Incremental Overload Resolution
in Object-Oriented Programming Languages

Tamas Szabo
itemis, Germany
Delft University of Technology,
Netherlands

Mira Mezini
Darmstadt University of Technology,
Germany

Abstract

Object-oriented programming languages feature static and
dynamic overloading: Multiple methods share the same name
but provide different implementations. Dynamic overloading
(also know as dynamic dispatch) is resolved at run time based
on the type of the receiver object. In this paper, we focus on
static overloading in Featherweight Java, which is resolved
at compile time based on the types of the method arguments.

The challenge this paper addresses is to incrementalize
static overload resolution in IDEs. IDEs resolve overloaded
methods for the developer to help them discern which im-
plementation a method call refers to. However, as the code
changes, the IDE has to reconsider previously resolved method
calls when they are affected by the code change. This paper
clarifies when a method call is affected by a code change and
how to re-resolve method calls with minimal computational
effort. To this end, we explore and compare two approaches
to incremental type checking: co-contextual type checking
and IncA.

Keywords Overload resolution, Type checking, Static anal-
ysis, Incremental computing, Object-oriented languages

ACM Reference Format:

Tamas Szabd, Edlira Kuci, Matthijs Bijman, Mira Mezini, and Se-
bastian Erdweg. 2018. Incremental Overload Resolution in Object-
Oriented Programming Languages. In Proceedings of 20th Workshop
on Formal Techniques for Java-like Programs (FIfJP’18). ACM, New
York, NY, USA, 7 pages. https://doi.org/10.475/123_4

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

FTf7P’18, July 2018, Amsterdam, Netherlands

© 2018 Copyright held by the owner/author(s).

ACM ISBN 123-4567-24-567/08/06.

https://doi.org/10.475/123_4

Edlira Kuci
Darmstadt University of Technology,
Germany

Matthijs Bijman
Delft University of Technology,
Netherlands

Sebastian Erdweg
Delft University of Technology,
Netherlands

1 Introduction

Static method overloading is an essential feature of object-
oriented programming languages. Method overloading al-
lows developers to provide the same method name to multi-
ple method implementations. Developers typically use method
overloading for one of two reasons. First, they use it to pro-
vide a more flexible interface to a single functionality by
accepting different kinds of parameter types. A common ex-
ample of this is constructor overloading, which allows users
of a class to construct a class instance in different ways:

class Wheel {
public Wheel(int sizeInch, Tire tire) { ... }
public Wheel() { this(29, Tire.DEFAULT); }

3

Second, developers use method overloading to select one of
multiple functionalities by dispatching over the number and
types of arguments. For example, method overloading is a
key component for the visitor pattern:

interface BikePartVisitor {
void visit(Part part); // fall-back method
void visit(Frame frame);
void visit(Wheel wheel);
void visit(Brake brake);
// add specialized handlers for other parts as needed

3

The downside of method overloading is that it becomes diffi-
cult for developers to reason about method calls. In particular,
the name of the called method does not provide sufficient
information to understand which implementation will be
invoked. While this is also true for dynamic dispatch via
inheritance and overriding, overloaded methods are not gov-
erned by the Liskov Substitution Principle, such that a de-
veloper has to inspect the exact dispatch target to anticipate
the effect of a call. To resolve a call to an overloaded method
e.m(al,...,an) in Featherweight Java (FJ), a developer has to
take all of the following information into account:

o The compile-time type c of e: All methods named m in
¢ are candidates for the resolution.

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

FTfJP’18, July 2018, Amsterdam, Netherlands

e The superclasses of c: All methods named m in super-
classes of ¢ are candidates for the resolution.

e The number of arguments a1, ...,an: Only methods
with n parameters are candidates for the resolution.

e The compile-time types C1,...,cn of the arguments
al,...,an: Only methods that accept c1,...,cn or su-
perclasses thereof are candidates for the resolution.

e The distance in the class hierarchy between the argu-
ment typesC1, ...,Cnand the parameter typesD1, .. .,Dn
of candidate methods: Select the unique candidate with
minimal aggregated distance or report an error if no
unique minimal candidate exists.

