 Folding as a small-step abstract machine
We will need left-associative folding resp. unfolding as a partial
isomorphism in the implementation of left-associative binary oper-
ators. Instead of defining folding and unfolding as primitives, we
show how it can be defined as a derived isomorphism in terms of
the already defined primitives.

To see how to implement folding and unfolding in a single
program, we consider the straightforward implementation of foldl
from the standard Haskell prelude.

foldl :: (α → β → α)→ α → [β]→ α

foldl f z [] = z
foldl f z (x : xs) = foldl f (f z x) xs

Since partial isomorphisms do not support currying very well, we
uncurry most of the functions.

foldl :: ((α,β)→ α)→ (α, [β])→ α

foldl f (z, []) = z
foldl f (z,x : xs) = foldl f (f (z,x),xs)

This implementation of foldl is a big-step abstract machine with
state type (α, [β]), calling itself in tail-position and computing the
result in a monolithic way. We want to break this monolithic com-
putation into many small steps by transforming foldl into a small-
step abstract machine. A big-step abstract machines can be trans-
formed into small-step abstract machines by a general-purpose pro-
gram transformation called light-weight fission (see Danvy 2008,
for this and related transformations on abstract machines).

We decompose foldl into a step function and a driver. step
computes a single step of foldl’s overall computation, and driver
calls step repeatedly. step is actually a partial function, represented
with a Maybe type. If no more computation steps are needed, step
returns Nothing, so that driver stops calling step and returns the
current state. driver is implemented independently from foldl.

driver :: (α →Maybe α)→ (α → α)
driver step state

= case step state of
Just state′→ driver step state′

Nothing → state

Since we are only interested in the α part of the final state, foldl
drops the second component of the state after running the abstract
machine.

foldl :: ((α,β)→ α)→ (α, [β])→ α

foldl f = fst ◦driver step where
step (z, []) = Nothing
step (z,x : xs) = Just (f (z,x),xs)

We have transformed foldl into a small-step abstract machine to
break its monolithic computation into a series of smaller steps. The
next step towards the implementation of foldl as a partial isomor-
phism will be to enable this abstract machine to run backwards.

5.3 Running the abstract machine backwards
To convert foldl into a partial isomorphism combinator of type
Iso (α,β) α → Iso (α, [β]) α , we have to convert both driver and
step into partial isomorphisms. We could then run foldl forwards by
composing a sequence of steps, and we could run foldl backwards
by composing a reversed sequence of inverted steps.

The partial isomorphism analogue to driver is implemented as a
primitive in terms of driver. We call it iterate, since it captures the
iterated application (resp. unapplication) of a function.

iterate :: Iso α α → Iso α α

iterate step = Iso f g where
f = Just ◦driver (apply step)
g = Just ◦driver (unapply step)

Note that the type of iterate does not mention Maybe anymore. In-
stead, the partial isomorphism step is applied (resp. unapplied) until
it fails, showing once more the usefulness of partial isomorphisms.

It remains to implement the parametric partial isomorphism step
in terms of the primitives introduced earlier in this subsection. It has
the following type.

Iso (α,β) α → Iso (α, [β]) (α, [β])

We start with a value of type (α, [β]), and want to use the partial
isomorphism i we have taken as an argument. Since i takes a single
α , we have to destruct the [β] into a first element β and the
remaining elements [β]. The α should not be changed for now.
The destruction is performed by the inverse of the cons partial
isomorphism, and (×) is used to apply it to the second component
of the input.

id× inverse cons :: Iso (α, [β]) (α,(β , [β]))

We can now restructure our value by using the fact that products
are associative.

associate :: Iso (α,(β , [β])) ((α,β), [β])

The partial isomorphism i is now applicable to the first component
of the tuple.

i× id :: Iso ((α,β), [β]) (α, [β])

We arrive at a value of type (α, [β]), and are done. These snip-
pets can be composed with ◦ to implement step as a partial isomor-
phism.

step i = (i× id)
◦associate
◦ (id× inverse cons)

