
Report from Dagstuhl Seminar 15062

Domain-Specific Languages
Edited by
Sebastian Erdweg1, Martin Erwig2, Richard F. Paige3, and
Eelco Visser4

1 TU Darmstadt, DE, erdweg@informatik.tu-darmstadt.de
2 Oregon State University, US, erwig@eecs.oregonstate.edu
3 University of York, GB, richard.paige@york.ac.uk
4 TU Delft, NL, e.visser@tudelft.nl

Abstract
This report documents the program and outcomes of Dagstuhl Seminar 15062 “Domain-Specific
Languages”, which took place February 1–6, 2015. The seminar was motivated on the one hand
by the high interest in domain-specific languages in academia and industry and on the other
hand by the observation that the community is divided into largely disconnected subdisciplines
(e.g., internal, external, visual, model-driven). The seminar included participants across these
subdisciplines and included overview talks, technical talks, demos, discussion groups, and an
industrial panel. This report collects the abstracts of talks and other activities at the seminar
and summarizes the outcomes of the seminar.

Seminar February 1–6, 2015 – http://www.dagstuhl.de/15062
1998 ACM Subject Classification D.2 Software Engineering, D.3 [Programming Languages]

Compilers, D.3.1 [Formal Definitions and Theory] Semantics, F.3.2 Semantics of Programming
Languages

Keywords and phrases Internal DSLs, External DSLs, Domain-specific modeling, Extensible
languages, Language workbenches, Textual/graph-based/visual languages, Language design,
Language implementation techniques

Digital Object Identifier 10.4230/DagRep.5.2.26
Edited in cooperation with Daco Harkes

1 Executive Summary

Sebastian Erdweg
Martin Erwig
Richard F. Paige
Eelco Visser

License Creative Commons BY 3.0 Unported license
© Sebastian Erdweg, Martin Erwig, Richard F. Paige, and Eelco Visser

Software systems are the engines of modern information society. Our ability to cope with the
increasing complexity of software systems is limited by the programming languages we use
to build them. Domain-specific languages (DSLs) successfully address this challenge through
linguistic abstraction by providing notation, analysis, verification, optimization, and tooling
that are specialized to an application domain. DSLs are already ubiquitous in industrial
software development with prominent examples such as HTML, SQL, Make, AppleScript,
Matlab, or Simulink.

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Domain-Specific Languages, Dagstuhl Reports, Vol. 5, Issue 2, pp. 26–43
Editors: Sebastian Erdweg, Martin Erwig, Richard F. Paige, and Eelco Visser

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/15062
http://dx.doi.org/10.4230/DagRep.5.2.26
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

Sebastian Erdweg, Martin Erwig, Richard F. Paige, and Eelco Visser 27

There is a wide range of methods and techniques for the development of DSLs. Each
of these makes different trade-offs that enable different usage scenarios. After the initial
design of a DSL, switching to another approach can be very expensive or even impossible.
Therefore, the trade-offs and implications of different approaches must be well understood by
practitioners from the beginning. However, there is no clear account of what exactly these
trade-offs are; neither in industry nor in academia.

The goal of the proposed seminar was to bring together key representatives from the
communities that address DSLs from different perspectives: (1) internal DSLs, (2) external
DSLs, (3) domain-specific modeling, (4) extensible languages, (5) graph-based languages,
and (6) formal semantics. To enable constructive exchange between seminar participants
from different communities, the seminar started with one introductory talk per community
by a representative. These introductory talks were essential for raising awareness for each
other’s discipline, the challenges involved, and the problems already solved.

The first day of the seminar was concluded with a poster session. Before the seminar,
the organizers invited each participant to prepare and bring a poster that describes their
position with respect to the seminar topic. Many participants followed this invitation or
used a flip chart for an impromptu presentation. During the poster session, the participants
alternated between presenting their own poster and receiving introductions by others. While
the seminar did not feature a separate round of introductions at the beginning of the first
day, this did not at all hinder discussion and interaction during the talks prior to the poster
session. The organizers of this seminar would like to encourage other organizers to consider
a poster session as replacement for an introduction round.

After the community and personal introductions on the first day, the second day featured
four talks about the “design history” of four existing DSLs. The presenters reported on
how the design of their DSLs began, what features turned out to be good, what features
turned out to require revision, and how modifications of the design were formed, decided,
and implemented. Beyond reporting on their experience, the four talks provided concrete
examples of DSLs that could be referred to by all participants during the remainder of
the seminar. Subsequently to the design histories, the seminar featured a session on DSL
evaluation followed by an industrial panel on industrial DSL requirements.

In the morning of the third day, the participants had the chance to present their latest
research results in lightning talks. These were the only talks during the seminar without
precise instructions by the seminar organizers. In total, there were eight lightning talks. We
observed a high degree of interaction across communities. In the afternoon most participants
joined for the excursion: A hike around Schloss Dagstuhl.

Thursday morning was reserved for four talks on DSL type systems. The four talks
illustrated different ways of addressing DSL type systems. From a distinguished metalanguage
and to automated mechanization to type-system embedding and attribute grammars. The
presented work was not mature enough to allow for a meaningful discussion of benefits
and disadvantages of the individual approaches. On Thursday afternoon the participants
split into two breakout groups on Language Design Patterns and Name Binding. Some
participants of the breakout groups decided to continue exchange and discussion after the
seminar. The breakout groups were followed by tool demonstrations, where participants
could freely move between demos.