Since this is a lot of information for a developer to trace
manually, IDEs mirror the compiler’s behavior and resolve
overloaded methods automatically. Most editors handle over-
load resolution together with name resolution during type
checking, since the target method determines the type of the
method invocation.

Like all IDE services, overload resolution has to be incre-
mental and react to source-code changes. That is, when a
code change occurs, the IDE has to incrementally update
previously computed overload resolution results: It has to
discard affected resolution results and recompute them. In
prior work, we developed an approach for incremental type
checking called co-contextual type checking [6, 9] that we
used to develop efficient incremental checkers for PCF and
FJ [8]. However, when considering FJ with overloading, co-
contextual type checking failed to yield good incremental
performance. Our first contribution in this paper is a de-
tailed analysis of why co-contextual type checking fails to
incrementalize overload resolution (Section 2).

Our second contribution is to clarify when a method call
is affected by a code change and how to re-resolve affected
method calls (Section 3). To this end, we study incremental
type checking of FJ with overloading in a second framework,
called IncA [15]. IncA is a framework for incremental static
analysis based on an efficient incremental Datalog solver. In
contrast to co-contextual type checking, IncA allows us to
model dependencies between source-code artifacts precisely.
This yields good incremental performance, which we evalu-
ate through micro benchmarks. Both IncA and our overload
resolution in IncA are available open-source.!?

2 Co-Contextual Overload Resolution
Does Not Work

Co-contextual type checking is a technique for incremental-
izing type checkers. Its core strategy is to eliminate depen-
dencies on the typing context, making type-checker results
reusable in spite of context changes.

Thttps://github.com/szabta89/IncA
Zhttps://github.com/seba—/inca-experiments

Szabd, Kuci, Bijman, Mezini, and Erdweg

For example, the expression v.visit(new Wheel()) has three
context dependencies, namely on the binding of v, the decla-
ration of visit, and the declaration of the nullary construc-
tor of wheel. A traditional type checker has to reconsider
the expression when any of the three context dependencies
changes, and such changes can produce ripple effects. In
contrast, a co-contextual type checker assigns a typing to
the expression without knowing the context. Whenever a
traditional type checker looks up information in the context,
the co-contextual checker generates a context requirement
instead. That is, the typing judgment has the signature typeof:

Exp -> (Type, ContextRegs, Constraints). An expression then
is well-typed in any context that satisfies all context require-
ments and constraints (type equality, subtyping). Our exam-
ple expression is well-typed in contexts that bind v to some
type u, that declare a method u.visit(Wheel), and that declare
a nullary constructor wheel.init(). Note that co-contextual
typings do not need to be principal [16].

Co-contextual type checking can yield good incremen-
tal performance because the typing of expressions is not
affected by context changes. For example, when changing
the declaration of v or the nullary constructor of wheel, the
typing of our example expression remains valid. Thus, a
co-contextual type checker only has to reconsider whether
the new context satisfies the existing context requirements
and constraints. Technically, a co-contextual type checker
traverses the abstract syntax tree (AST) of the subject pro-
gram bottom-up, computing the typing for each node by
merging the requirements and constraints of sub-nodes. The
key to efficient incremental co-contextual type checking is
to discharge context requirements and constraints as early
as possible (close to the leaves) and to represent them com-
pactly otherwise. This way, it becomes cheap to embed an
expression into varying contexts and to check whether these
contexts satisfy the remaining requirements and constraints.

In previous work, we have demonstrated that the co-
contextual approach yields good incremental performance
for PCF with records, parametric polymorphism, and sub-
typing [6] and for FJ [9]. However, when adding overloading
to FJ, co-contextual type checking fails to yield satisfactory
performance. In the remainder of this section, we analyze
what makes overloading particularly challenging and why
co-contextual type checking cannot cope with it.

Our type checker has to follow three steps to resolve a
call e.m(a1,...,an) to an overloaded method [3]:

1. Find candidate method declarations in the type of e
and its superclasses. Candidates must have name m and
accept n arguments.

