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Abstract
Program transformations are an important area of metaprogramming. Compil-
ers and preprocessors commonly apply multiple program transformations in a
row, using the output of one transformation as input for the next. Thereby,
each transformation relies on the output of the preceding transformation to be
correct. For example, a C compiler depends on the preprocessor to expand all
macro definitions as to be able to process the input. Syntactic extensibility of
programming languages exposes the implementation of program transforma-
tions to the user, which makes it even more important to specify and check
their input and output behavior.

Current general-purpose program transformation languages are usually
untyped, hence they cannot ensure that the composition of multiple transfor-
mations is safe, i.e. does not lead to a runtime error. While there is research
in designing type-safe program transformation languages for specific domains
like XML, the safety properties of general-purpose program transformation
languages have not yet been thoroughly studied.

To this end, we develop a core calculus for program transformation languages
suited to formally explore the safety properties of program transformations.
On top of that calculus, we design a domain-specific type system based on
regular tree grammars. The idea is to use tree grammars as types describing
the abstract syntax of the manipulated programs. This makes it possible to
specify the input and output language of a transformation and hence to check
the validity of composite transformations. We show that the type system
is expressive enough to ensure the safety of program transformations in our
calculus and formally prove its soundness.

Furthermore, we extend our calculus and the grammar-based type system
with higher-order functions and parametric types. We believe that the resulting
language constitutes a solid basis for further research on program transformation
languages.
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Zusammenfassung
Programmtransformationen sind ein wichtiger Anwendungsbereich der Metapro-
grammierung. Compiler und Präprozessoren wenden üblicherweise mehrere
aufeinanderfolgende Transformationen an, deren Ausgaben die Eingabe für die
jeweils nächste Transformation darstellen. Transformationen benötigen korrekte
Eingabedaten, weshalb sichergestellt sein muss, dass die Ausgabedaten der
jeweils vorhergehenden Transformation gültig sind. Beispielsweise kann der C-
Compiler das übergebene Programm erst verarbeiten, wenn Makro-Definitionen
im Quelltext vom Präprozessor expandiert worden sind. Im Falle von syn-
taktisch erweiterbaren Programmiersprachen implememtieren die Benutzer
diese Programmtransformationen, weshalb es umso wichtiger ist, dass deren
Verhalten bezüglich Eingabe- und Ausgabedaten spezifiziert und überprüft
werden kann.

Aktuell verwendete universelle Programmtransformationssprachen sind meis-
tens ungetypt, weshalb nicht garantiert werden kann, dass die Komposition
mehrerer Transformationen sicher ist, also nicht zu Laufzeitfehlern führt. Es gibt
Forschungsarbeiten im Bereich typsicherer Transformationssprachen, jedoch
lediglich für spezielle Domänen wie z.B. XML. Für universelle Programmtrans-
formationssprachen wurden die Sicherheits-Eigenschaften allerdings noch nicht
umfassend untersucht.

Wir entwickeln ein Basiskalkül für Programmtransformationssprachen,
welches es uns erlaubt, die Sicherheits-Eigenschaften von Programmtransforma-
tionen formal zu untersuchen. Von diesem Kalkül ausgehend entwickeln wir
ein domänenspezifisches Typsystem, welches auf regulären Baumgrammatiken
basiert. Wir verfolgen den Ansatz, Baumgrammatiken als Typen zur Beschrei-
bung der abstrakten Syntax der zu transformierenden Programme einzusetzen.
Hierdurch können die Eingabe- und Ausgabesprachen der Transformationen
spezifiziert und somit die Gültigkeit der zusammengesetzten Transformationen
überprüft werden. Wir zeigen, dass das daraus resultierende Typsystem aus-
drucksstark genug ist, um die Sicherheit von in unserem Kalkül ausgedrückten
Programmtransformationen zu gewährleisten. Weiterhin beweisen wir dessen
soundness formal.

Außerdem erweitern wir unser Kalkül und das grammatikbasierte Typsystem
um Funktionen höherer Ordnung und parametrische Typen. Wir glauben, dass
die resultierende Sprache als eine solide Basis für weitere Forschungsarbeiten
im Bereich der Programmtransformationssprachen dienen kann.

II





Contents
1 Introduction 1

2 A Calculus for Program Transformations 5
2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Evaluation Contexts . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Substitution . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.4 Matching of Patterns against Values . . . . . . . . . . . 10
2.2.5 Reduction Relation . . . . . . . . . . . . . . . . . . . . . 11

3 Regular Tree Grammars 15
3.1 Regular Tree Grammars . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Operations on Grammars . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Grammars as Types . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Subtyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Simply Typed Language 19
4.1 Computing Types for Pattern Variables . . . . . . . . . . . . . . 21
4.2 Exhaustiveness of Patterns . . . . . . . . . . . . . . . . . . . . . 30
4.3 Typing Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Soundness of the Type System . . . . . . . . . . . . . . . . . . . 38

5 Type Inference and Type Checking 44
5.1 Type Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Type Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Case Study I: Evaluators 51

7 First Extension: Higher Order Functions 58
7.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.3 Type System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.4 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8 Case Study II: Lists, Maps and Folds 70

9 Second Extension: Parametric Types 74
9.1 Parametric Tree Grammars . . . . . . . . . . . . . . . . . . . . 75
9.2 Syntactic Extensions . . . . . . . . . . . . . . . . . . . . . . . . 76

9.2.1 Type Abstractions . . . . . . . . . . . . . . . . . . . . . 77
9.3 Values and Semantics . . . . . . . . . . . . . . . . . . . . . . . . 79
9.4 Parametric Type System . . . . . . . . . . . . . . . . . . . . . . 84
9.5 Subtyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

III



9.6 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

10 Implementation 95
10.1 Algorithms on Tree Grammars . . . . . . . . . . . . . . . . . . . 95
10.2 PLT Redex as Term Transformation Language . . . . . . . . . . 100

11 Related Work 103
11.1 Data Types for Syntax Trees . . . . . . . . . . . . . . . . . . . . 103
11.2 Domain Specific Term Transformation Languages . . . . . . . . 104
11.3 Generic Traversals . . . . . . . . . . . . . . . . . . . . . . . . . 104
11.4 Grammars as Types . . . . . . . . . . . . . . . . . . . . . . . . 105

12 Future Work 107

13 Conclusion 110

Bibliography 111

IV



1 Introduction
Programming is all about the manipulation of data. The kind of data is
application specific: a text editor works on text files, a database engine accesses
and manipulates database entries, an internet browser retrieves and renders
HTML pages, etc. When the data a program works on is itself a program, the
outer program is called a metaprogram. Hence, metaprograms can be thought
of as functions from programs to programs. They get a program as input and
produce another program as output.

This thesis deals with a specific area of metaprogramming, namely pro-
gram transformations. In program transformations, a program is commonly
represented by its abstract syntax tree. Hence the metaprograms consist of
tree transformations. Important applications of program transformations can
be found for example in compilers and preprocessors. The main task of a
compiler is to translate a program written in one programming language into a
program in another programming language. Compilers also often optimize a
given program, i.e. according to some metric they produce an equivalent but
better program in the same programming language.

Another important application for program transformations are desugarings.
On top of a small core language, many programming languages offer a rich
surface syntax, so that the language is convenient to use. The advantage of
a small core language is that formal reasoning and the implementation of the
language get easier. The surface syntax is defined in terms of the core language.
This kind of syntax is called syntactic sugar and the process of translating
syntactic sugar back into the core language is called desugaring. Desugaring is
a common task of preprocessors.

One well-known example for syntactic sugar is Haskell’s do notation [9].
The do notation allows a programmer to express sequences of actions in an
intuitive way. The following program reads one line of input from the user and
prints it out again.
main :: IO ()

main = do line <- getLine

putStrLn line

This program desugars to the following—more verbose—version with higher
order functions.
main :: IO ()

main = getLine >>= \line ->

putStrLn line

Traditionally, defining syntactic sugar for a programming language is up
to the language implementors. Hence, the process of desugaring is built into
the compiler or interpreter. Recent research explores the possibility to transfer
this task to the user of the language [8, 9]. This means a programmer can
define his own syntactic sugar by specifying desugarings into the core language.
SugarJ [8] is a framework offering syntactic extensibility for the programming
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language Java. For example, we can extend Java with a syntactic construct for
pairs. This enables us to write a program of the following form.
public class Test {

private (String , Integer ) p = (" The answer is", 42);

}

The Java compiler does not know how to deal with this program, because we
use new syntactic construct which are not part of the Java language. Therefore,
a preprossesor first needs to desugar the program into plain Java before passing
the resulting program to the compiler. The result of the desugaring might look
as follows, depending on our concrete specification of the new syntax.
public class Test {

private Pair <String , Integer > p =

new Pair (" The answer is", 42);

}

SugarJ-like syntactic extensions can also be composed. This means we can
apply multiple different desugarings in a row each of them taking the output
of the previous desugaring as input.