Finally, on Friday morning the seminar ended with a session on establishing a research
agenda, that is, relevant research questions that should be addressed by the DSL community.
Moreover, the participants found that no new dedicated venue for DSLs needs to be established,
because there are sufficiently many venues for DSL research available already.

15062

28 15062 – Domain-Specific Languages

This report collects the abstracts of the talks, and summarises other activities (including a
panel and a discussion on a research agenda). The summaries and abstracts suggest outcomes
and potential directions for future scientific research.

Sebastian Erdweg, Martin Erwig, Richard F. Paige, and Eelco Visser 29

2 Table of Contents

Executive Summary
Sebastian Erdweg, Martin Erwig, Richard F. Paige, and Eelco Visser 26

Overview of Talks

A status update on Ensō
William Cook . 31

Type Systems for the Masses: Deriving Soundness Proofs and Efficient Checkers
Sebastian Erdweg . 31

Semantics-Driven Language Design
Martin Erwig . 31

Macros and Extensible Languages
Matthew Flatt . 32

DSL type systems: experiences from using reference attribute grammars
Görel Hedin . 32

Graphical DSLs
Steven Kelly . 32

Model-Driven Grant Proposal Engineering
Dimitris Kolovos . 33

Resugaring: Lifting Evaluation Sequences through Syntactic Sugar
Shriram Krishnamurthi . 33

Policy languages
Shriram Krishnamurthi . 33

An operational semantics for QL
Peter D. Mosses . 34

Semantic Modularity for DSLs
Bruno C. d. S. Oliveira . 34

Evaluating DSLs
Richard F. Paige . 34

Domain Specific Languages in Practice – An Example
Julia Rubin . 34

Through the Looking Glass: A Design History of DSLs for Self-Reconfigurable
Robots
Ulrik Pagh Schultz . 35

Streams a la Carte: Extensible Pipelines with Object Algebras
Yannis Smaragdakis . 35

Constraint based language tools
Friedrich Steimann . 36

Language workbenches: textual and projectional
Tijs van der Storm . 36

Interpreter composition
Laurence Tratt . 36

15062

30 15062 – Domain-Specific Languages

EMF/Ecore-based DSL engineering
Dániel Varró . 37

Incremental queries for DSMLs
Dániel Varró . 37

A Short History of Name Biding in Stratego/XT and Spoofax
Eelco Visser . 37

A Theory of Name Resolution
Eelco Visser . 38

Domain-specific type systems
Guido Wachsmuth . 38

Cognitive Dimensions for DSL Designers
Eric Walkingshaw . 39

Demo Session

MetaEdit+: Industrial Strength Graphical DSLs
Steven Kelly . 39

Epsilon
Dimitris Kolovos . 39

Diagram Editors – Layout and Change Tracking
Sonja Maier . 39

Incremental model queried in EMF-IncQuery
Dániel Varró . 40

Composition of Languages and Notations with MPS
Markus Völter . 40

The Spoofax Language Workbench
Guido Wachcsmuth and Daco Harkes . 40

Working Groups

Language Design Patterns . 40

Open Problems

Research Agenda Discussion . 41

Panel Discussions

Industrial Panel
Ralf Lämmel . 41

Participants . 43

Sebastian Erdweg, Martin Erwig, Richard F. Paige, and Eelco Visser 31

3 Overview of Talks

3.1 A status update on Ensō
William Cook (University of Texas at Austin, US)

Joint work of Cook, William; van der Storm, Tijs

I gave an update on Ensō, which is a experimental workbench for building and integrating
interpreted domain-specific specification languages. Ensō is also implemented in itself.

3.2 Type Systems for the Masses: Deriving Soundness Proofs and
Efficient Checkers

Sebastian Erdweg (TU Darmstadt, DE)

License Creative Commons BY 3.0 Unported license
© Sebastian Erdweg

Joint work of Erdweg, Sebastian; Grewe, Sylvia; Mezini, Mira

The correct definition and implementation of non-trivial type systems is difficult and requires
expert knowledge, which is not available to developers of domain-specific languages and
specialized APIs in practice. We propose an approach that automatically derives soundness
proofs and efficient and correct algorithms from a single, high-level specification of a type
system. Our approach supports the modularization of the specification and the composition
of derived proofs and algorithms in order to scale the underlying verification procedure up to
real-world languages and to enable specification reuse for common language features.

3.3 Semantics-Driven Language Design
Martin Erwig (Oregon State University, US)

License Creative Commons BY 3.0 Unported license
© Martin Erwig

Joint work of Erwig, Martin; Walkingshaw, Eric
Main reference M. Erwig, E. Walkingshaw, “Semantics First! – Rethinking the Language Design Process,” in Proc.

of the 4th Int’l Conf. on Software Language Engineering (SLE’11), LNCS, Vol. 6940, pp. 243–262,
Springer, 2011; pre-print available from author’s webpage.

URL http://dx.doi.org/10.1007/978-3-642-28830-2_14
URL http://web.engr.oregonstate.edu/~erwig/papers/abstracts.html#SLE11

The design of languages is still more of an art than an engineering discipline. Although
recently tools have been put forward to support the language design process, such as language
workbenches, these have mostly focused on a syntactic view of languages. While these tools
are quite helpful for the development of parsers and editors, they provide little support for
the underlying design of the languages.