2. Compute the distance between each candidate target
and the call. The distance of a candidate is the sum
of the distances of the parameters. The distance of a
parameter is the distance of the parameter type and the
corresponding argument type in the class hierarchy.

https://github.com/szabta89/IncA
https://github.com/seba--/inca-experiments

Incremental Overload Resolution

3. Select the unique candidate with minimal distance or
report an error if no unique minimal candidate exists.

Overload resolution is difficult to incrementalize because it
depends on non-local information. First, to find candidates,
we need to determine and inspect the type of the receiver e
and all its superclasses. This introduces a lot of dependencies
from the call to the class table: A change to any of these
types (e.g., edit extends clause, adding/removing method)
affects overload resolution. Second, to compute the distance
between a candidate and the call, we additionally need infor-
mation about the subclasses of all parameter types that occur
in the candidate. This introduces even more dependencies
from the call to the class table: A change to the parameter
list of a candidate, the argument list of a call, or the sub-
classes of a parameter type affects overload resolution. To
incrementalize overload resolution efficiently, we need to
find a way to re-resolve calls to overloaded methods with
minimal computational effort.

Unfortunately, co-contextual type checking cannot pro-
vide efficient incremental overload resolution. The reason is
that overload resolution requires global information (over
the whole program) to make computational progress, but
co-contextual type checking only provides local information
when checking a node. Consequently, when implementing
overload resolution co-contextually, the checker has to defer
many computations until most of the program was traversed.
In particular, there is not enough information available lo-
cally at a node to find the candidate method declarations
or to compute their distance from the call. As a result, a co-
contextual type checker cannot resolve overloaded methods
until it has seen most of the class table, and any change to any
of the classes will trigger a complete re-resolution: finding
candidates, computing their distance, selecting the minimal
candidate. We conclude that the co-contextual approach does
not yield efficient incremental overload resolution.

3 Overload Resolution in IncA

After we failed to efficiently incrementalize overload resolu-
tion with the co-contextual approach, we turned our atten-
tion to the IncA incremental static analysis framework for
the following reasons. First, IncA has been successfully used
to incrementalize data-flow analyses to be used in interactive
applications [15]. The key idea of IncA is to use relations to
encode program analyses, and IncA allows precise handling
of data dependencies between different parts of an analysis.
This is exactly what the co-contextual approach failed to
do. Second, IncA comes with a domain-specific language
(DSL) for analysis definition, so we can immediately focus
on overload resolution instead of the challenging techni-
calities of incrementalization. Finally, the DSL’s expressive
power seemed sufficient for expressing overload resolution
in FJ. Our experiment with IncA was successful because

FTfJP’18, July 2018, Amsterdam, Netherlands

we achieved tens of millisecond update times on consider-
able workloads. In this section, we review the IncA DSL and
backend. Then, we make use of IncA to implement overload
resolution. Finally, we present the results of our performance
benchmarking.

IncA DSL The IncA DSL has its roots in Datalog, which
is a logic programming language widely used for program
analyses [7, 14]. There are several syntactical differences in
IncA compared to Datalog, but it is common between the two
languages that an analysis is ultimately encoded through
inter-connected relations on the AST of the subject program.
We demonstrate the IncA DSL and the relational nature
through an example: Given an AST node in an FJ program,
we want to look up its container method. We implement a
getContainerMethod function in IncA as follows:

def getContainerMethod(node : Node) : Method = {
parent := node.parent
alt {
assert parent instanceOf Method
return parent
yor {
return getContainerMethod(parent)
3
}

[R =N T S S

The function walks up along ancestors in the AST starting
from node until we hit the container method. In Line 2, we
access the parent of node with the .parent navigation, and
we store the result in the parent variable. We use the alt
construct to define two alternative computations for obtain-
ing the output. Either parent is already a Method, and we
return immediately, or we recurse on parent. The assert in
the analysis code acts as a constraint: If it is satisfied for
the given input, the switch alternative produces an output,
otherwise, no output is returned from the alternative. This
also makes sure that no output is returned for nodes that
are not contained under methods. The distinction between
input and output parameters allows natural forward or back-
ward style analysis definitions [15]. However, parameters
lose their direction in the backend, and the function becomes
a relation getContainerMethod C Node X Method, while the anal-
ysis result consists of tuples in this relation. A tuple (n,m) €
getContainerMethod means that m is the container method of
node n.