The main problem, as with all areas of programming, is that programmers
make errors. There are different kinds of errors. First, executing an erroneous
program can lead to a runtime error. This means the program does not produce
any result or a wrong result. Wrong results may include unexpected side effects
like formatting the hard drive. Another kind of error arises when multiple
pieces of code are composed: the first piece of code might produce an output
unsuitable as input for the second piece of code. For example, composing a
function that produces string values with a function that expects integer values
as input will most likely lead to a runtime error. In one of the previous examples
we showed how to extend the Java syntax in SugarJ by adding syntactic sugar
for pairs. In this case, the result of the desugaring serves as input to the Java
compiler. Hence, it is crucial to ensure that the result of the desugaring is valid
Java code.

In the context of program transformations the data itself is a program that
will be executed. It follows that the problem of errors not only applies to the
metaprogram itself but also to the program we are manipulating—the embedded
program. The result of a program transformation could be a program that
is not syntactically correct in terms of the embedded language or that will
produce a runtime error when executed.

In a nutshell, there are three desirable properties that one could expect
from a metaprogram:

1. The metaprogram produces a result. This means it does not produce a
runtime error when executed.

2. The result is a correct program in terms of the syntax of the target
programming language.
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3. The result has some desirable properties in terms of the semantics of the
target programming language (for example it produces a correct result
when executed).

From the point of view of safety it makes sense to catch errors before the
program is executed. This applies to metaprograms as well as to embedded
programs. Current term transformation languages like Stratego [31] or PLT
Redex [20] offer a rich set of tools for working on embedded programs. However,
they are not able to statically ensure the validity of the transformations. This
means that a programmer can not be sure that the result of a transformation
yields a valid program in the target language.

In current research there are two different approaches to solve the prob-
lem. The first approach is to use general purpose languages and their type
systems to express statically type-safe program transformations. The solutions
usually suffer from the limitations in expressiveness of the general purpose
type systems. The second approach is to design domain specific languages for
program transformations. One example is the programming language XDuce
for expressing type-safe transformations on XML programs [14]. In Section 11
we discuss these two approaches.

While there exists research in the area of typed program transformation
language, the work applies only to a certain domain of programs as for exam-
ple XML. This introduces many problems specific to the respective domain.
However, we don’t know of any framework which is suited to explore general
properties of program transformation languages independent of the concrete
application domain.

The goal of this thesis is to fill this gap by designing a core calculus as a
basis for formally studying safety properties of program transformations. The
core idea is to use a domain specific type system based on tree grammars. Tree
grammars are a formalism to describe sets of tree structured data. Since the
embedded programs are represented as abstract syntax trees, tree grammars
are well suited to serve as types for our domain specific type system. To get
back to our previous example, we can define a type Java+Pairs and another
type Java representing the Java syntax extended with pairs and the core Java
syntax respectively. The type system has to prove that the desugaring produces
a result of type Java when given an input of type Java+Pairs.

Summarized, our contributions are as follows.

• We define a minimal set of language constructs which are necessary to
express reasonably complex program transformations.

• Based on these language constructs we design a core calculus for program
transformation languages by specifying the syntax and an operational
semantics.

• We design a domain specific type system based on regular tree grammars
and prove it sound.
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• We extend the core calculus and the type system by higher order functions
and parametric types.

• With two case studies we show the applicability of our calculus for complex
program transformations.

• We provide a prototype implementation of the system on top of PLT
Redex [20].

Outline
The reminder of this thesis is structured as follows.

In Section 2 we define a core calculus for metaprogramming. The goal is
to design a calculus that is expressive enough to describe complex program
transformation while still keeping it as small as possible as to simplify the study
of its formal properties. The main features of this calculus are recursive function
definitions and pattern matching as a means to deconstruct and analyze tree
structured data.

In Section 3 we introduce the notion of regular tree grammars and discuss
how to use them as types in a type system for metaprogramming.

In Sections 4 to 6 we define a base type system for the calculus from Section
2 yielding a simply typed language. The main challenge turns out to be the
typing of pattern matching expressions. We discuss what it means for a pattern
to match a type and how to decide if a set of pattern is exhaustive with respect
to a type. Furthermore, we prove the soundness of the resulting system and
describe a type checking algorithm on the basis of type inference. Finally,
we demonstrate the ability of the simply typed language to express complex
program transformations by a case study. The case study consists of writing an
evaluator for a small programming language. While the case study shows that
the simply typed language can express complex program transformations it also
shows some limitations in terms of abstraction mechanisms. These limitations
motivate further extensions of both the language and its type system.

In Sections 7 and 9 we discuss how to extend the simply typed language
with higher order functions and type abstractions.

Although the main focus of the thesis is to study the formal properties of the
calculus for metaprogramming, we provide a proof-of-concept implementation
of the simply typed language on top of PLT Redex [20]. In Section 10 we discuss
some of the algorithms used in the implementation, in particular the algorithms
operating on tree grammars like subtyping. The source code of the implemen-
tation is available at https://github.com/haselhorst/Tree-Grammars.

In Section 11 we discuss related work, in Section 13 we conclude and in
Section 12 we point to areas of future research that arise from the work of this
thesis.
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2 A Calculus for Program Transformations
In this section we describe a calculus for program transformations. There are
two design goals for this calculus:

• It has to be expressive enough to describe reasonably complex program
transformations.

• It should be as small and simple as possible for the following reasons:
First, the smaller the language, the easier it is to formally reason about it.
And second, a small language is a good starting point for experimenting
with language or type system extensions.

Since the notion “reasonably complex” is vague, we need to be more concrete
about the kind of operations we expect to be expressible. The most basic
operation is the construction and deconstruction of terms. Construction means
we want to be able to combine terms into more complex terms. Deconstruction
refers to “looking inside” a term, i.e., decomposing a complex term into its
subterms. In addition to deconstructing a term, it should be possible to take
different actions depending on the shape of the term.

The syntax trees we are working on are inductively defined. This implies
recursive functions as an appropriate unit of abstraction. As to keep the
calculus as simple as possible we only use first order functions here. Later (see
Section 7) we extend the calculus with higher order functions.

In the following we formally define the calculus. This is done in two steps:
First, we specify the syntax and second, we define the meaning of a syntactically
correct program: its semantics.

2.1 Syntax
The syntax of language is specified by a context free grammar. The definition
is shown in Figure 1. A program consists of a set of function definitions and
one expression. There are four kinds of expressions covering the requirements
we identified in the beginning:

• Constructor applications of the form c(expr, . . . ,expr): with that we can
construct a new expression given some subexpressions. We allow to omit
the parentheses for a constructor application without arguments.

• Pattern matching: the goal of a pattern matching expression

match exprm case pat1 -> expr1 . . . case patn -> exprn

is to deconstruct the expression exprm with the help of the patterns pat1 to
patn and take different actions depending on the shape of exprmatch. Hence,
constructor application and pattern matching are dual to each other:
a constructor application constructs terms, whereas pattern matching
deconstructs them.
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• Function applications of the form f(expr, . . . ,expr): this applies the
function f to the argument expressions.

• Variables x.

To be able to distinguish a function application from a constructor application
we syntactically separate constructor names from function names: constructor
names start with a capital letter, while function names start with a lower
case letter. Since a function application can be always distinguished from a
variable by the context (a function application is always followed by an opening
parenthesis), names for variables also start with a lower case letter.

In function definitions we give names to functions. Since we can use the
name of the function we are currently defining within the body of the definition,
the language supports recursion.

Before giving some examples that illustrate the syntax of the language we
introduce some convenience notations:

• We allow to give names to entities like function definitions, expressions,
etc. and then to use the names in the following instead of inlining the
definitions.