Convention dictates that the design of a language begins with its syntax. We argue
that early emphasis should be placed instead on the identification of general, compositional
semantic domains, and that grounding the design process in semantics leads to languages with
more consistent and more extensible syntax. We demonstrate this semantics-driven design
process through the design and implementation of a DSL for defining and manipulating
calendars, using Haskell as a metalanguage to support this discussion. We emphasize the
importance of compositionality in semantics-driven language design.

15062

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-28830-2_14
http://dx.doi.org/10.1007/978-3-642-28830-2_14
http://dx.doi.org/10.1007/978-3-642-28830-2_14
http://dx.doi.org/10.1007/978-3-642-28830-2_14
http://web.engr.oregonstate.edu/~erwig/papers/abstracts.html#SLE11

32 15062 – Domain-Specific Languages

3.4 Macros and Extensible Languages
Matthew Flatt (University of Utah – Salt Lake City, US)

License Creative Commons BY 3.0 Unported license
© Matthew Flatt

Macros and extensible languages naturally implement a DSL as an “internal” or “embedded”
DSL. Using the QL survey language as an example, we illustrate its implementation in Racket.
We start with an S-expression notation, demonstrate techniques for improving syntax errors
and adding type checking, show how to make the language look more “external” by putting
its in its own module, and show how non-S-expression syntax can be supported with editing
support in DrRacket.

3.5 DSL type systems: experiences from using reference attribute
grammars

Görel Hedin (Lund University, SE)

License Creative Commons BY 3.0 Unported license
© Görel Hedin

Reference attribute grammars support the building of very modular compilers. The technique
has been used for implementing complex domain-specific languages with user-defined types
and inheritance, like Modelica, as well as general-purpose languages like Java. In this talk, I
discuss a number of design strategies that have emerged for using RAGs to implement type
systems.

3.6 Graphical DSLs
Steven Kelly (MetaCase – Jyväskylä, FI)

License Creative Commons BY 3.0 Unported license
© Steven Kelly

Main reference S. Kelly, J.-P. Tolvanen, “Domain-Specific Modeling: Enabling Full Code Generation,” 448 pages,
ISBN 978-0-470-03666-2, Wiley, 2008.

URL http://dsmbook.com/

The idea of graphical languages is anathema to many working with textual languages – either
from lack of familiarity, familiarity with the all-too-common bad examples, or being burned
earlier by a failure in their own attempt to use them. This talk will briefly examine the
fundamental and empirical evidence for the utility of graphical languages, and in particular
how they differ from textual languages for the language user, the language engineer, and the
maker of a language workbench.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dsmbook.com/
http://dsmbook.com/
http://dsmbook.com/

Sebastian Erdweg, Martin Erwig, Richard F. Paige, and Eelco Visser 33

3.7 Model-Driven Grant Proposal Engineering
Dimitris Kolovos (University of York, GB)

License Creative Commons BY 3.0 Unported license
© Dimitris Kolovos

Joint work of Kolovos, Dimitris; Matragkas Nicholas; Williams, James; Paige, Richard
Main reference D. S. Kolovos, N. Matragkas, J. R. Williams, R. F. Paige, “Model-Driven Grant Proposal

Engineering,” in Proc. of the 17th Int’l Conf. on Model-Driven Engineering Languages and
Systems (MODELS’14), LNCS, Vol. 8767, pp. 420–432, Springer, 2014.

URL http://dx.doi.org/10.1007/978-3-319-11653-2_26

During this talk, we will demonstrate the application of Model-Driven Engineering techniques
to support the development of research grant proposals. In particular, we will report on using
model-to-text transformation and model validation to enhance productivity and consistency
in research proposal writing, and present unanticipated opportunities that were revealed
after establishing an MDE infrastructure. We will discuss the types of models and the
technologies used, reflect on our experiences, and assess the productivity benefits of our MDE
solution through automated analysis of data extracted from the version control repository
of a successful grant proposal; our evaluation indicates that the use of MDE techniques
improved productivity by at least 58%.

3.8 Resugaring: Lifting Evaluation Sequences through Syntactic Sugar
Shriram Krishnamurthi (Brown University – Providence, US)

License Creative Commons BY 3.0 Unported license
© Shriram Krishnamurthi

Joint work of Pombrio, Justin; Krishnamurthi, Shriram
Main reference J. Pombrio, S. Krishnamurthi, “Resugaring: Lifting Evaluation Sequences through Syntactic

Sugar,” in Proc. of the 35th ACM SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI’14), pp. 361–371, ACM, 2014.

URL http://dx.doi.org/10.1145/2594291.2594319

Syntactic sugar is pervasive in language technology. It is used to shrink the size of a core
language; to define domain-specific languages; and even to let programmers extend their
language. Unfortunately, syntactic sugar is eliminated by transformation, so the resulting
programs become unfamiliar to authors. Thus, it comes at a price: it obscures the relationship
between the user’s source program and the program being evaluated.

This presentation motivates the problem, explains it through working examples, and
outlines the solution.

3.9 Policy languages
Shriram Krishnamurthi (Brown University – Providence, US)

License Creative Commons BY 3.0 Unported license
© Shriram Krishnamurthi

A brief survey of policy languages, especially ones used in security and networking.