In addition to relating program elements from the AST,
the IncA DSL allows us to define custom lattices and ag-
gregations over lattice values in the analysis code. This is
important for the overload resolution because we compute
and aggregate numerical distances between arguments and
parameters as the analysis runs. To this end, we define a Nat
lattice in IncA representing the natural numbers and opera-
tions over lattice values as follows:

FTfJP’18, July 2018, Amsterdam, Netherlands

lattice Nat { 1
constructors { Value(int) | Top } 2
def bot() : Nat = return Value(0) 3
def top() : Nat = return Top 4
def leq(l : Nat, r : Nat) : boolean = { 5
match (1, r) with { 6
case (Value(v1), Value(v2)) => return vl <= v2 7
case _ => return false 8
33 9
def glb(l : Nat, r : Nat) : Nat = { 10
match (1, r) with { 11
case (Value(v1), Value(v2)) => return vi<=v2 ? 1:r 12
case (_, Top) => return 1 13
case (Top, _) => return r 14
33 15
def sum(l : Nat, r : Nat) : Nat = { 16
match (1, r) with { 17
case (Value(v1l), Value(v2)) => return Value(vl + v2) 18
case _ => return Top 19
33 20
.. 21
} 22

The Nat lattice has two kinds of lattice values: value simply
wraps a Java int, while Top represents co. The implemen-
tation of the lattice operations is straightforward. We will
use them later when implementing overload resolution. For
more details on the IncA DSL, we refer the reader to [15]. In
the following, we show how the incremental solver of IncA
computes and incrementally maintains an analysis result.

IncA Solver IncA translates analysis functions into a com-
putation network. For example, Figure 1C shows a compu-
tation network built for the getContainerMethod function. The
network has two kinds of nodes. First, Input nodes (grey) let
IncA access the AST, e.g. Method lists all methods, while Parent
enumerates the binary parentship between AST nodes. Sec-
ond, computation nodes (white) combine the results of nodes
that they depend on through relational algebra, e.g. by join-
ing, filtering, or computing union. For example, getContainer-
Method_alt1 filters, getContainerMethod_alt2 joins, and getCon-
tainerMethod computes union based on the results of the pre-
vious two.

The computation network immediately lends itself to effi-
cient evaluation. Every node in the network caches its result
tuples. The unit of incrementalization is a tuple in a relation:
A change in the subject program triggers tuple insertions and
deletions at input nodes. From here, a change propagation
takes place: Each node updates its cache and propagates the
delta on the outgoing edges to dependent nodes. The change
propagation goes on as long as some computation node
changes, that is, until the IncA solver reaches a fixpoint. This
is important when there are recursive dependencies, such as,
between the getContainerMethod_alt1 and getContainerMethod
nodes. Note that computing the initial analysis result also
follows the same approach, but in that case IncA reads the

Szabd, Kuci, Bijman, Mezini, and Erdweg

class MyBike implements BikePartVisitor { A B|
public void visit(Wheel wheel) {

wheel.is29Inch(.., ..) m1 @
} & , ‘
= c A

public void visit(Frame frame) { Ced (5
print(frame.isCarbon()) m2 v

} N ed

} &4 T
e5 ,Y_

Les

AST of subject program

traverse upon initialization 4 ﬁ incremental AST changes

[mim2] ----- getContainer
N B -
[el.e2,e3.ed.e5 | RNy e getContainer
""""" S s
getContainer ox
- Method_alt2 el
= exp | method N e2
Parent el m1 o3
+[e3 m2 =
child [parent +[_ea m2 L_e5 |
el e2
| e | mi | Legend
+| e3 ed [— AST node containment
+ ed e5 —> interaction between AST and analysis
+ e5 m2 - -I> dep. between comp. network nodes

Figure 1. Computation network (C) of the getContainerMethod
function evaluated on the AST (B) of a subject program (A).
Red color shows newly inserted entities. Tuples of unary re-
lations are shown in one row.

relevant parts of the AST, which then triggers a (transitive)
batch insertion of many tuples.

We demonstrate the change propagation on the subject
program in Figure 1A. Assume we just inserted the body
of the visit(Frame) method. In response to this change, the
AST of the subject program also changes with three newly
inserted expressions as shown in Figure 1B. In the com-
putation network, the change propagation starts from the
Exp and Parent input nodes. The delta in the contents of
getContainerMethod yield the changes in the analysis result,
which clients can query through an API in IncA [15].