• Instead of writing a program as a list of function definitions and an
expressions, we will often just write the expression and mean “that
expression in the context of all already defined functions”.

program ::= F expr
F ::= fdef . . . fdef
fdef ::= f(x, . . . ,x) = expr
expr ::= x

| f(expr, . . . ,expr)

| c(expr, . . . ,expr)

| match expr caseexpr . . . caseexpr
caseexp ::= case pat -> expr
pat ::= x | c(pat, . . . ,pat)

x ::= variable names
c ::= constructor names
f ::= function names

Figure 1: Syntax of the Language
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Example 2.1
Zero and A(B,C,A(X)) are examples of very simply programs that only use
constructor applications to build literal trees.

Let’s look at a slightly more complex program using pattern matching.
match A(B,C)

case A(x,A(y,z)) -> y

case A(x,y) -> x

case x -> NoA

Although we have not yet defined the semantics of the language, we would
expect that this program evaluates to B: for an intuitive definition of
matching, the second pattern A(x,y) matches the expression A(B,C) thereby
assigning the value B to x.

Example 2.2
As a second example we show two definitions of functions called positive

and pred. Their intention should be pretty clear from the names.
positive (x) = match x

case Zero -> False

case y -> True

pred(x) = match x

case Succ(y) -> y

2.2 Semantics
So far, we have only defined the syntax of the language. Hence, we can say
that a given piece of code is a syntactically valid program according to the
syntax definition. But we did not yet specify what the meaning of the program
is: its semantics.

We formalize the semantics of the language as a small step operational
semantics [24] on expressions. This means, we define a reduction relation that
reflects the way an expression e1 can reduce to another expression e2 in one
step.

Formally, the reduction relation is a ternary relation −→⊆ (F ×expr ×expr),
where F is a set of function definitions and expr is an expression.

(F, e1, e2) ∈−→ means that e1 can reduce to e2 in one step assuming
the function definitions of F . We write F � e1 −→ e2 for (F, e1, e2) ∈−→.
Furthermore, we define −→∗ to be the reflexive and transitive closure of −→.
This means that F � e −→∗ e� if and only if there exist e1 to ek with e1 = e
and ek = e� so that F � e1 −→ . . . −→ ek.

To be able to define the reduction relation, we need some preliminary
notions that we introduce in the following.
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2.2.1 Values

We define the semantics of a program as a small step operational semantics
describing single evaluation steps. Nevertheless, the ultimate goal of a program
is to produce a result and not to be trapped in an endless sequence of evaluation
steps. The language is a calculus for program transformations, hence the data
we are working with are programs in the form of syntax trees. This means we
expect the program to return a syntax tree when finishing evaluation.

Values of a language are those expressions that we do not expect to reduce
further but would accept as the result of an evaluation. Since our data has
the form of syntax trees, those should at least be a subset of the values. In
this case it showed sufficient to define the values to coincide exactly with the
trees. Hence, values are syntactically defined as the following subset of the
expressions (which coincides with the definition of trees in Section 3).

value ::= c(value, . . . ,value)

Constructors without arguments are leafs of the trees, otherwise they are
inner nodes.

Example 2.3
The following expressions are values:

Zero , Succ(Plus(Succ(Zero),Zero ))

but these are not:
x, f(), Succ(f(Zero ))

x and f() are no trees at all. Succ(f(Zero)) resembles a tree, yet contains
the function application f(Zero) as a subexpression. But values allow only
constructor applications. Furthermore, we would expect the expression
Succ(f(Zero)) to evaluate further by replacing f(Zero) with the result of
applying the function f the (Zero).

2.2.2 Evaluation Contexts

As the expression Succ(f(Zero)) from the last example shows, evaluation some-
times has to take place in a subexpression of the current expression. Evaluation
contexts [32] have proved to be a useful formalism to capture the notion of
evaluations in subexpressions. An evaluation context E is defined as follows.

E ::= •
| f(value, . . . ,value,E,expr, . . . ,expr)

| c(value, . . . ,value,E,expr, . . . ,expr)

| match E caseexpr . . . caseexpr

Evaluation contexts can be thought of as expressions with a hole (represented
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by •). Plugging an expression e1 into the hole of an evaluation context E yields
an expression e2. This operation is written E[e1] and replaces • in E with the
expression e1.

An expression e can be decomposed into an evaluation context E and an
expression e� so that E[e�] = e. This decomposition is not necessarily unique.
But we will see in Section 2.2.5, that there is at most one decomposition
E[e�] = e of an expression e so that e� is a reducible expression (redex) in terms
of the reduction relation.

With the help of evaluation contexts the reduction of the subexpression e1
within the expression e can be written as follows: First, e is decomposed into
E[e1] = e. If e1 evaluates to e2 we can simply plug the result back into e by
E[e2].

Note, that the definition of evaluation contexts constrains the set of subex-
pressions that can be plugged out of an expression by a decomposition. Take
for example the expression f(g(x), g(y)). It is possible to decompose it into
E = f(•, g(y)) and e = g(y). But the decomposition E = f(g(x), •) and e =
g(y) is invalid, because g(x) is not a value. Hence, this definition of evalua-
tion contexts implies a left-to-right evaluation of arguments in function- and
constructor applications.

2.2.3 Substitution

When evaluating a function application we will have to substitute the formal
arguments of the function by the actual arguments of the application. Reducing
a pattern match has similar requirements: in that case we must substitute the
pattern variables by their matches in the corresponding expression. This is
where the general notion of a substitution comes into play.

A substitution σ is a finite mapping from variables into a target domain.
In this chapter, the target domain will be the set of values.

Applying a substitution σ to an expression e yields a new expression
where each variable x ∈ dom(σ) is replaced by its substitute σ(x) under
some conditions. We write σ(e) or e[x1 �→ v1, . . . , xn �→ vn] for applying a
substitution σ = (x1 �→ v1, . . . , xn �→ vn) to an expression e.

Since there are expressions (namely pattern matches) in the language that
bind variables, it would be wrong to literally replace all variables with their
substitutes. More precisely, applying a substitution σ to expression e only
replaces all free occurrences of variables in e. All bound occurrences of variables
are left untouched. An occurrence of a variable is bound if it is in the scope of
a pattern binding it. Otherwise the occurrence if free.

Figure 2 shows the straightforward inductive definition of substitution.
Note, that we do not have to think about accidental variable capture [24]
here, because we only replace variables with values which cannot contain free
variables.

Example 2.4
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σ(x) =
�

σ(x) if x ∈ dom(σ)
x otherwise

σ(C(e1,. . . , en)) = C(σ(e1),. . . , σ(en))

σ(f(e1,. . . , en)) = f(σ(e1),. . . , σ(en))

σ





match e
case pat1 -> e1

...
case patn -> en




= σ





match σ(e)
case pat1 -> σ1(e1)

...
case patn -> σn(en)





where σi = σ \ vars(pati)

Figure 2: Applying a Substitution to an Expression

As an example we apply the substitution σ = {x �→ Zero} to the expression
match Plus(Succ(x),Zero)

case Plus(x,y) -> x

case y -> Plus(x,x)

For that we need to apply the substitution recursively to the subexpressions:

• σ(Plus(Succ(x),Zero)) yields Plus(Succ(Zero),Zero).

• When recursing into the right hand sides of the case expressions we
need to be careful. The first pattern Plus(x,y) binds the variable x.
Therefore we apply the modified substitution σ \ {x,y} = {} to the
subexpression x yielding x.

• The second pattern does not bind x. Hence its right hand side becomes
Plus(Zero,Zero) after the substitution.

The resulting expressions thus is
match Plus(Succ(Zero),Zero)

case Plus(x,y) -> x

case y -> Plus(Zero ,Zero)

2.2.4 Matching of Patterns against Values

In the formulation of the reduction relation we will need the notion of a pattern
matching against a value. Informally spoken, a pattern matches a value if it
is an (possibly incomplete) part of the value starting at the root node of the
tree. Incomplete means, that at some points there may be variables instead of
subtrees. Additionally, if a variable occurs more than once in the pattern, the
corresponding subtrees in the value must be the same.

Formally, we define that a pattern pat matches a value v if there exists
a substitution σ, so that σ(pat) = v. Obviously, there can be at most one
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substitution σ fulfilling this requirement.