15062

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-11653-2_26
http://dx.doi.org/10.1007/978-3-319-11653-2_26
http://dx.doi.org/10.1007/978-3-319-11653-2_26
http://dx.doi.org/10.1007/978-3-319-11653-2_26
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2594291.2594319
http://dx.doi.org/10.1145/2594291.2594319
http://dx.doi.org/10.1145/2594291.2594319
http://dx.doi.org/10.1145/2594291.2594319
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

34 15062 – Domain-Specific Languages

3.10 An operational semantics for QL
Peter D. Mosses (Swansea University, GB)

License Creative Commons BY 3.0 Unported license
© Peter D. Mosses

Joint work of Churchill, Martin; Mosses, Peter D.; Sculthorpe, Neil; Torrini, Paolo
Main reference M. Churchill, P.D. Mosses, N. Sculthorpe, P. Torrini, “Reusable components of semantic

specifications,” Transactions on Aspect-Oriented Software Development Vol. XII, LNCS, Vol. 8989,
pp. 132–179, Springer, 2015; pre-print available from author’s webpage.

URL http://dx.doi.org/10.1007/978-3-662-46734-3_4
URL http://www.plancomps.org/taosd2015

We present and discuss an abstract syntax and operational semantics for QL using I-MSOS,
which is a highly modular variant of structural operational semantics. We also raise some
questions about the intentions of the language designer as expressed in the informal language
specification available at http://www.languageworkbenches.net/wp-content/uploads/2013/
11/Ql.pdf.

3.11 Semantic Modularity for DSLs
Bruno C. d. S. Oliveira (University of Hong Kong, HK)

License Creative Commons BY 3.0 Unported license
© Bruno C. d. S. Oliveira

This talk discusses how to implement modular components for DSLs. The idea is to have
collections of language components (abstract syntax and semantics) that can be easily
combined and reused in language implementations. Semantic modularity means that such
components can, not only, be separately defined, but also be given precise interfaces, be
type-checkable and separately compiled. Using Object Algebras, a recently introduced
designed pattern, this talk shows how semantic modularity can be achieved in common OO
languages such as Java, Scala or C#.

3.12 Evaluating DSLs
Richard F. Paige (University of York, GB)

License Creative Commons BY 3.0 Unported license
© Richard F. Paige

Introduction to the session on evaluating DSLs. Includes an introduction to a tagging/coding
exercise on DSL qualities, and an overview of evaluating DSLs in the context of a course.

3.13 Domain Specific Languages in Practice – An Example
Julia Rubin (MIT – Cambridge, US)

License Creative Commons BY 3.0 Unported license
© Julia Rubin

In this talk, we present an example of a real-life domain-specific language (DSL). We use
this example to highlight problems faced by organizations that use DSLs in practice:

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-662-46734-3_4
http://dx.doi.org/10.1007/978-3-662-46734-3_4
http://dx.doi.org/10.1007/978-3-662-46734-3_4
http://dx.doi.org/10.1007/978-3-662-46734-3_4
http://www.plancomps.org/taosd2015
http://www.languageworkbenches.net/wp- content/uploads/2013/11/Ql.pdf
http://www.languageworkbenches.net/wp- content/uploads/2013/11/Ql.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sebastian Erdweg, Martin Erwig, Richard F. Paige, and Eelco Visser 35

difficulties to identify a desirable syntax for the language;
difficulties to modify, extend and evolve the language;
difficulties to educate new developers in the use of the language;
the lack of an ecosystem around DSL management operations, e.g., refactoring and
dead-code elimination.

3.14 Through the Looking Glass: A Design History of DSLs for
Self-Reconfigurable Robots

Ulrik Pagh Schultz (University of Southern Denmark – Odense, DK)

License Creative Commons BY 3.0 Unported license
© Ulrik Pagh Schultz

Joint work of Bordignon, Mirko; Stoy, Kasper; Christensen, Johan
Main reference U. Schultz, M. Bordignon, K. Stoy, “Robust and reversible execution of self-reconfiguration

sequences,” Robotica, 29:35–57, 2011.
URL http://dx.doi.org/10.1017/S0263574710000664

An overview of my experience in developing domain-specific languages for self-reconfigurable
robots, focusing on the main path of development. An analysis of how the development
took place is presented, based in part (1) on relating different steps to different sources of
inspiration, (2) classifying the kinds of steps that took place and the forces that affected the
development, and (3) proposing a list of so-called language design patterns that influenced
the development.

3.15 Streams a la Carte: Extensible Pipelines with Object Algebras
Yannis Smaragdakis (University of Athens, GR)

License Creative Commons BY 3.0 Unported license
© Yannis Smaragdakis

Joint work of Biboudis, Aggelos; Palladinos, Nick; Fourtounis, George; Smaragdakis, Yannis
Main reference A. Biboudis, N. Palladinos, G. Fourtounis, Y. Smaragdakis, “Streams à la carte: Extensible

Pipelines with Object Algebras,” to appear in Proc. of the 29th Europ. Conf. on Object-Oriented
Programming (ECOOP’15); pre-print available from author’s webpage.

URL http://cgi.di.uoa.gr/~biboudis/streamalg.pdf

Streaming libraries have become ubiquitous in object-oriented languages, with recent offerings
in Java, C#, and Scala. All such libraries, however, suffer in terms of extensibility: there is no
way to change the semantics of a streaming pipeline (e.g., to fuse filter operators, to perform
computations lazily, to log operations) without changes to the library code. Furthermore, in
some languages it is not even possible to add new operators (e.g., a zip operator, in addition
to the standard map, filter, etc.) without changing the library.