We can now implement foldl in terms of iterate and step. In the ver-
sion of foldl as a small-step abstract machine, we used fst to return
only the first component of the tuple, ignoring the second com-
ponent. In this reversible small-step abstract machine, we are not
allowed to just ignore information. However, we know from the
definition of step, that the second component of the abstract ma-
chine’s state will always contain [] after the machine has been run.
Therefore, we can use the inverse of the nil partial isomorphism to
deconstruct that [] into (), which can be safely ignored using the
unit primitive.

foldl :: Iso (α,β) α → Iso (α, [β]) α

foldl i = inverse unit
◦ (id× inverse nil)
◦ iterate (step i)

As a partial isomorphism, this definition of foldl is invertible. It can
be applied as left-associative folding, but it can also be unapplied
as left-associative unfolding. By rewriting the step function of
a small-step abstract machine to use the combinators for partial
isomorphisms, we have effectively inverted the implementation of
foldl into an implementation of unfoldl.

In this section, we have evaluated the practicability of program-
ming with partial isomorphisms. We have seen that the automatic
generation of partial isomorphisms for constructors of algebraic
datatypes together with a small set of primitives suffices to derive
an advanced combinator like left-associative folding, which can
then be automatically inverted to yield left-associative unfolding.

6. Describing the syntax of a language
Using the partial isomorphism combinators from the last section,
we can now evaluate our approach to syntax descriptions by ap-
plying it to an example of a small formal language which features
keywords and identifiers, nested infix operators with priorities, and
flexible whitespace handling.

6.1 Derived operations
Before introducing our example language, we implement some
general-purpose combinators, mostly adopted from the usual parser
and pretty-printer combinators.

We can define the dual of the ∗ combinator, using the follow-
ing injections into Either α β .

$(defineIsomorphisms ′′Either)

(+) :: Syntax δ ⇒ δ α → δ β → δ (Either α β)
p + q = (left $ p) | (right $ q)

The + operator can be used as an alternative to | when describ-
ing the concrete syntax of algebraic data types. Instead of providing
a partial isomorphism for every constructor of the algebraic data
type, and using | to combine the branches for the constructors,
we provide a single partial isomorphism between the data type and
its sum-of-product form written with (,) and Either, and combine
the branches for the constructors with + .

The many combinator shown earlier can be implemented in this
style as follows.

many′ :: Syntax δ ⇒ δ α → δ [α]
many′ p

= listCases $ (text "" + p ∗ many′ p)

The partial isomorphism listCases can be implemented as follows,
or the Template Haskell code in Appendix A could be extended to
generate this kind of partial isomorphisms as well.

listCases :: Iso (Either () (α, [α])) [α]
listCases = Iso f g

where
f (Left ()) = Just []
f (Right (x,xs)) = Just (x : xs)
g [] = Just (Left ())
g (x : xs) = Just (Right (x,xs))

text parses/prints a fixed text and consumes/produces a unit value.

text :: Syntax δ ⇒ String→ δ ()
text [] = pure ()
text (c : cs) = inverse (element ((),()))

$ (inverse (element c) $ token)
∗ text cs

The following two operators are variants of ∗ that ignore their
left or right result. In contrast to their counterparts derived from the

Applicative class, the ignored parts have type δ () rather than δ β

because otherwise information relevant for pretty-printing would
be lost.

(∗) :: Syntax δ ⇒ δ ()→ δ α → δ α

p ∗ q = inverse unit ◦ commute $ p ∗ q
(∗) :: Syntax δ ⇒ δ α → δ ()→ δ α

p ∗ q = inverse unit $ p ∗ q

The between function combines these operators in the obvious way.

between :: Syntax δ ⇒ δ ()→ δ ()→ δ α → δ α

between p q r = p ∗ r ∗ q

Even sophisticated combinators like chainl1 can be directly im-
plemented in terms of syntax descriptions and appropriate partial
isomorphisms. The chainl1 combinator is used to parse a left-
associative chain of infix operators. It is implemented using foldl
from Sec. 5.3 and many from 3.4.

chainl1
:: Syntax δ ⇒ δ α → δ β → Iso (α,(β ,α)) α → δ α

chainl1 arg op f
= foldl f $ arg ∗ many (op ∗ arg)

We have implemented some syntax description combinators along
the lines of the combinators well-known from parser combinator
libraries. We will now use these combinators to describe the syntax
of a small language.