Example 2.5
The substitution σ = (x �→ Zero , y �→ Succ(Zero)) shows that the pattern
pat = Succ(Plus(x,y)) matches the value v = Succ(Plus(Zero,Succ(Zero))),
since σ(pat) = v.

Figure 3 show the (partial) function match that computes the substitution
unifying a pattern with a value. The predicate “consistent” in the definition
means that the results of the recursive calls have to agree on bindings for the
same variable.

match(c(pat1, . . . , patn), c(v1, . . . , vn)) = �n
i=1 bind i

where
bind i = match(vi, pati),
consistent(bind1, . . . , bindn)

match(x, v) = {x → v}

Figure 3: Matching a Pattern against a Value

As a shorthand we define the predicate matches as

matches(pat, v) = (pat, v) ∈ dom(match)

.

2.2.5 Reduction Relation

With the help of the previous definitions the reduction relation −→ can now
be formalized. The rules shown in Figure 4.

CONG
F � e1 −→ e2

F � E[e1] −→ E[e2]

FAPP
f(x1, . . . ,xn) = e ∈ F

F � f(v1, . . . ,vn) −→ e[x1 �→ v1, . . . , xn �→ vn]

MATCH

¬ matches(patj, v), j ∈ {1, . . . , i − 1}
match(pati, v) = {x1 �→ v1, . . . , xk �→ vk}

F � match v case pat1 -> e1 . . . case patn -> en

−→ ei[x1 �→ v1, . . . , xk �→ vk]

Figure 4: Reduction Relation
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The rules are read as follows: below the line is the conclusion and above
the line are the premises. E.g. to conclude that the statement under the line is
valid, all of the premises must hold. The reduction relation −→ is defined as
the smallest relation containing all elements that can be derived by the rules
shown in Figure 4.

The reduction relation identifies two classes of reducible expressions. The
first class are function applications where all arguments are values. The rule
FAPP says that an expression of the form f(v1, . . . ,vn) reduces to the body
e of the function definition for f where the formal arguments are replaced by
the actual arguments. The second class of reducible expressions are pattern
matches where the expression matched against is a value. The rule MATCH
tells us that we need to find the first pattern i where pati matches v. In this
case the whole expression reduces to the right hand side ei where the pattern
variables are replaced by their matches.

In all other cases the reductions take place inside subexpression. The
congruence rule CONG covers these cases. Note that there can be at most one
decomposition of an expression into an evaluation context and a subexpression
such that the subexpression is reducible according to the rules FAPP or MATCH.
The definition of the evaluation contexts (see Section 2.2.2) uniquely specifies
the path we have to take to search for reducible subexpressions.

Before we give some examples illustrating the reduction semantics, we define
two functions for later use:

plus(x,y) = match x

case Zero -> y

case Succ(x’) -> plus(x’,Succ(y))

remove -plus(x) =

match x

case Zero -> Zero

case Succ(y) -> Succ(remove -plus(y))

case Plus(y,z) -> plus(remove -plus(y),remove -plus(z))

The function plus computes the addition of two numbers. The function
remove-plus uses the function plus to evaluate an arithmetik expression with
addition and successor function. Is does this by recursively replacing all Plus

nodes in the tree by the sum of their arguments.

Example 2.6
The first example illustrates the rules FAPP and MATCH. Let’s look at
the expression

plus(Succ(Zero),Zero)

Since both Succ(Zero) and Zero are values the rule FAPP applies. This
means we can reduce the expression to the body of the function plus

replacing the formal argument x by the value Succ(Zero) and the argument
y by the value Zero. This yields the expression
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match Succ(Zero)

case Zero -> Zero

case Succ(x ’) -> plus(x’,Succ(Zero ))

Now we are in a situation where the rule MATCH applies, because Succ(Zero)

is already a value. The first pattern Zero does not match the value
Succ(Zero). But the second pattern Succ(x’) succeeds yielding the substi-
tution {x’ �→ Zero}. According to the reduction rule the whole expression
reduces to

plus(Zero ,Succ(Zero ))

Another application of the rule FAPP yields the expression
match Zero

case Zero -> Succ(Zero)

case Succ(x ’) -> plus(x’,Succ(Succ(Zero )))

and we finally arrive at the value Succ(Zero) by the rule MATCH.

Example 2.7
We now show the application of the CONG rule. Therefor we start with
the expression

Succ(plus(Zero ,Succ(Zero )))

This expression is not directly reducible, because neither FAPP nor MATCH
applies. But we can decompose it into the evaluation context E = Succ(•)

and the expression e = plus(Zero,Succ(Zero)) so that
E[e] = Succ(plus(Zero,Succ(Zero))).

The expression e reduces to e� =
match Zero

case Zero -> Succ(Zero)

case Succ(x ’) -> plus(x’,Succ(Succ(Zero )))

in one step by FAPP. Hence, by CONG the expression
Succ(plus(Zero,Succ(Zero))) = E[e] reduces to E[e�] =

Succ(

match Zero

case Zero -> Succ(Zero)

case Succ(x ’) -> plus(x’,Succ(Succ(Zero ))))

It is clear from the definition of the reduction relation that a value cannot
reduce further since it does not contain reducible expressions. Hence, once we
reach a value after a sequence of reduction steps the evaluation terminates.
But are values the only expressions that cannot further reduce? The answer is
no. To see why, we give some examples.

• Reaching an expression x consisting only of a variable is a dead end in
the evaluation sequence. Recall that both formal arguments of function
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definitions and pattern variables are replaced by values during evaluation.
This implies that whenever we arrive at the expression x after a number
of evaluation steps x was a free variable of the original expression.

• An function application of the form f(v1,. . . ,vn) is stuck if f is not
defined or takes a different number of arguments as supplied.

• A pattern matching expression cannot reduce further if none of its patterns
matches.

We expect the evaluation of a program to yield a value as to be of any use.
This suggests that the notion of a syntactically well formed program is not
precise enough to only allow valid programs. In the reminder of the thesis we
will explore how type systems help us to separate valid programs from programs
that we consider to have no meaning without having to evaluate them.
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3 Regular Tree Grammars
When designing a type system for a language we want to define types that are
able so describe sets of that language’s values (see Section 1). In our calculus
values are trees. Hence, it is natural to model types as sets of trees.

Tree grammars [5] are a formalism to concisely describe sets of trees. In
short, tree grammars are the counterpart to common word grammars [12]
that describe languages of words. Like for word grammars there is also a
hierarchy of classes of tree grammars, e.g. regular tree grammars, context free
tree grammars, etc. The higher we get in the hierarchy the more powerful the
grammars become, i.e. the broader is the set of languages they can describe.
On the other hand, we loose closure properties and decision problems raise in
complexity or get undecidable.

In our case it showed sufficient to stick to regular tree grammars. Regular
tree grammars share many desirable properties with regular word grammars.
For example, they are closed under union and intersection. And decision
problems like inclusion are decidable.

In the reminder of this section we formally define tree grammars and their
languages. Most of this content is not new although we sometimes modify
definitions slightly to meet our needs. A thorough introduction to the material
presented here can be found for example in [5]. Furthermore, we discuss how
to exploit regular tree grammars as types for our language.

3.1 Regular Tree Grammars
Let c be a set of constructor names and n a set of nonterminal names. Then a
tree over c and n is inductively defined as follows.

tree ::= n | c(tree, . . . ,tree)

c ::= set of constructor names
n ::= set of variable names

We distinguish constructor names from variable names syntactically: con-
structor names start with a capital letter while variables names start with a
lower case letter. Furthermore, we allow to omit the parentheses for construc-
tors without arguments. Note, that the definition of tree coincides with the
definition of values from Section 2.2.1 for n = ∅.

A regular tree grammar is defined as follows.

grammar ::= G(n, π)

π ::= (prod, . . . ,prod)

prod ::= n -> tree | . . . | tree
It consists of a start symbol and a list of productions π. A production maps

a nonterminal n to a set of trees over c and n.
A grammar G describes a set of values—its language L(G). For specifying

the language generated by a grammar we need the notion of contexts - a
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modified version of the evaluation contexts from Section 2.2.2. A context E is
defined as a tree containing a hole:

E ::= • | c(tree, . . . ,tree,E,tree, . . . ,tree)

A tree treeb can be derived from a tree treea by the grammar G =G(s,π) if
and only if

• There exists a context E and a nonterminal n, so that E[n] = treea.