We address such extensibility shortcomings with a new design for streaming libraries.
The architecture underlying this design borrows heavily from Oliveira and Cook’s object
algebra solution to the expression problem, extended with a design that exposes the push/pull
character of the iteration, and an encoding of higher-kinded polymorphism. We apply our
design to Java and show that the addition of full extensibility is accompanied by high
performance, matching or exceeding that of the original, highly-optimized Java streams
library.

15062

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1017/S0263574710000664
http://dx.doi.org/10.1017/S0263574710000664
http://dx.doi.org/10.1017/S0263574710000664
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://cgi.di.uoa.gr/~{}biboudis/streamalg.pdf

36 15062 – Domain-Specific Languages

3.16 Constraint based language tools
Friedrich Steimann (Fernuniversität in Hagen, DE)

License Creative Commons BY 3.0 Unported license
© Friedrich Steimann

Main reference F. Steimann, “From well-formedness to meaning preservation: model refactoring for almost free,”
Software & Systems Modeling, 14(1):307–320, 2015.

URL http://dx.doi.org/10.1007/s10270-013-0314-z

It is shown how based a single constraint-based specification of static semantics: well-
formedness can be checked; bindings can be computed; errors can be fixed; and refactorings
can be performed using a constraint solver.

References
1 Friedrich Steimann: From well-formedness to meaning preservation: model refactoring for

almost free. Software & Systems Modeling 14:1 (2015) 307–320.
2 Friedrich Steimann, Bastian Ulke: Generic Model Assist. In Proc. of MoDELS (2013) 18–

34.

3.17 Language workbenches: textual and projectional
Tijs van der Storm (CWI – Amsterdam, NL)

License Creative Commons BY 3.0 Unported license
© Tijs van der Storm

Main reference S. Erdweg, T. van der Storm, M. Völter, M. Boersma, R. Bosman, W.R. Cook, A. Gerritsen, A.
Hulshout, S. Kelly, A. Loh, G.D.P. Konat, P. J. Molina, M. Palatnik, R. Pohjonen, E. Schindler, K.
Schindler, R. Solmi, V.A. Vergu, E. Visser, K. van der Vlist, G.H. Wachsmuth, J. van der Woning,
“The State of the Art in Language Workbenches,” in Proc. of the 6th Int’l Conf. on Software
Language Engineering (SLE’13), LNCS, Vol. 8225, pp. 197–217, Springer, 2013.

URL http://dx.doi.org/10.1007/978-3-319-02654-1_11

Language workbenches are IDEs consisting of meta languages to build languages and IDEs. In
this talk I will sketch a brief history of Language Workbenches, summarize current tools and
illustrate how they work internally. In particular I’ll distinguish textual language workbenches
(based on parsing) from projectional ones (based on structure editing). Concretely, I’ll show
the questionnaire DSL in the Rascal workbench. Although language workbenches can greatly
improve productivity in developing domain-specific languages (DSLs), there are trade-offs in
comparison to internal approaches (embedding, macros, etc.) to DSL implementation.

3.18 Interpreter composition
Laurence Tratt (King’s College London, GB)

License Creative Commons BY 3.0 Unported license
© Laurence Tratt

Joint work of Tratt, Laurence; Barrett, Edd; Bolz, Carl Friedrich; Vasudevan, Naveneetha

Language composition is typically crude, and synonymous with the concept of “foreign
function interface”. In this talk, I show that fine-grained language composition is possible,
even down to the level of cross-language variable scoping. By using meta-tracing, we are
able to make such compositions perform close to their mono-language peers. This opens up
entirely new possibilities for language composition.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/s10270-013-0314-z
http://dx.doi.org/10.1007/s10270-013-0314-z
http://dx.doi.org/10.1007/s10270-013-0314-z
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-02654-1_11
http://dx.doi.org/10.1007/978-3-319-02654-1_11
http://dx.doi.org/10.1007/978-3-319-02654-1_11
http://dx.doi.org/10.1007/978-3-319-02654-1_11
http://dx.doi.org/10.1007/978-3-319-02654-1_11
http://dx.doi.org/10.1007/978-3-319-02654-1_11
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sebastian Erdweg, Martin Erwig, Richard F. Paige, and Eelco Visser 37

3.19 EMF/Ecore-based DSL engineering
Dániel Varró (Budapest University of Technology & Economics, HU)

License Creative Commons BY 3.0 Unported license
© Dániel Varró

The Eclipse Modeling Framework (EMF) is an industrial technology to define the abstract
syntax of domain-specific modeling languages (DSMLs). After defining the metamodel of the
language (in a so-called Ecore model) EMF generates a domain-specific libraries to support
model manipulation (interfaces and implementations), model persistency, notifications and
commands, undo and redo support as well as a tree based model editor and JUnit test cases
demonstrating the use of the API. The generated EMF tool forms the basis of supporting
more advanced language and editor features with graphical or textual concrete syntax, model
validators, incremental graphical views, model transformations and code generators etc.

3.20 Incremental queries for DSMLs
Dániel Varró (Budapest University of Technology & Economics, HU)

License Creative Commons BY 3.0 Unported license
© Dániel Varró

Main reference Z. Ujhelyi, G. Bergmann, Á. Hegedüs, Á. Horváth, B. Izsó, I. Ráth, Z. Szatmári, D. Varró,
“EMF-IncQuery: An integrated development environment for live model queries,” Science of
Computer Programming, 98(1):80–99, 2105.