Overload resolution in IncA We use the IncA DSL to
implement overload resolution for FJ, and we rely on the
IncA computation network to efficiently incrementalize the
analysis. Our approach consists of the exact same steps as
with co-contextual type checking: (1) Find all candidates, (2)
compute distance sums, and (3) select the unique candidate
with minimal distance.

Figure 2 shows an excerpt of the analysis implementa-
tion in IncA. findMinimalMethodMain counts the number of can-
didates with minimum distance, and if there is only one,
it returns the method. findMinimalMethod drives the whole
search because it selects the methods with the minimum dis-
tance from all candidate methods. getMinimalMethodDistance
uses the previously defined Nat lattice and aggregates re-
sult tuples with glb which will select the tuple that has the
lowest number associated. Finally, getDistance computes the
distance between the arguments and parameters. There are
two things to note in the body of getDistance. First, Line 17-
18 compute the cross product between the arguments and

Incremental Overload Resolution

FTfJP’18, July 2018, Amsterdam, Netherlands

assert minDistance == candidateDistance
return candidate

return getArgParamDistance(argument, parameter)

def findMinimalMethodMain(call : MethodCall, class : ClassDec) : MethodDec = { 1
assert count findMinimalMethod(call, class) == 1 2
return findMinimalMethod(call, class) 3

} 4

def findMinimalMethod(call : MethodCall, class : ClassDec) : MethodDec = { 5
candidate := getCandidateMethods(call, class) 6
candidateDistance := getDistance(call, candidate) 7
minDistance := getMinimalMethodDistance(call, class) 8

} 1
def getMinimalMethodDistance(call : MethodCall, class : ClassDec) : Nat/glb = { 12
method := getCandidateMethods(call, class) 13
return getDistance(call, method) 14
} 15
def getDistance(call : MethodCall, method : MethodDec) : Nat/sum = { 16
parameter := method.params 17
argument := call.args 18
assert parameter.index == argument.index 19

Figure 2. Excerpt of the overload resolution in IncA.

the parameters, but then we restrict the pairs to have the
same index (which means that they are at the same position)
in Line 19. Second, the function uses sum aggregation over
the Nat lattice, which will sum up the distances. Without
aggregation, for a call and method value pair, there would be
as many (call,method,v;,q..) € getDistance result tuples as
the number of argument-parameter pairs.

Compared to co-contextual type checking, IncA employs
fine-grained incrementalization, and the evaluation in the
computation network is not governed by the AST structure
but by the data dependencies induced by the analysis defi-
nition. Assume we change the type of a method parameter.
IncA will only consider calls that have a matching name,
and, for these calls, it will only re-compute the argument-
parameter distance at the affected position. Because IncA also
incrementalizes the aggregator functions, it can efficiently
derive both the new distance sums and the glb aggregation
result. Based on the updated aggregation results, IncA can
then update the result of the findMinimalMethodMain function
if the changed method is the new resolution result. Next, we
exactly consider this kind of update scenario to benchmark
the performance of overload resolution in IncA.

Evaluation Our goal is to use incremental overload reso-
lution in IDEs to aid developers. To this end, the incremental
update time is the most important performance character-
istic. In addition, an incremental system relies on extensive
caching, so we want to get a feeling about the memory con-
sumption of the solution. We ran benchmarks to examine
these aspects of our solution.

For our measurements, we used the Meta Programming
System (MPS)?, which is a language workbench used to im-
plement (domain-specific) programming languages. In the
workbench, we synthesized FJ benchmarks that consist of
class hierarchies with the shape of binary trees. Each class
contains two methods. A method m with two parameters that
have the type of the containing class, and a method c that
contains a call with the name m. Each call has two arguments,
which are references to fields of the containing class. We
defined the types of the fields randomly from all the classes
in the benchmark. This makes sure that there are random
distances between arguments and parameters. During the
benchmarks, we vary the depth of the binary tree, this way
controlling the number of classes, methods, and calls in the
subject program.