6.2 Abstract Syntax
The abstract syntax of the example language is encoded with ab-
stract data types.

data Expression
= Variable String
| Literal Integer
| BinOp Expression Operator Expression
| IfZero Expression Expression Expression

deriving (Show,Eq)
data Operator

= AddOp
| MulOp

deriving (Show,Eq)

The Template Haskell macro defineIsomorphisms is used to gener-
ate partial isomorphisms for the data constructors.

$(defineIsomorphisms ′′Expression)
$(defineIsomorphisms ′′Operator)

6.3 Expressing whitespace
Parsers and pretty printers treat whitespace differently. Parsers
specify where whitespace is allowed or required to occur, while
pretty printers specify how much whitespace is to be inserted at
these locations. To account for these different roles of whitespace,
the following three syntax descriptions provide fine-grained control
over where whitespace is allowed, desired or required to occur.

• skipSpace marks a position where whitespace is allowed to
occur. It accepts arbitrary space while parsing, and produces
no space while printing.

• optSpace marks a position where whitespace is desired to occur.
It accepts arbitrary space while parsing, and produces a single
space character while printing.

• sepSpace marks a position where whitespace is required to
occur. It requires one or more space characters while parsing,
and produces a single space character while printing.

skipSpace,optSpace,sepSpace :: Syntax δ ⇒ δ ()
skipSpace = ignore [] $ many (text " ")
optSpace = ignore [()] $ many (text " ")
sepSpace = text " " ∗ skipSpace

ignore :: α → Iso α ()
ignore x = Iso f g where

f = Just ()
g () = Just x

ignore is again not a strict partial isomorphism, because all values
of α are mapped to ().

6.4 Syntax descriptions
The first character of an identifier is a letter, the remaining charac-
ters are letters or digits. Keywords are excluded.

keywords = ["ifzero","else"]

letter,digit :: Syntax δ ⇒ δ Char
letter = subset isLetter $ token
digit = subset isDigit $ token

identifier
= subset (/∈ keywords)◦ cons $

letter ∗ many (letter | digit)

Keywords are literal texts but not identifiers.

keyword :: Syntax δ ⇒ String→ δ ()
keyword s = inverse right $ (identifier + text s)

Integer literals are sequences of digits, processed by read resp.
show.

integer :: Syntax δ ⇒ δ Integer
integer = Iso read′ show′ $ many digit where

read′ s = case [x | (x,"")← reads s] of
[]→ Nothing
(x :)→ Just x

show′ x = Just (show x)

A parenthesized expressions is an expression between parentheses.

parens = between (text "(") (text ")")

The syntax descriptions ops handles operators of arbitrary priori-
ties. The priorities are handled further below.

ops = mulOp $ text "*"
| addOp $ text "+"

We allow optional spaces around operators.

spacedOps = between optSpace optSpace ops

The priorities of the operators are defined in this function.

priority :: Operator→ Integer
priority MulOp = 1
priority AddOp = 2

Finally, we can define the expression syntax description.

expression = exp 2 where

exp 0 = literal $ integer
| variable $ identifier
| ifZero $ ifzero
| parens (skipSpace ∗ expression ∗ skipSpace)

exp 1 = chainl1 (exp 0) spacedOps (binOpPrio 1)
exp 2 = chainl1 (exp 1) spacedOps (binOpPrio 2)

ifzero = keyword "ifzero"
∗ optSpace ∗ parens (expression)
∗ optSpace ∗ parens (expression)
∗ optSpace ∗ keyword "else"
∗ optSpace ∗ parens (expression)

binOpPrio n
= binOp◦ subset (λ (x,(op,y))→ priority op≡ n)

This syntax description is correctly processing binary operators ac-
cording to their priority during both parsing and printing. Similar
to the standard idiom for expression grammars with infix operators,
the description of expression is layered into several exp i descrip-
tions, one for each priority level. The syntax description combina-
tor chainl1 parses a left-recursive tree of expressions, separated by
infix operators. Note that the syntax descriptions exp 1 to exp 2 both
use the same syntax descriptions ops which describes all operators,
not just the operators of a specific priority. Instead, the correct op-
erators are selected by the binOpPrio n partial isomorphisms. The
partial isomorphism binOpPrio n is a subrelation of binOp which
only accepts operators of the priority level n.