URL http://dx.doi.org/10.1016/j.scico.2014.01.004

EMF-IncQuery is a framework for defining declarative graph queries over EMF models, and
executing them efficiently without manual coding in an imperative programming language
such as Java. EMF-IncQuery enables to (1) define model queries using a high level query
language (2) execute the queries efficiently and incrementally, with proven scalability for
complex queries over large instance models and (3) integrate queries into domain-specific
modeling environments to support incremental graphical views, constraint validator, derived
features or data binding.

3.21 A Short History of Name Biding in Stratego/XT and Spoofax
Eelco Visser (TU Delft, NL)

License Creative Commons BY 3.0 Unported license
© Eelco Visser

Highlights of the development of methods for the implementation and specification of name
binding in the Stratego/XT transformation framework and the Spoofax Language Workbench.

15062

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.scico.2014.01.004
http://dx.doi.org/10.1016/j.scico.2014.01.004
http://dx.doi.org/10.1016/j.scico.2014.01.004
http://dx.doi.org/10.1016/j.scico.2014.01.004
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

38 15062 – Domain-Specific Languages

3.22 A Theory of Name Resolution
Eelco Visser (TU Delft, NL)

License Creative Commons BY 3.0 Unported license
© Eelco Visser

Joint work of Pierre Neron, Andrew Tolmach, Guido Wachsmuth
Main reference P. Neron, A. Tolmach, E. Visser, G. Wachsmuth, “A Theory of Name Resolution,” in Proc. of the

24th Europ. Symp. on Programming (ESOP’15), LNCS, Vol. 9032, pp. 205–231, Springer, 2015.
URL http://dx.doi.org/10.1007/978-3-662-46669-8_9

We describe a language-independent theory for name binding and resolution, suitable for
programming languages with complex scoping rules including both lexical scoping and
modules. We formulate name resolution as a two-stage problem. First a language-independent
scope graph is constructed using language-specific rules from an abstract syntax tree. Then
references in the scope graph are resolved to corresponding declarations using a language-
independent resolution process. We introduce a resolution calculus as a concise, declarative,
and language-independent specification of name resolution. We develop a resolution algorithm
that is sound and complete with respect to the calculus. Based on the resolution calculus
we develop language-independent definitions of α-equivalence and rename refactoring. We
illustrate the approach using a small example language with modules. In addition, we
show how our approach provides a model for a range of name binding patterns in existing
languages.

3.23 Domain-specific type systems
Guido Wachsmuth (TU Delft, NL)

License Creative Commons BY 3.0 Unported license
© Guido Wachsmuth

Joint work of Gabriël Konat, Vlad Vergu, Eelco Visser

This talk starts with a short history of specification techniques for typing rules in the
Spoofax language workbench. First, we show how typing rules used to be specified with
Stratego rewrite rules. In this approach, declarations are first stored in scoped dynamic
rules, before declarations and references are renamed using globally unique identifiers, and
types are calculated and checked. Next, we introduce new meta-languages for the declarative
specification of name binding rules (NaBL) and type systems (TS). We discuss their core
concepts, the underlying incremental analysis framework, and show example specifications
for language constructs in domain-specific languages such as QL (questionnaires), SDF3
(syntax definition), and Green-Marl (graph processing).

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-662-46669-8_9
http://dx.doi.org/10.1007/978-3-662-46669-8_9
http://dx.doi.org/10.1007/978-3-662-46669-8_9
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sebastian Erdweg, Martin Erwig, Richard F. Paige, and Eelco Visser 39

3.24 Cognitive Dimensions for DSL Designers
Eric Walkingshaw (Oregon State University, US)

License Creative Commons BY 3.0 Unported license
© Eric Walkingshaw

Joint work of Green, Thomas; Petre, Marian
Main reference T.R.G. Green, M. Petre, “Usability Analysis of Visual Programming Environments: A ’Cognitive

Dimensions’ Framework,” Journal of Visual Languages & Computing, 7(2):131–174, 1996.
URL http://dx.doi.org/10.1006/jvlc.1996.0009

The cognitive dimensions provide a terminology for discussing human factors in programming
languages and the tools we use to work with them. This work from the psychology of
programming has many applications for DSL designers. They can improve communication
by helping us state claims about usability more precisely and to effectively motivate design
rationale. They support the design process by providing a way to enumerate common
usability issues and by making the tradeoffs between these issues clear. Finally, they support
the qualitative evaluation of languages and tools.

4 Demo Session

4.1 MetaEdit+: Industrial Strength Graphical DSLs
Steven Kelly (MetaCase – Jyväskylä, FI)

http://www.metacase.com/

4.2 Epsilon
Dimitris Kolovos (University of York, GB)

http://eclipse.org/epsilon/

4.3 Diagram Editors – Layout and Change Tracking
Sonja Maier (Universität der Bundeswehr – München, DE)

http://www.unibw.de/sonja.maier

In the first part of the demo, we presented a layout framework, which is specifically designed
for diagram editors. The key idea is that so-called layout patterns encapsulate certain layout
behavior. Its main strengths are that several layout patterns may be applied to a diagram
simultaneously, even to diagram parts that overlap and that the layout is continuously
maintained during diagram modification.

In the second part of the demo, we presented a framework whose purpose it is to keep
track of diagram changes. The key ideas are that all diagram changes are recorded, and that
these low-level changes are filtered, aggregated and visualized. The goal is to enable new
functionality and to improve usability.