• There exists a production n -> tree1 |. . . | treek in π and an i so that
E[treei] = treeb.

This means, nonterminals can be substituted by right hand sides of productions.
The language L(G) is then defined as the set of trees over c and n = ∅ that
can be derived from the start symbol of the grammar in a finite number of
steps. The requirement n = ∅ ensures that all trees in L(G) do not contain any
variables, hence are values.

Example 3.1
Let’s look at the grammar

num := G(n, (n -> Zero | Succ(n)))

This grammar describes the set of natural numbers. To see why, lets look at
the trees derivable from the start symbol n. The value Zero can be derived
from the start symbol in one step. Alternatively we can also derive Succ(n)

in one step. Succ(n) is not yet a value because it contains the nonterminal
n. Further derivations hence lead to the values Succ(Zero), Succ(Succ(Zero))

and so forth. Hence, the language L(num) is the set {Succ
i
(Zero)|i ≥ 0}

which describes exactely the peano numbers.

It is important to note that there can be several grammars describing the
same set of trees. This means there can exist G1 �= G2 with L(G1) = L(G2).

Example 3.2
Take the following productions:

odd -> Succ(even)

even -> Zero | Succ(odd)

With these definitions we can construct a different grammar also describing
the set of natural numbers.

num ’ := G(n, (n -> even | odd ,

odd -> Succ(even),

even -> Zero | Succ(odd )))
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Our definitions of trees and tree grammars are slightly different than the
standard definitions in the literature. Usually, each constructor name c is
associated with a fixed arity n. This restricts the use of c to nodes with n
children. Our definition is more liberal at that point. Constructor names can
be used with different numbers of arguments at different positions. While
this looks like our formalism is more powerful, in fact it is not. The number
of arguments n is clear from the context at each point where an application
c(t1, . . . , tn) is used. This means we can define a whole class of constructors
(c, n) for each constructor c separating the instances of that constructor with
different numbers of arguments. This association induces an isomorphism both
between grammars and trees such that a tree is in the language of a grammar
if and only if the same tree with renamed constructors is in the language of the
grammar with renamed constructors. While our formalism for tree grammars
is equivalent to the standard formalism, it simplifies many of the following
definitions and proofs.

3.2 Operations on Grammars
Regular tree grammars are closed under union and intersection.[5] This means
that, given grammars G1 and G2, we can build the regular tree grammars
G1 ∪ G2 and G1 ∩ G2 such that L(G1 ∪ G2) = L(G1) ∪ L(G2) and L(G1 ∩ G2) =
L(G1) ∩ L(G2).

Furthermore, equivalence and inclusion is decidable for regular tree
grammars.[5] This means there exist algorithms to check whether L(G1) =
L(G2) and L(G1) ⊆ L(G2) for given grammars G1 and G2.

Finally, we can decide if a grammar G generates the empty language, i.e. if
L(G) = ∅. [5]

In Section 10 some of the algorithms used in the prototype implementation
of the system are explained. For the theoretical analyses in the following
sections it is enough to know that there exist algorithms to compute the above
mentioned operations.

3.3 Normalization
Working with grammars becomes much simpler if they are normalized. We
define a normalized grammar as follows:

• All right hand sides of a production have the form c(n1,. . . ,nk) where
c is a constructor name and n1 to nk are nonterminals. Especially, no
productions of the form n1 -> n2 are allowed.

• For all nonterminals mentioned within a grammar there exists exactely
one production mapping that nonterminal to a (possibly empty) set of
right hand sides.
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For each grammar G it is possible to construct a normalized grammar G� so
that L(G) = L(G�). An algorithm is shown in Section 10. Hence, from now on
we assume all grammars to be normalized if not otherwise mentioned.

3.4 Grammars as Types
As mentioned at the beginning of this section, our goal is to model types as
sets of values. Tree grammars are a means of describing sets of values by the
language they generate. But we have seen that the grammar describing a certain
set of values is not unique: there may exist different grammars generating the
same language. From a semantic point of view these grammars are equivalent.
Hence, we define types as set of values that can be described by a regular tree
grammar. So grammars are only a textual representation of types.

However, we will use the terms grammar and type interchangeably in the
following keeping in mind the abovementioned distinction. Since equivalence
of grammars is decidable there is no formal problem with that less strict
terminology.

3.5 Subtyping
We define a subtype relation on types as follows. t1 is a subtype of t2 if and
only if every value in t1 is also in t2. We write t1 <: t2 for t1 is a subtype of
t2. Hence subtyping corresponds to inclusion of languages. Since types are
represented by regular tree grammars, a type t1 represented by a grammar G1
is a subtype of a type t2 represented by a grammar G2 if L(G1) ⊆ L(G2).

As mentioned above, inclusion is decidable for regular tree grammars. It
follows, that subtyping is also decidable.
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4 Simply Typed Language
We have seen in Section 2.2.5 that there exist syntactically correct expressions
that are neither a value nor can take a reduction step. These expressions are
stuck—we cannot assign any meaning to them. The goal of designing a type
system for the language is to separate these invalid terms from valid ones.
Hence we want to define the subset of well-typed terms enjoying the following
property: evaluation of a well-typed expression according to the operational
semantics (see section 2.2) will never reach a dead end. By dead end we mean
to reach an expression that is neither a value nor can take a further reduction
step.

Note, that we do not require the stronger property that every well-typed
expression reduces to a value in a finite number of steps. The reason is that we
allow arbitrary recursion via function definitions.

The goal of the type system is to generate conclusions of the form expression
e has type t. Since expressions always occur in a context of function definitions
we need to lift the notion of typing to whole programs. A program F e is
well-typed if all function definitions in F are well-typed and there exists a type
t so that, in the context of the function definitions F , e has type t.

In order to be able to check each function definition separately we need
to extend the syntax of the core language with some type annotations. In
function definitions we annotate a type for each formal argument and a result
type. These annotations define an “interface” for a function. This implies two
things: First, we can type the body of the function in isolation assuming the
formal arguments have the annotated type. And second, when typing function
applications we can use the type information from the annotations and don’t
need to look into the implementation of the function again.

There is a second—less obvious—place in the syntax that requires type
annotations for typing. Let’s consider an expression of the form

match em case pat1 -> e1 . . . case patn -> en.

The patterns pati can contain pattern variables. This implies that these
variables may occur free in the expressions ei. During evaluation the pattern
variables will bind to actual values and all occurrences in ei will be replaced by
these values. Hence, each case expressions acts like a function definition where
the pattern variables correspond to the formal arguments and the right hand
side ei corresponds to the function body. This means we need to know the
types for the pattern variables to be able to type the right hand sides ei. There
are two possibilities for placing type annotations to solve the issue: Either we
annotate each pattern variable or we annotate the expression em and compute
the types for the pattern variables from that. We choose to annotate em for two
reasons. First, this version requires only one annotation per pattern matching
expression instead of on annotation per pattern variable. And second, this
approach is common in type systems with record- or sum types [24] where the
typing rules are related to our rules for pattern matching.
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Figure 5 shows the extended syntax for the simply typed language. The
differences to the core language are highlighted with boxes. In addition to the
annotations for function definitions and pattern matches we require to annotate
the top level expression of a program. Type checking a program hence means to
check whether all functions adhere to their interfaces and to check whether the
top level expression has the annotated type assuming the functions’ interfaces.

program ::= F expr : t
F ::= fdef . . . fdef

fdef ::= f(x : t , . . . ,x : t ) : t = expr
expr ::= x

| f(expr, . . . ,expr)

| c(expr, . . . ,expr)

| match expr : t caseexpr . . . caseexpr
caseexp ::= case pat -> expr
pat ::= x | c(pat, . . . ,pat)

t ::= G(n, (prod, . . . ,prod))

prod ::= n -> rhs | . . . |rhs
rhs ::= c(n, . . . ,n)

x ::= variable names
c ::= constructor names
f ::= function names
n ::= nonterminal names

Figure 5: Syntax of the Simply Typed Language

Strictly speaking, the operational semantics from Section 2.2 is only defined
for untyped terms. Since types do not play any rule during evaluation we lift the
definition of the reduction rules to typed terms as follows: all typing annotations
are ignored to determine which rule applies. But still the annotations are
propagated unchanged to the result.