While parsing a high-priority expressions, the partial isomor-
phism will reject low-priority operators, so that the parser stops
processing the high-priority subexpression and backtracks to con-
tinue a surrounding lower-priority expression. When the parser en-
counters a set of parentheses, it allows low-priority expressions
again inside.

Similarly, during printing a high-priority expression, the partial
isomorphism will reject low-priority operators, so that the printer
continues to the description of exp 0 and inserts a matching set of
parentheses.

All taken together, the partial isomorphisms binOpPrio n not
only control the processing of operator priorities for both printing
and parsing, but also ensure that parentheses are printed exactly
where they are needed so that the printer output can be correctly
parsed again. This way, correct round trip behavior is automatically
guaranteed.

The following evaluation shows that operator priorities are re-
spected while parsing.

>parse expression "ifzero (2+3*4) (5) else (6)"

[IfZero (BinOp (Literal 2) AddOp
(BinOp (Literal 3) MulOp (Literal 4)))

(Literal 5)
(Literal 6)]

And this evaluation shows that needed parentheses are inserted
during printing.

>print expression
(BinOp (BinOp (Literal 7) AddOp

(Literal 8)) MulOp
(Literal 9))

Just "(7 + 8) * 9"

By implementing whitespace handling and associativity and priori-
ties for infix operators, we have shown how to implement two non-
trivial aspects of syntax descriptions which occur in existing parsers
and pretty printers for formal languages. We have shown how to im-
plement well-known combinators like between and chainl1 in our
framework, which enabled us to write the syntax descriptions in a
style which closely resembles how one can program with monadic
or applicative parser combinator libraries.

7. Related and Future Work
7.1 Parsing and Pretty Printing
Parser combinator libraries in Haskell are often based on a monadic
interface. The tutorial of Hutton and Meijer (1998) shows how
this approach is used to implement a monadic parser combinator
library on top of the same type Parser as we used in Sec. 4.
Both applicative functors (McBride and Paterson 2008) and arrows
(Hughes 2000) have been proposed as alternative frameworks for
the structure of parser combinator libraries.

We have designed our language of syntax descriptions to al-
low a similar programming style as with parser combinator libraries
based on applicative functors. This decision allows to more easily
adopt programs written for monadic or applicative parser combina-
tor libraries into our framework. However, the definition of a ∗
combinator for curried function application can, for instance, be
found in the tutorial by Fokker (1995).

Alternative approaches are based on arrows. Jansson and Jeur-
ing (1999) implement both an arrow-based polytypic parser and
an arrow-based polytypic printer in parallel with a proof that the
parser is the left inverse of the printer. They implement a generic
solution to serialization which is directly applicable to a wide range
of types using polytypic programming. However, since they do not
aim to construct human-readable output, they are not concerned
with pretty printing, and since they cover multiple datatypes using
polytypic programming, they do not provide an interface to con-
struct more printers and parsers which are automatically inverse.

Alimarine et al. (2005) introduce bi-arrows as an embedded
DSL for invertible programming based on arrows. Similar to our
notion of partial isomorphisms, a bi-arrow can be inverted and run
backwards. A number of combinators for bi-arrows are introduced,
and a simple parser and pretty printer is implemented as a single
program. While their bi-arrows resemble our partial isomorphisms,
there is an important difference in the role these constructs play
in the respective approaches. Alimarine et al. implement a parser
and pretty printer directly as a bi-arrow, while we have defined
the language of syntax descriptions as a functor on top of partial
isomorphisms. Therefore, their parsers and printers resemble the
parsers in EDSLs based on arrows, while our syntax descriptions
resemble the parsers in EDSLS based on applicative functors.