15062

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1006/jvlc.1996.0009
http://dx.doi.org/10.1006/jvlc.1996.0009
http://dx.doi.org/10.1006/jvlc.1996.0009
http://www.metacase.com/
http://eclipse.org/epsilon/
http://www.unibw.de/sonja.maier

40 15062 – Domain-Specific Languages

4.4 Incremental model queried in EMF-IncQuery
Dániel Varró (Budapest University of Technology & Economics, HU)

http://eclipse.org/incquery

4.5 Composition of Languages and Notations with MPS
Markus Völter (Völter Ingenieurbüro – Stuttgart, DE)

http://www.jetbrains.com/mps/
http://mbeddr.com/

4.6 The Spoofax Language Workbench
Guido Wachsmuth and Daco Harkes (TU Delft, NL)

http://metaborg.org/spoofax/

5 Working Groups

5.1 Language Design Patterns
We met in a breakout group of ca. 15 participants to discuss whether systematic approaches
to (domain-specific or general-purpose) programming language design could be communicated
in the form of language design patterns. The breakout group was organized by Tillmann
Rendel, Ulrik Pagh Schultz, and Eric Walkingshaw. Main topics of discussion included:

Is a pattern language appropriate to talk about language design?
Which granularity of language design should the patterns address?
How would domain-specific patterns differ from general-purpose patterns?
What are good examples of language design patterns?
How should language design patterns be evaluated?
How can the community work together to find and describe language design patterns?

The breakout session resulted in the creation of a mailing list to further discuss these
and other questions related to language design patterns or the communication of systematic
approaches to language design in general:

https://listserv.uni-tuebingen.de/mailman/listinfo/language-design

Some participants consider to work more on language design patterns, maybe co-author
a book on the topic and/or organize a workshop to collaboratively work on language design
patterns.

http://eclipse.org/incquery
http://www.jetbrains.com/mps/
http://mbeddr.com/
http://metaborg.org/spoofax/
https://listserv.uni-tuebingen.de/mailman/listinfo/language-design

Sebastian Erdweg, Martin Erwig, Richard F. Paige, and Eelco Visser 41

6 Open Problems

6.1 Research Agenda Discussion
There was consensus not to have (or revive) a conference dedicated to DSLs specifically,
because existing conferences, such as SLE or GPCE, provide a suitable platform for presenting
DSL research. It was suggested to create a repository of DSL success stories that researchers
could point to (in papers) to emphasize the importance and impact of DSLs. (The DSM
community has this already. The DSM Forum site (dsmforum.org) has 50 published case
studies and about 100 publications)

As for research questions that deserved to be studied in the future, the following topics
were mentioned:

Languages with visual syntax, heterogeneous syntax
Domain-specific type systems
Composition of DSLs (specific to DSLs)
Debugging of DSLs and DSL programs
End-user/domain experts as DSL developers, scientists who can program
Customizability: evolving one DSL into another
Integration: opening of tools to provide access for others and hooking tools into other
tools without standardization
User studies: formative and summative evaluation
Study (repositories of) DSL artefacts: like what language constructs are used

7 Panel Discussions

7.1 Industrial Panel
Ralf Lämmel (University of Koblenz-Landau – DE)

License Creative Commons BY 3.0 Unported license
© Ralf Lämmel

Summary compiled by the panel moderator.

7.1.1 Acknowledgment

I am grateful to the panelists (listed below) for contributing to the discussion. The design of
the panel is mainly due to the Dagstuhl organizers and specifically Martin Erwig, Sebastian
Erdweg, Eelco Visser, and Richard Paige.

7.1.2 Objective of the panel

The overall objective of the panel was to discuss the match between academic research on
DSL and the priorities in industry. To this end, the panelists were asked about their thoughts
on these questions:

Do the academic approaches to DSL development work for industry?
What does industry need to get useful DSLs?
What is the actual practice for DSL development in your industrial setting?

15062

dsmforum.org
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

42 15062 – Domain-Specific Languages

7.1.3 Format of the panel

Each of the five panelists presented a two-minutes opening remark with the help of one slide.
The idea was that each panelist would focus on the single most important issue or problem
that should be addressed. Possibly, that issue or problem could be related to the questions
listed above. The majority of the 90 minutes of panel time were dedicated to discussions
while giving equal time to contributions from the audience and responses from the panelists.

As a follow-up to the panel, if possible, the most important issue or problem should be
synthesized. However, such a synthesis turned out to be infeasible, as the panelists had
somewhat complementary, albeit related priorities.

7.1.4 The panelists’ positions

Five panelists were invited on the grounds of their current or recent involvement in DSL-
related projects in industry. The panel was moderated by Ralf Lämmel, Software Languages
Team, University of Koblenz-Landau. Here is the list of panelists and a short indication
of their ‘single most important issue or problem’, as communicated to and edited by the
moderator:
Hassan Chafi, Oracle The important issue is arriving at successful lifecycles for DSLs and

their development. More specifically, how can DSLs be gradually introduced into existing
projects (lots of valuable code already exists and would benefit from DSLs)? What are
interoperability models between DSLs and general purpose languages that either host
them or glue them to other parts of the system?

Steven Kelly, MetaCase The important issue is moving from characters to objects. This
entails, for example: i) Don’t rebuild understanding from scratch, store the understood
structure. ii) Manipulate, co-operate, link on that level, not as characters. iii) Allow free
representation and persistent layout, not forced automatic layout iv) Together, these allow
scalability in model and team size and complexity, and seem to be significant factors in
cases where good graphical DSLs have been shown to be 5-10x faster than programming.