Given a subject program, we first perform a non-incremental
run of the IncA analysis. This is when IncA builds up the
computation network and the initial caches. We measure the
time spent on this operation. Then, we perform 5 random
code changes in each benchmark. A code change manipu-
lates the types of both parameters of a randomly selected m
method by changing them to a randomly selected class. Such
a program change has an influence on overload resolution
because the distances may change. We measure the average
time it takes to update the analysis result.

We also measure the memory requirement of the system.
Before and after initializing the analysis, we measure the
memory requirement of the JVM, and subtract the former
value from the latter one. Based on our benchmarks, the

Shttps://perma.cc/LN73-3879

https://perma.cc/LN73-3879

FTfJP’18, July 2018, Amsterdam, Netherlands

memory consumption of IncA roughly remains the same
throughout a benchmark.

We ran our measurements on an Intel Core i7 at 2.7 GHz
with 16 GB of RAM, running OSX 10.12.6, Java 1.8.0_121, and
MPS version 2017.3.5. Our benchmarking setup is available
online.*

The following table shows our measurement results for
tree depth 6-9 (class hierarchies containing 63, 127, 255, and
511 classes):

Tree depth Non-inc. (ms) Inc. (ms) Memory (MB)

6 1360 3 108
7 1461 3 258
8 2594 5 411
9 12612 14 1466

The numbers in the table show good incremental perfor-
mance: These are the kind of numbers we need for inter-
active applications in IDEs. The only larger values are the
initialization time and memory consumption for depth 9.
A deeper investigation revealed that, in this case, certain
computation nodes have an excessive cache size due to inef-
ficient orderings of relational algebra operators. We believe
that further engineering work in IncA can reduce these num-
bers. To better gauge these numbers, we also put them into
perspective with other metrics and other IncA analyses:

e We also implemented data-flow analyses with IncA,
for example, strong-update points-to analysis [11] and
string analyses [5] for Jimple, which is an intermedi-
ate program representation of the Soot analysis frame-
work [10]. On average, the update times of those analy-
ses are also in the ballpark of a few tens of milliseconds,
with initialization times of up to one minute.

e MPS used roughly 2GB of memory during our bench-
marking. This means that the largest benchmark in-
duces 75% of this memory consumption in addition.

e According to a survey among program analysis users [4]
one of the primary reasons that hinders the adoption of
static analysis tools is slow speed. We argue that over-
loading is fundamental for object oriented languages,
so overload resolution must run with sub-second up-
dates times, otherwise it breaks the development flow
in the IDE. Our IncA overload resolution delivers the
required update times.

e Arzt and Bodden implemented several incremental
data-flow analyses (e.g. reaching definitions, uninitial-
ized variables) with the Reviser framework and con-
tinuously evaluated them over a series of commits to
several repositories [1]. The update times are in the
ballpark of a few tens of seconds, although commits
represent much larger code changes than our program-
matically triggered ones (affecting only single methods

“https://github.com/seba—/inca-experiments

5

Szabd, Kuci, Bijman, Mezini, and Erdweg

and parameters). We believe that our benchmarking
scenario is representative for in-IDE applications be-
cause developers modify the code bases through a
series of small code changes typically.

4 Related Work

Incrementalizing program analyses in the context of IDEs
has a long tradition because an analysis that runs in the back-
ground can only be useful if it does not break the develop-
ment flow with lengthy pauses. For example, the Eclipse JDT
compiler®, the Facebook Hack® and Flow” languages, and the
Java base language in MPS? all use incremental type check-
ing. Unfortunately, the inner workings of these solutions
are not well documented. Also, these are one-off solutions
specific to a given programming language, while our goal is
to find a generic solution that is applicable to programming
languages in general that feature overloading. To this end,
we deliberately experimented with extending co-contextual
type checking or using a generic analysis framework.

We chose IncA because it is incremental, it is independent
of the subject language, and it supports recursive aggrega-
tion over lattices. However, we also examined other frame-
works. For example, Flix [12] and Bloom" support recursive
aggregation, but Flix is non-incremental, while Bloom" only
supports insertions and no deletions, which is not sufficient
for applications in IDEs. QL [2] has a scalable commercial
backend, but without support for lattice-based aggregation.