Furthermore, their pretty printer does not handle advanced fea-
tures like operator priorities and the automatic inserting of paren-
theses in the same general way as we do, but requires information
about the location of parentheses to be contained in the abstract
syntax tree. Generally, their work suffers from the methodically
questionable decision to define a BiArrow type class as a subclass of
the Arrow type class, even if some methods of Arrow could never be
implemented for bi-arrows. These methods are defined to throw er-
rors at runtime instead. On the other hand, Alimarine et al. present
some transformers for bi-arrows. This approach could possibly be
adapted to our notion of partial isomorphisms.

7.2 Functional unparsing
There has been some work on type-safe variants on the C printf
and scanf functions. The standard variants of these functions take
a string and a variable number of arguments. How these arguments
are processed, and how many of them are accessed at all, is con-
trolled by the formatting directives embedded into the string. This
dependence of the type of the overall function on the value of first
argument seemingly requires dependent types.

But Danvy (1998) has shown how to implement a type-safe vari-
ant of printf in ML by replacing the formatting string with an em-
bedded DSL. The DSL is implemented using function composition
and continuation passing style (CPS). The use of CPS allows Danvy
to circumvent the fact that Printer is contravariant. However, in

Danvy’s approach, it is not obvious how to define an abstraction
like Printer as a parametric type constructor. More recently, Kise-
lyov (2008) implements type-safe printf and scanf so that the for-
matting specifications can be shared. Asai (2009) analyzes Danvy’s
solution, and shows that it depends on the use of delimited contin-
uations to modify the type of the answer. The same can be done in
direct style using the control operators shift and reset.

The work on type-safe printf and scanf shares some of the goals
and part of the implementation method with the work presented in
this article. In both approaches, an embedded DSL is used to allow
a type-safe handling of formatting specifications for printing, pars-
ing, and in Kiselyov’s implementation, even for both printing and
parsing at once. However, these approaches differ in the interface
presented to the user, and in the support for recursive and user-
defined types. printf and scanf ’s continuation take a variable num-
ber of arguments depending on the formatting specification, but our
parse and print functions take resp. return only one argument. In-
stead, we support more complicated arguments by using datatypes,
and we support recursive types by building recursive syntax de-
scriptions. It is not clear how user-defined datatypes and recursive
syntax descriptions are supported in the printf and scanf approach.
We allow to use a well-known Haskell idiom for parsing to be used
for printing.

Hinze (2003) implements a type-safe printf in Haskell without
using continuations, but instead composing functors to modify the
type of the environment. The key insight of Hinze’s implementa-
tion is that each of the elementary formatting directives specify a
functor so that the type of printf is obtained by applying the com-
position of all the functors to String. Functor composition is imple-
mented with multi-parameter typeclasses and functional dependen-
cies. While we implement Printer resp. Parser as a single functor
from an unusual category, Hinze implements his formatting direc-
tives as several functors and functor compositions.

7.3 Invertible functions
Mu et al. (2004) present an combinator calculus with a relational
semantics, which can express only invertible functions. Program-
ming in their “injective language for reversible computation” is
based on a set of combinators quite similar to the algebra of par-
tial isomorphisms in Sec. 5.1, but their language also contains a
union operator to combine two invertible functions with disjoint
domains and codomains. In our work, the | operator plays a simi-
lar role on the level of syntax descriptions. Mu et al.’s language has
a relational semantics, implemented by a stand-alone interpreter,
while partial isomorphisms are implemented as an embedded DSL
in Haskell.

Somewhat related to partial isomorphisms, functional lenses
(Foster et al. 2008, 2005) can be described as functions which can
be run backwards. However, functional lenses and partial isomor-
phisms use different notions of “running backwards”. Running a
lens forwards projects a part of a data structure into some alter-
native format. Running it backwards combines a possibly altered
version of the alternative format with the original structure into an
possibly altered version of the original structure. This is different
from partial isomorphisms, where running backwards is not depen-
dent on some original version of data. However, results about par-
tial lenses may be applicable to partial isomorphisms. It is part of
our future work to analyze their relationship.

Program inversion is concerned with automatically or manually
inverting existing programs, while our approach for partial isomor-
phisms is based on the combination of primitive invertible building
blocks into larger programs. Abramov and Glück (2002) give an
overview over the field of program inversion.