Oleg Kiselyov, Tohoku University The important issue is this: What exactly is a DSL? To
quote from an email by the panelist: The issue came up at the Shonan seminar which we
organized past May. We were talking about some DSL for HPC, and then someone asked:
why do we call it DSL? What exactly is ‘domain-specific’ here? What is the domain?
HPC is so broad that the classification is almost useless. The issue is especially blurred
for embedded DSLs. How is that different from a library?

Julia Rubin, MIT The important issue is maintainability. This entails specific questions
like these: How to keep the language current when new requirements emerge or when
new technologies are introduced? Also, how to combine domain specific languages and
how to keep the language attractive, e.g., to new employees that are unfamiliar with the
language? How to build an ecosystem of solutions around DSLs, e.g., for code analysis,
refactoring, debugging, etc.?

Markus Völter, Völter Ingenieurbüro The important issue is scalability. There are several
dimensions. i) Scaling languages and language ecosystems in terms of complexity: more
declarative and analyzable language specifications, fewer specs for more language aspects.
ii) Scaling Languages, Domains and Audiences: wider ranges of notations and ‘language
experiences’, more stripped down, user-friendly tools. iii) Scaling some aspects of tools:
incremental generation for big systems, incremental type checking for non-trivial type
system rules, and others.

Sebastian Erdweg, Martin Erwig, Richard F. Paige, and Eelco Visser 43

Participants

Lennart Augustsson
Standard Chartered Bank –
London, GB

Hassan Chafi
Oracle Labs – Belmont, US

William R. Cook
University of Texas – Austin, US

Sebastian Erdweg
TU Darmstadt, DE

Martin Erwig
Oregon State University, US

Matthew Flatt
University of Utah – Salt
LakeCity, US

Andrew Gill
University of Kansas, US

Daco Harkes
TU Delft, NL

Görel Hedin
Lund University, SE

Steven Kelly
MetaCase – Jyväskylä, FI

Oleg Kiselyov
Tohoku University – Sendai, JP

Dimitris Kolovos
University of York, GB

Shriram Krishnamurthi
Brown University, US

Ralf Lämmel
Universität Koblenz-Landau, DE

Sonja Maier
Universität der Bundeswehr –
München, DE

Peter D. Mosses
Swansea University, GB

Bruno C. d. S. Oliveira
University of Hong Kong, HK

Klaus Ostermann
Universität Tübingen, DE

Richard F. Paige
University of York, GB

Tillmann Rendel
Universität Tübingen, DE

Julia Rubin
MIT – Cambridge, US

Ulrik Pagh Schultz
University of Southern Denmark –
Odense, DK

Yannis Smaragdakis
National Kapodistrian University
of Athens, GR

Friedrich Steimann
Fernuniversität in Hagen, DE

Laurence Tratt
King’s College London, GB

Tijs van der Storm
CWI – Amsterdam, NL

Dániel Varró
Budapest University of
Technology & Economics, HU

Eelco Visser
TU Delft, NL

Markus Völter
Völter Ingenieurbüro –
Stuttgart, DE

Guido Wachsmuth
TU Delft, NL

Eric Walkingshaw
Oregon State University, US

15062

	Executive Summary Sebastian Erdweg, Martin Erwig, Richard F. Paige, and Eelco Visser
	Table of Contents
	Overview of Talks
	A status update on Ens William Cook
	Type Systems for the Masses: Deriving Soundness Proofs and Efficient Checkers Sebastian Erdweg
	Semantics-Driven Language Design Martin Erwig
	Macros and Extensible Languages Matthew Flatt
	DSL type systems: experiences from using reference attribute grammars Görel Hedin
	Graphical DSLs Steven Kelly
	Model-Driven Grant Proposal Engineering Dimitris Kolovos
	Resugaring: Lifting Evaluation Sequences through Syntactic Sugar Shriram Krishnamurthi
	Policy languages Shriram Krishnamurthi
	An operational semantics for QL Peter D. Mosses
	Semantic Modularity for DSLs Bruno C.d.S. Oliveira
	Evaluating DSLs Richard F. Paige
	Domain Specific Languages in Practice – An Example Julia Rubin
	Through the Looking Glass: A Design History of DSLs for Self-Reconfigurable Robots Ulrik Pagh Schultz
	Streams a la Carte: Extensible Pipelines with Object Algebras Yannis Smaragdakis
	Constraint based language tools Friedrich Steimann
	Language workbenches: textual and projectional Tijs van der Storm
	Interpreter composition Laurence Tratt
	EMF/Ecore-based DSL engineering Dániel Varró
	Incremental queries for DSMLs Dániel Varró
	A Short History of Name Biding in Stratego/XT and Spoofax Eelco Visser
	A Theory of Name Resolution Eelco Visser
	Domain-specific type systems Guido Wachsmuth
	Cognitive Dimensions for DSL Designers Eric Walkingshaw

	Demo Session
	MetaEdit+: Industrial Strength Graphical DSLs Steven Kelly
	Epsilon Dimitris Kolovos
	Diagram Editors – Layout and Change Tracking Sonja Maier
	Incremental model queried in EMF-IncQuery Dániel Varró
	Composition of Languages and Notations with MPS Markus Völter
	The Spoofax Language Workbench Guido Wachcsmuth and Daco Harkes

	Working Groups
	Language Design Patterns

	Open Problems
	Research Agenda Discussion

	Panel Discussions
	Industrial Panel Ralf Lämmel

	Participants