There is increased research attention towards giving se-
mantics to and dealing with incomplete programs, as pro-
posed by Omar et al. [13]. IncA fits into this research direc-
tion because the declarative analyses with the Datalog solver
executed in a structured program editor (MPS) naturally
supports incomplete or uncompilable subject programs.

5 Conclusions

We examined overload resolution for FJ in depth, and we tried
out two approaches for its incrementalization in this paper.
We failed with co-contextual type checking, but we were
successful with IncA. They key difference between these two
approaches is that IncA allows to build new relations and
model the dependencies precisely between them, whereas
co-contextual type checking relies on the AST directly. IncA
can efficiently maintain the relations based on a delta in the
AST, while co-contextual type checking can only collapse the
constraints after recomputing them for the whole AST. IncA
delivers millisecond update times, which is exactly what we
need in interactive applications in an IDE.

Shttps://perma.cc/5QUY-9XGQ
®https://perma.cc/D77Q-L5B2
"https://perma.cc/5]WN-K8HR
8https://perma.cc/LN73-3879

https://github.com/seba--/inca-experiments
https://perma.cc/5QUY-9XGQ
https://perma.cc/D77Q-L5B2
https://perma.cc/5JWN-K8HR
https://perma.cc/LN73-3879

Incremental Overload Resolution

References
[1] Steven Arzt and Eric Bodden. 2014. Reviser: Efficiently Updating IDE-

[3

—

]

—

/TIFDS-based Data-flow Analyses in Response to Incremental Program
Changes. In Proceedings of the 36th International Conference on Software
Engineering (ICSE 2014). ACM, New York, NY, USA, 288-298. https:
//doi.org/10.1145/2568225.2568243

Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max
Schifer. 2016. QL: Object-oriented Queries on Relational Data. In
30th European Conference on Object-Oriented Programming (ECOOP
2016) (Leibniz International Proceedings in Informatics (LIPIcs)), Shri-
ram Krishnamurthi and Benjamin S. Lerner (Eds.), Vol. 56. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2:1-
2:25. https://doi.org/10.4230/LIPlcs.ECOOP.2016.2

Lorenzo Bettini, Sara Capecchi, and Betti Venneri. 2009. Featherweight
Java with dynamic and static overloading. Sci. Comput. Program. 74,
5-6 (2009), 261-278. https://doi.org/10.1016/j.scic0.2009.01.007

M. Christakis and C. Bird. 2016. What developers want and need
from program analysis: An empirical study. In 2016 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE).
332-343.

Giulia Costantini, Pietro Ferrara, and Agostino Cortesi. 2011. Static
Analysis of String Values. In Proceedings of the 13th International
Conference on Formal Methods and Software Engineering (ICFEM’11).
Springer-Verlag, Berlin, Heidelberg, 505-521. http://dl.acm.org/
citation.cfm?id=2075089.2075132

Sebastian Erdweg, Oliver Bracevac, Edlira Kuci, Matthias Krebs, and
Mira Mezini. 2015. A co-contextual formulation of type rules and its ap-
plication to incremental type checking. In Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2015, part of SPLASH
2015, Pittsburgh, PA, USA, October 25-30, 2015, Jonathan Aldrich and
Patrick Eugster (Eds.). ACM, 880-897. https://doi.org/10.1145/2814270.
2814277

Todd J. Green, Shan Shan Huang, Boon Thau Loo, and Wenchao Zhou.
2013. Datalog and Recursive Query Processing. Found. Trends databases
5, 2 (Nov. 2013), 105-195. https://doi.org/10.1561/1900000017
Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. 2001. Feath-
erweight Java: A Minimal Core Calculus for Java and GJ. Trans-
actions on Programming Languages and Systems (TOPLAS) (2001).
https://doi.org/10.1145/503502.503505

Edlira Kuci, Sebastian Erdweg, Oliver Bracevac, Andi Bejleri, and Mira
Mezini. 2017. A Co-contextual Type Checker for Featherweight Java.