For the formalization of the type system we need the notion of a typing
context. A typing context Γ is a finite mapping from variables to types. We
write them as Γ = {x1 :t1, . . . , xn :tn} keeping in mind that Γ is a mapping (hence
no variable may occur more than once). The empty context is abbreviated by
∅.

A typing context Γ can be extended by another typing context Γ�, written
as Γ ∪ Γ�. Since the result must again be a valid typing context, we define that
the second context overwrites the first one if both have mappings to different
types for the same variable.
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Typing of expressions then is defined as a 4-ary relation ⊆ (F ×Γ×expr ×t),
where F is a set of function definitions, Γ a typing context, e an expression and
t a type as defined in Section 3.1. (F, Γ, e, t) in the typing relation means that,
under the assumption of F and Γ, e has type t. We write it as F, Γ � e : t.

Using the typing relation for expressions we can formally define what it
means for a program to be well-typed.

T-PROG
F, {xi1 : ti1 , . . . , xiki

: tiki
} � ei : tresi F, ∅ � e : t

F = {f1(x11 : t11, . . . ,x1k1
: t1k1

) : tres1 = e1, . . . ,
fn(x1n : t1n, . . . ,xnkn

: tnkn
) : tresn = en}

e : t

This rule says that a program is well-typed if all function definitions adhere
to their interfaces and if the top level expression can be given the annotated
type assuming the function context F and an empty typing context. To prove
that a function definition adheres to its interface we check that the body of
the function definition has the annotated type as result type. The function
body can contain free variables, namely the formal arguments of the function.
Therefore we need the typing context to contain the assumptions that the
formal arguments have the annotated type for typing the body.

The goal of this Section is to define a type system for the simply typed
language and to prove it sound. Typing pattern matching expressions turned
out to be quite challenging. Therefore we need some preliminary considerations
as a basis for the specification of the type system. In the reminder of this
Section we discuss how to compute types for pattern variables and how to check
for exhaustiveness of a set of patterns with respect to a type. Furthermore, we
define the type system as a set of inference rules and prove it sound.

4.1 Computing Types for Pattern Variables
A pattern matching expression has the form

match em : tm

case pat1 -> e1
· · ·

case patn -> en

Depending on the value of the expression em at runtime the whole expression
reduces to one of the right hand sides e1 to en where the pattern variables are
replaced by the values resulting from the pattern match. Type checking takes
place before runtime. This means that we do not know the exact value of em.
Which again implies that we also do not know which of the patterns will match.

But if we can show that em has the annotated type tm we know the set
of possible values of em, namely all values in tm. Hence, the type annotation
acts as an interface between the expression em matched against and the case
expressions.
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Since we do not know which pattern will actually match at runtime we
need to type-check all right hand sides e1 to en. The challenge is that these
expression can contain free variables, namely the pattern variables bound by
the respective patterns. Hence, to typecheck the right hand sides e1 to en we
need to know the set of values for the pattern variables. This means we need a
way to compute a type for each pattern variable that contains all these values.

The only information we have is the type annotation tm. This annotation
gives us the set of values of the expression em at runtime. The goal is to
find an algorithm that takes a pattern pat and a type t as input and yields
a type tx for each pattern variable x containing all possible values of x. Put
otherwise, the algorithm should yield an appropriate typing context Γpat with
dom(Γ) = vars(pat).

Example 4.1
Let’s consider the expression

match x : G(n, (n -> Zero | Succ(n)))

case Zero -> Zero

case Succ(y) -> y

For typechecking this expression we do not know the exact form of x. All
we know is that x will evaluate to a value in G(n, (n -> Zero | Succ(n))) at
runtime—at least if we assume the type annotation to be correct. The first
pattern Zero does not contain pattern variables. Therefore we can check
the corresponding right hand side without additional information.

On the other hand, in order to typecheck the right hand side of the second
case expression, namely y, we need a type for the pattern variable y. Hence,
we have to compute the set of values of the pattern variable y when matching
the pattern Succ(y) against a value of type G(n, (n -> Zero | Succ(n))).

All values that match the pattern Succ(y) have to start with an applica-
tion of the constructor Succ. On the other hand, for deriving a value from
the grammar G(n, (n -> Zero | Succ)) that starts with an application of
the constructor Succ we have to use the production n -> Succ(n) as first
derivation step. Hence, the pattern variable y could match to any value
generated by the grammar starting with n. Since n is again the start
symbol of the original grammar, the range of values of y is described by
G(n, (n -> Zero | Succ(n))).

There are two fundamental design choices for typing pattern matching
expressions that we discuss in the following.

Design Choice: Non-Matching Patterns

As an example we consider the program fragment
match x : num

case Foo(x,y) -> ...

case ...
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If the program adheres to the type annotation num, the pattern Foo(x,y) will
never match at runtime, because there are no values in num of this form.
Therefore the program behaves correctly at runtime if and only if it behaves
correctly without the case expression case Foo(x,y) -> .... Put otherwise, this
case expression has no influence on the runtime behavior of the program. The
right hand side of the case expression with the pattern Foo(x,y) is dead code.

There are two points to discuss. First, we have to decide if we want to allow
to write patterns that are guaranteed to never match at runtime. And second,
we need to decide if we require dead code to be well-typed.

• In the untyped version of our calculus constructor names can be used
essentially everywhere. There are no runtime errors that are caused by
using a constructor in a wrong way, because constructor names are not
tied to type definitions as for example in Haskell’s algebraic data types.
Hence, from the point of view of the untyped calculus is makes perfectly
sense to allow arbitrary patterns, since the input values are not restricted
by type annotations. Although we have no direct benefit of allowing
non-matching patterns in the simply typed language it does no harm
either. However, we will later see in the context of parametric types
(see Section 9) that it is useful to allow arbitrary patterns in a pattern
matching expression. As an example consider the following code with a
parametric type annotation.

match x : X

case Zero -> Succ(Zero)

case y -> y

Independently of the concrete instantiation of the type variable X this
piece of code transforms the value Zero into Succ(Zero) and leaves all
other values as is.
And there is another—more technical—reason for allowing non-matching
patterns. If we allow only matching patterns we need a means to determine
if the annotated type contains at least one value that matches the pattern.
This implies that we need to now if certain types are empty or not. For
example the grammar

G(s, (s -> Succ(s))

generates the empty language. In order to reject the pattern Succ(x)

we need to know that s is empty. For the simply typed language this
is no problem. In fact we use an algorithm that determines if there
are matching values in the grammar when computing the corresponding
typing contexts. But matters are different in the context of type variables
inside grammars. In order to determine if the grammar is empty we need
to know if the type variable abstracts over an empty or a non-empty type
which makes the language and the type system much more complicated.
For these reasons we choose to allow arbitrary patterns in pattern match-
ing expressions.
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• The second question concerns the type checking of dead code. One could
argue that dead code is guaranteed to never execute and hence does not
need to we well-typed. From the point of view of soundness this is correct.
Dead code has no influence on the runtime behavior of a program. On the
other hand, if we do not require dead code to be well-typed we classify
some “strange” programs as well-typed. Take for example the following
program.

match Zero : num

case Foo -> y

case Zero -> ...

case Succ(x) -> ...

The pattern Foo does not match any values of type num. Hence, the
right hand side of the first case expression, namely y, is dead code. The
right hand side y is clearly ill-typed, because it consists of a free variable.
Nevertheless, the program as a whole would be classified as well-typed in
the case that we don’t require the type checking of dead code.
In our opinion it is confusing to allow such strange programs. Therefore,
we require also dead code to be well-typed.
But in order to typecheck the right hand side of a case expression we
need types for the pattern variables of the corresponding pattern, since
they occur free inside of the respective right hand side. We specified that
a typing context for checking the right hand side of a case expression
should map a pattern variable to a type containing all values that can
bind to that variable at runtime. A non-matching pattern is guaranteed
to never match any value at runtime. This implies that there are also
no values that can bind to its pattern variables at runtime. Therefore, it
is straight forward to map a pattern variable to the empty type in the
resulting typing context. Note, that using the empty type for a variable
is the least restriction we can put on the type checking of expressions.
Due to subtyping, an expression with the empty type can be used in any
context, because the empty type is a subtype of every other type. The
only remaining requirement is that the expression does not contain free
variables.

Design Choice: Precision

The second design choice concerns the precision of the typing contexts for
typechecking the right hand sides of case expression. We illustrate the issue by
a small example.