Future work could try to combine our technique of running ab-
stract machines backwards, and existing techniques for the trans-

formation of semantic artifacts (Danvy 2008), into a technique for
program inversion.

7.4 Categories other than Hask
In Sec. 3.1, we had to introduce the IsoFunctor class to abstract
over functors from Iso to Hask, because Haskell’s ordinary Functor
does not support Functors involving categories different from Hask.
Instead of introducing yet another category-specific functor class
like IsoFunctor, one could use a more general functor class which
allows to abstract over functors between arbitrary categories. Kmett
(2008) supports such a “more categorical definition of Functor
than endofunctors in the category Hask” in his category− extras
package.

class (Category r,Category s)
⇒ CFunctor f r s | f r→ s, f s→ r where
cmap :: r a b→ s (f a) (f b)

Kmett declares a symbolic name for the category Hask, where the
arrows are just Haskell functions.

type Hask = (→)

The CFunctor type class is a strict generalization of Haskell’s
standard Functor class. While all instances of Haskell’s standard
Functor class can be declared instances of CFunctor Hask Hask,
there are instances of CFunctor which cannot be expressed as
Functor. For example, instances of IsoFunctor can be declared in-
stances of CFunctor Iso Hask. Similarly, if the standard Alternative
typeclass would have been parametric in the source and target cat-
egories of the applicative functor, we could have reused it directly,
instead of duplicating its methods into our version of Alternative.
Combinators and generic algorithms expressed in terms of the stan-
dard Alternative class would then be readily available for our func-
tors from Iso to Hask.

This unnecessary need for code duplication suggests that the
Haskell standard library could benefit from a redesign along the
lines of Kmett’s CFunctor class.

7.5 Other
Oury and Swierstra (2008) present the embedding of data defini-
tion languages as a use case of dependently typed programming
and the use of universes in Agda. While their proposal has a some-
what monadic flair, Oury and Swierstra do not discuss functorial-
ity of their type constructor. Furthermore, their prototype does not
support user-defined datatypes, or recursive data types. In contrast,
our implementation supports user-defined data types and (iso-) re-
cursive types through the device of partial isomorphic functions. It
would be interesting to see how the invariants of Iso values could
be encoded in a dependently typed language.

Brabrand et al. (2008) define a stand-alone DSL for the spec-
ification of the connection between an XML syntax, and a non-
XML syntax for the same language. Their implementation stati-
cally checks that a specified transfromation between two syntaxes
is reversible by approximating a solution to the ambiguity problem
of context-free grammars.

Hofer et al. (2008) describe a general methodology to embed
DSLs in such a way that programs written in the DSL are poly-
morphic with respect to their interpretation. We have adopted their
Scala-based design to Haskell using type classes.

8. Conclusion
We have described the language of syntactic descriptions, with
which both parser and pretty-printer can be described as a single
program. We have shown that sophisticated languages with key-
words and operator priorities can be described in this style, result-
ing in useful parsers and pretty-printers. Finally, we have seen that

partial isomorphisms are a promising abstraction that goes beyond
parsing and pretty-printing; functions such as fold/unfold can be
described in a single specification.

Acknowledgments
We thank the anonymous reviewers for their insightful and encour-
aging comments.

References
Sergei Abramov and Robert Glück. Principles of inverse computation

and the universal resolving algorithm. In The essence of computation:
complexity, analysis, transformation, pages 269–295. Springer LNCS
2566, New York, 2002.

Artem Alimarine, Sjaak Smetsers, Arjen van Weelden, Marko van Eekelen,
and Rinus Plasmeijer. There and back again: arrows for invertible
programming. In Proceedings of the workshop on Haskell (Haskell ’05),
pages 86–97, New York, 2005.

Kenichi Asai. On typing delimited continuations: three new solutions to
the printf problem. Higher-Order and Symbolic Computation, 22(3):
275–291, September 2009.

Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. Dual syntax
for XML languages. Information Systems, 33(4-5):385–406, 2008.

Olivier Danvy. Functional unparsing. Journal of Functional Programming,
8(6):621–625, 1998.

Olivier Danvy. From reduction-based to reduction-free normalization.
In Advanced Functional Programming, pages 66–164. Springer LNCS
5832, 2008.