[10]

[11]

[12]

[13]

[14]

[15]

FTfJP’18, July 2018, Amsterdam, Netherlands

In 31st European Conference on Object-Oriented Programming, ECOOP
2017, June 19-23, 2017, Barcelona, Spain (LIPIcs), Peter Miiller (Ed.),
Vol. 74. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 18:1-
18:26. https://doi.org/10.4230/LIPlcs.ECOOP.2017.18

Patrick Lam, Eric Bodden, Ondrej Lhotak, and Laurie Hendren. 2011.
The Soot framework for Java program analysis: a retrospective. In
Cetus Users and Compiler Infastructure Workshop (CETUS 2011), Vol. 15.
35.

Ondrej Lhotak and Kwok-Chiang Andrew Chung. 2011. Points-to
Analysis with Efficient Strong Updates. In Proceedings of the 38th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL ’11). ACM, New York, NY, USA, 3-16. https:
//doi.org/10.1145/1926385.1926389

Magnus Madsen, Ming-Ho Yee, and Ondfej Lhotak. 2016. From Dat-
alog to Flix: A Declarative Language for Fixed Points on Lattices. In
Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’16). ACM, New York, NY,
USA, 194-208. https://doi.org/10.1145/2908080.2908096

Cyrus Omar, Ian Voysey, Michael Hilton, Joshua Sunshine, Claire Le
Goues, Jonathan Aldrich, and Matthew A. Hammer. 2017. Toward
Semantic Foundations for Program Editors. In 2nd Summit on Ad-

vances in Programming Languages (SNAPL 2017) (Leibniz Interna-
tional Proceedings in Informatics (LIPIcs)), Benjamin S. Lerner, Rastislav
Bodik, and Shriram Krishnamurthi (Eds.), Vol. 71. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 11:1-11:12.
https://doi.org/10.4230/LIPlcs.SNAPL.2017.11

Yannis Smaragdakis and Martin Bravenboer. 2011. Using Datalog for
Fast and Easy Program Analysis. In Proceedings of the First International
Conference on Datalog Reloaded (Datalog’10). Springer-Verlag, Berlin,
Heidelberg, 245-251. https://doi.org/10.1007/978-3-642-24206-9_14

Tamas Szabd, Sebastian Erdweg, and Markus Voelter. 2016. IncA: A
DSL for the Definition of Incremental Program Analyses. In Proceedings
of the 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE 2016). ACM, New York, NY, USA, 320-331. https:
//doi.org/10.1145/2970276.2970298

[16] J. B. Wells. 2002. The Essence of Principal Typings. In Automata,

Languages and Programming, 29th International Colloquium, ICALP
2002, Malaga, Spain, July 8-13, 2002, Proceedings (Lecture Notes
in Computer Science), Peter Widmayer, Francisco Triguero Ruiz,
Rafael Morales Bueno, Matthew Hennessy, Stephan Eidenbenz, and
Ricardo Conejo (Eds.), Vol. 2380. Springer, 913-925. https://doi.org/10.
1007/3-540-45465-9_78

https://doi.org/10.1145/2568225.2568243
https://doi.org/10.1145/2568225.2568243
https://doi.org/10.4230/LIPIcs.ECOOP.2016.2
https://doi.org/10.1016/j.scico.2009.01.007
http://dl.acm.org/citation.cfm?id=2075089.2075132
http://dl.acm.org/citation.cfm?id=2075089.2075132
https://doi.org/10.1145/2814270.2814277
https://doi.org/10.1145/2814270.2814277
https://doi.org/10.1561/1900000017
https://doi.org/10.1145/503502.503505
https://doi.org/10.4230/LIPIcs.ECOOP.2017.18
https://doi.org/10.1145/1926385.1926389
https://doi.org/10.1145/1926385.1926389
https://doi.org/10.1145/2908080.2908096
https://doi.org/10.4230/LIPIcs.SNAPL.2017.11
https://doi.org/10.1007/978-3-642-24206-9_14
https://doi.org/10.1145/2970276.2970298
https://doi.org/10.1145/2970276.2970298
https://doi.org/10.1007/3-540-45465-9_78
https://doi.org/10.1007/3-540-45465-9_78

	Abstract
	1 Introduction
	2 Co-Contextual Overload Resolution Does Not Work
	3 Overload Resolution in IncA
	4 Related Work
	5 Conclusions
	References