24



Example 4.2
We consider the pattern

A(x,y)

and the grammar
g ::= G(s, (s -> A(b,c) | A(d,e),

b -> B, c -> C,

d -> D, e -> E))

This grammar generates the finite set of trees {A(B,C), A(D,E)}. Hence, the
set of possible values of the pattern variable x is {B, D} and the respective
set for the pattern variable y is {C, E}. This means, we can use the typing
context {x : b ∪ d, y : c ∪ e} for type checking the right hand side e of the
case expression in the following program.

match x : g

case A(x,y) -> e

Since the typing context maps each pattern variable to a type containing
all possible values of that variable, any evaluation of the expression e

will behave correctly if e is well-typed under this typing context. Hence,
computing the typing context in the abovementioned way is sound.

However, consider the expression
match x : g

case A(x,y) -> A(x,y)

This piece of code looks like the identity function on expressions of type
g. The problem is, that we cannot conclude that the right hand side of
the case expression A(x,y) has the type g if we use the typing context
{x : b ∪ d, y : c ∪ e}. The best type that we can give to that expression is
the type

G(s, (s -> A(bd ,ce),

bd -> B | D,

cd -> C | E))

Hence, we loose type information by the process of deconstructing and
reconstructing expressions. This is due to the fact that we unified the
results of the two different productions for the start symbol of the grammar
g in the course of computing the typing context. However, each of the
productions s -> A(b,c) and s -> A(d,e) establishes a relationship between
the first and second argument of the constructor A respectively. The first
production only allows the combination B,C while the second production
restricts the range of possible arguments to D,E. Hence, the combinations
A(B,E) and A(C,D) are not possible.

In order to propagate this information about possible combinations of
arguments to the type checking process of the right hand side of case expressions
we have to use a set of typing contexts instead of one aggregated result. In
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the last example this means to use the two separate typing contexts, namely
Γ1 = {x : b, y : c} and Γ2 = {x : d, y : e}, instead of aggregating the data into one
single typing context. Both typing contexts still contain all possible values of
the pattern variables. Therefore, it is sound to check the well-typedness of the
whole expression by checking if the right hand side is well-typed under each of
the typing contexts Γ1 and Γ2 separately. Hence, this more precise approach
leads to a more complete type system: more “valid” programs can be typed.

The disadvantage of this method is that type checking becomes much more
expensive in terms of complexity. Instead of one check per case expression in a
pattern match there may now be many of them. And this effect propagates
in an exponential way through the process off type checking. Subexpressions
of pattern matches can again contain pattern matches that require more than
one subderivation per case expression and so forth.

Since the scope of this thesis is to investigate the formal properties of the
calculus, complexity is not a major concern. Therefore we choose to use the
following compromise: we specify the algorithm for the computation of the
typing contexts in a way that propagates the most precise information. In the
formulation of the type system we aggregate the result of the algorithm into
one single typing context as to make the typing rules and the corresponding
soundness proof easier to understand. But thereby we keep in mind that it
is possible to arrive at a more complete type system by exploiting the extra
information we get from our version of the algorithm.

The Algorithm

The algorithm for computing the set of typing contexts for the pattern pat
with respect to type t = G(s,π) has the following general form.

• If the pattern consist only of a pattern variable, i.e. pat = x, we return
the singleton set containing the typing context Γ = {x : t}.

• If the pattern pat has the form C(p1, . . . ,pn) we proceed as follows:

1. We filter all productions of the form s -> C(n1, . . . ,nn) from π.
These are the only productions that can be used when deriving
values from the grammar that match the pattern C(p1, . . . ,pn).

2. For each right hand side C(n1, . . . ,nn) we recursively compute sets
of typing contexts G1 to Gn for the subpattern pi and the grammar
G(ni,π) respectively.

3. For each right hand side we aggregate the resulting sets of typing
contexts G1 to Gn.

4. We return the result of the aggregation.

It remains to specify how to aggregate the sets of typing contexts belonging
to recursive calls for the same right hand side of a production, namely step 3
in the recursive case of the above algorithm.
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To simplify the explanation we first consider the case where each subcall
returns a single typing context.

Example 4.3
We consider the pattern

A(x,y)

and the grammar
G(s, (s -> A(b,c),

b -> ..., c -> ...))

The two recursive calls for the production s -> A(b,c) return the typing
contexts Γ1 = {x : b} and Γ2 = {y : c} respectively. Each value that matches
the complete pattern A(x,y) has one subvalue matching the subpattern
x and one subvalue matching the subpattern y. Hence, we need to unify
the information of the typing contexts Γ1 and Γ2 into the resulting typing
context Γ = Γ1 ∪ Γ2 = {x : b, y : c}.

In the last example, each pattern variable occurs only once inside the
pattern. Hence, the domains of the typing contexts Γ1 and Γ2 are disjoint
and the union Γ1 ∪ Γ2 yields a valid typing context. The resulting typing
context is correct in the sense that it maps each pattern variable to a type
containing all possible values of that pattern variable at runtime. But in some
cases it may be too imprecise. Consider the case, where the grammar allows
to derive values from the nonterminal b but not from the nonterminal c. This
means that there cannot be derived any values from the grammar. It follows,
that the typing context Γ� = {x : ∅, y : ∅} is more appropriate. Especially, in
this case the grammar is equivalent to the grammar G(s, (s -> )) where we
would return this more precise typing context right away. Since annotating an
expression with different but equivalent grammars should not lead to different
result during type checking, we have to return the more precise typing context
in both cases.

A pattern variable that occurs more than once inside a pattern puts ad-
ditional constraints on the process of pattern matching. These additional
constraints need to be considered when computing the corresponding typing
context.

Example 4.4
We take the pattern

A(x,x)

and the grammar
G(a, (a -> A(b,c),

b -> B | D, c -> B | D,

d -> D))
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The subcalls for the right hand side A(b,c) return the typing contexts
Γ1 = {x : b} and Γ2 = {x : c}. We can see that the domains of Γ1 and Γ2
are no longer disjoint.

If we recall that the pattern only matches a values when all occurrences
of x bind to exactly the same value, it is clear that we have to take the
intersection of the types b and c when unifying Γ1 and Γ2. Hence, the
result should be Γ = {x : b ∩ c = d} resulting from a union with pointwise
intersection of the typing contexts Γ1 and Γ2. We write it as Γ1 ∪∩ Γ2.

In the case that the recursive calls return more than one typing context
respectively we have to lift the operation “unify” to lists of typing contexts.

Example 4.5
We consider the pattern

A(B(x1 ,x2),

C(x3 ,x4 ))

and the grammar
G(s, (s -> A(b,c),

b -> B(b1 ,b2) | B(b3 ,b4),

c -> C(c1 ,c2) | C(c3 ,c4 )))

We omit the productions for the nonterminals b1 to c4, since they are not
relevant for the following discussion.

For deriving a value from the grammar that matches the pattern we
have to always use the production s -> A(b,c) as a first step. But for both
nonterminals b and c we can choose between two different productions
for the next derivation step. Since this choice is independent for both
nonterminals b and c. It follows that we get 2 ∗ 2 possibilities to start a
derivation of a value that matches the complete pattern.

Computing the set of typing contexts for the subpattern B(x1,x2) and
the grammar y yields the set G1 = {Γ11 , Γ12} with Γ11 = {x1 :b1, x2 :b2} and
Γ12 = {x1 : b3, x2 : b4}. The two typing contexts Γ11 and Γ12 propagate the
constraints about possible combinations of arguments to the constructor B.

In the same way, we get the set of typing contexts G2 = {Γ21 , Γ22} with
Γ21 = {x3 : c1, x4 : c2} and Γ22 = {x3 : c3, x4 : c4} for the subpattern C(x3,x4).

As discussed above, the derivations for the arguments b and c of the
constructor A are independent from each other. Put otherwise, the range
of values of the arguments to the constructor A consists of the complete
product space of values that can be derived from the nonterminals b and
c. This means we have to compute the cross product of the sets of typing
contexts G1 and G2 to get the final result. This yields the set of typing
contexts G = {Γ11 ∪∩ Γ21 , Γ11 ∪∩ Γ22 , Γ12 ∪∩ Γ21 , Γ12 ∪∩ Γ22}. We write the
operation as G1 ×uni G2.
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After the preceding discussion it is now straight forward to formalize the
algorithm that computes the sets of typing contexts for a pattern pat and a type
t. The definition is shown in figure 6. The main function “contexts” uses the
helper function “contexts�”. The helper function has the following semantics:
for each combination of values of the pattern variables there is a typing context
in the result of the helper function containing this combination. Furthermore,
the helper function returns the empty set if there are no values that can match
the pattern.