J. Fokker. Functional parsers. In J.T. Jeuring and H.J.M. Meijer, editors,
Advanced Functional Programming, First International Spring School,
number 925 in LNCS, pages 1–23, 1995.

J. Nathan Foster, Alexandre Pilkiewicz, and Benjamin C. Pierce. Quotient
lenses. In Proceeding of the International Conference on Functional
Programming (ICFP ’08), pages 383–396, New York, 2008.

Nathan J. Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C.
Pierce, and Alan Schmitt. Combinators for bi-directional tree transfor-
mations: A linguistic approach to the view update problem. In Proceed-
ings of the symposium on Principles of Programming Languages (POPL
’05), pages 233–246, New York, 2005.

Ralf Hinze. Formatting: a class act. Journal of Functional Programming,
13(5):935–944, 2003.

Christian Hofer, Klaus Ostermann, Tillmann Rendel, and Adriaan Moors.
Polymorphic embedding of DSLs. In Proceedings of the Conference
on Generative Programming and Component Engineering (GPCE ’08),
pages 137–148, New York, October 2008.

John Hughes. The Design of a Pretty-printing Library. In J. Jeuring and
E. Meijer, editors, Advanced Functional Programming, pages 53–96.
Springer LNCS 925, 1995.

John Hughes. Generalising monads to arrows. Science of Computer
Programming, 37:67–111, May 2000.

Graham Hutton and Erik Meijer. Monadic parsing in Haskell. Journal of
Functional Programming, 8(4):437–444, 1998.

Patrik Jansson and Johan Jeuring. Polytypic compact printing and parsing.
In European Symposium on Programming, pages 273–287. Springer
LNCS 1576, 1999.

Patrik Jansson and Johan Jeuring. Polytypic data conversion programs.
Science of Computer Programming, 43(1):35–75, 2002.

Oleg Kiselyov. Type-safe functional formatted IO. Available at
http://okmij.org/ftp/typed-formatting/, 2008.

Edward A. Kmett. category extras: Various modules and
constructs inspired by category theory. Available at
http://hackage.haskell.org/package/category-extras,
2008.

Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser combina-
tors for the real world. Technical Report UU-CS-2001-27, Department
of Computer Science, Universiteit Utrecht, 2001.

Conor McBride and Ross Paterson. Applicative programming with effects.
Journal of Functional Programming, 18(1):1–13, 2008.

Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. An injective language
for reversible computation. In Proceedings of the International Con-
ference on Mathematics of Program Construction (MPC ’04). Springer
Verlag, 2004.

Nicolas Oury and Wouter Swierstra. The power of pi. In Proceedings of
the International Conference on Functional Programming (ICFP ’08),
pages 39–50, New York, 2008.

Tim Sheard and Simon Peyton Jones. Template meta-programming for
Haskell. SIGPLAN Not., 37(12):60–75, 2002.

A. Generation of partial isomorphisms using
Template Haskell

This appendix contains the implementation of the constructorIso
and defineIsomorphism Template Haskell macros.

constructorIso c = do
DataConI n d ← reify c
TyConI ((DataD cs))← reify d
let Just con = find (λ (NormalC n′)→ n≡ n′) cs
isoFromCon con

defineIsomorphisms d = do
TyConI (DataD cs)← reify d
let rename n

= mkName (toLower c : cs) where c : cs = nameBase n
defFromCon con@(NormalC n)

= funD (rename n)
[clause [] (normalB (isoFromCon con)) []]

mapM defFromCon cs

isoFromCon (NormalC c fs) = do
let n = length fs
(ps,vs)← genPE n
v ← newName "x"
let f = lamE [nested tupP ps]

JJust $(foldl appE (conE c) vs)K
let g = lamE [varP v]

(caseE (varE v)
[match (conP c ps)

(normalB JJust $(nested tupE vs)K) []
,match (wildP)

(normalB JNothingK) []])
JIso $f $gK

genPE n = do
ids← replicateM n (newName "x")
return (map varP ids,map varE ids)

nested tup [] = tup []
nested tup [x] = x
nested tup (x : xs) = tup [x,nested tup xs]