In the case that the helper function returns the empty set, the main function
yields the singleton set containing a typing context Γ∅. Γ∅ maps all pattern
variables to the empty set. Otherwise the result of the helper function is used
unchanged. This approach ensures that the algorithm yields the same result
for equivalent grammars.

The helper function “contexts�” works as follows. If the pattern consists
of only a pattern variable x, the singleton set containing the typing context
mapping the variable x to the type t is returned in case that the type t is not
empty. Otherwise we return the empty set. Returning the empty set propagates
through the cross product operation in case of recursive calls. Building the
cross product of a set of sets where at least one of the sets is empty yields the
empty set. Which is exactely what we want: if one of the subpattern does not
match a value, the whole pattern does not match either.

In the recursive case with a pattern of the form C(p1, . . . ,pn) we first filter
all matching right hand sides of the form C(n1j , . . . ,nnj ) from the grammar’s
productions. Then we recursively compute the sets of typing contexts for
the subpatterns p1 to pn and the corresponding subgrammars. The results
from recursive calls belonging to the same right hand side of a production are
aggregated using the cross product. Since we use the intersection operator in
the cross product when unifying typing contexts containing the same pattern
variable, the result may contain a typing context with an empty type in the
codomain. This means that there is no value that can bind to the corresponding
pattern variable at runtime in the respective combination. Hence we have to
drop that typing context. This is done by the operator “filter-nonempty”.
Finally the union of the resulting sets of typing contexts from all right hand
sides are returned as final result.

There remains one corner case that we need to consider, namely the meaning
of the cross product of zero factors. This happens every time we encounter
a constructor application without arguments. In this case, the pattern does
not contain any pattern variables, hence we should return the singleton set
consisting of the empty typing context. Note, that it would be wrong to return
just the empty set. This empty set would propagate through the cross product
operation up to the final result which is not what we want. Therefore, we define
the cross product of zero factors as {∅}.

For the formulation of the type system we still need to define how to
aggregate a set of typing contexts into one single typing context. This is simply
done by pointwise computing the union of the resulting set of typing context.
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contexts(p, t) =
�

{Γ∅} if G = ∅
G otherwise

where
G = contexts�(p, t)
Γ∅ = {xi �→ ∅}, xi ∈ vars(p)

contexts�(x, t) =
�

∅ if empty(t)
{{x : t}} otherwise

contexts�(C(p1, . . . ,pn), G(s,π)) = �
G�

j

where
C(n1j , . . . ,nnj ) ∈ π(s)
Gij = contexts�(pi, G(nij ,π))
Gj = G1j ×uni · · · ×uni Gnj

G�
j = filter-nonempty(Gj)

Figure 6: Computation of Typing Contexts for Pattern Variables

We write the aggregation by pointwise union as �
∪. The function is shown in

figure 7

context(pat, t) = �
∪ contexts(pat, t)

Figure 7: Aggregation of Typing Contexts

4.2 Exhaustiveness of Patterns
With the algorithm from the last section we are able to typecheck the right
hand sides of case expressions in a pattern match. But we still do not know if
for any possible value of the expression matched at least one pattern matches.

If we look at the reduction relation (see figure 4) we see that a pattern
matching expression of the form

match e : t case pat1 -> e1 . . . case patn -> en

is stuck (cannot reduce further) if e is a value and none of the patterns matches
it. Since the goal of the type system is to eliminate stuck expressions we have
to make sure that such an expression is not well typed.

Typing an expression is a static operation which means that we cannot
know the exact shape of e, because typing happens before actually evaluating
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the expression. But the type annotation t tells us the range of possible values
of e. To ensure that the expression will never get stuck during evaluation there
has to be at least one patching pattern for each value in t. If we can rely on
the fact that e will actually evaluate to a value in t (this will be shown in
section 4.4 in the course of proving soundness of the type system) and show
the abovementioned property, the expression cannot get stuck at runtime.

The fact, that for each value of a type t there is one matching pattern in a
set of patterns P = {pat1, . . . , patn} is called exhaustiveness of the patterns P
with respect to the type t.

Assume that we can construct a type ti <: t for each pattern pati with the
property that for all values v ∈ ti the pattern pati matches v. If t is a subtype
of the union �

ti we can be sure that there cannot be any value in t without a
corresponding matching pattern.

Example 4.6
Let’s look at the expression

match x : num

case Zero -> ...

case Succ(y) -> ...

The only value in num matching the pattern Zero is Zero. Hence, the
biggest type t1 with the property t1 <: num and forall v ∈ t1 the pattern
Zero matches v is the grammar

t1 = G(z, (z -> Zero ))

The pattern Succ(y) will match all values in num that start with the
application of the constructor Succ. So the biggest appropriate type for
this pattern is the grammar

t2 = G(s, (s -> Succ(n),

n -> (Zero) | Succ(n)))

The union t1 ∪ t2 contains all values of num, hence num is a subtype of
t1 ∪ t2 and therefore the patterns are exhaustive.

In the last example there a two things to note:

• Although we are formally only checking that t <: �
ti, we are in fact

showing that �
ti

∼= t. This is due to the requirement that all ti are
subtypes of t. Which means that there are no values in ti that are not
also in t (which carries over to the union). This property gives us the
relation �

ti <: t. Hence �
ti is a (possibly not disjoint) decomposition

of t. We will later relax the requirement ti <: t as to simplify the
exhaustiveness checking.

• The types t1 and t2 contain exactly the values of num that match the
appropriate pattern. This is a stronger property than the requirement
that t1 and t2 only contain values of num that match the respective pattern
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(which would allow t1 and t2 to be smaller). In the following we will see
that there are cases where we have to exploit this possibility of making
types smaller than the set of values the pattern matches.

A pattern without variables matches exactly one value, namely the value
that is syntactically the same. For such a pattern is it straight forward to
construct a type containing only the one value it matches. For patterns
containing variables the construction of a type containing exactly the values it
matches (with respect to a type) is slightly more involved and in some cases
even impossible. Some examples will help to understand the construction (and
its limitations).

Example 4.7
Let’s start with the pattern

A(x,y)

and the type
G1 = G(a, (a -> A(b,c) | A(d,e),

b -> B, c -> C,

d -> D, e -> E))

Matching the pattern against the type yields the typing context Γ =
{x : bd , y : ce}, where bd is defined as G(bd, (bd -> B | D)) and ce as
G(ce, (ce -> C | E)).

If we construct a grammar from the pattern using this typing context
we arrive at

G2 = G(a, (a -> A(x,y),

x -> B | D,

y -> C | E))

All values of the grammar G2 match the pattern A(x,y). But the grammar G2

contains values that are not in G1 (for example the value A(b,e)). With the
help of the collecting algorithm contexts it would be possible to construct
a grammar G3 containing only the values from G1 that match the pattern.
Computing G2 ∩ G1 would yield the same result. In this case, G3 is the same
as G1, since all values of G1 match the pattern A(x,y).

But computing the more exact grammar G3 is unnecessary here. For
checking exhaustiveness it does not matter if the type ti we choose to
represent the pattern pati contains values that are not in the type t matched
against. The subtype relation t <: �

ti will still hold iff the patterns are
exhaustive with respect to the type t.

Example 4.8
In the last example every pattern variable occurred only once. It was
possible to construct type out of a pattern and a typing context that is
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sufficiently exact to check exhaustiveness. Matters are different if a pattern
variable occurs more than once. As an example we will look at the pattern
Plus(x,x) matching against the type arith-expr (see section 2.1 for the
definition).

The matching will yield the typing context Γ = {x : arith-expr}. This
is correct: any value of arith-expr may bind to x at runtime. But if we try
to construct a grammar in a similar way as we did in the last example we
arrive at

G = G(s, (s -> Plus(ae ,ae),

ae -> ...))

where ae is defined similar as in arith-expr. This grammar contains many
values that do not match the pattern Plus(x,x), since the pattern can
only match if both subvalues of the constructor Plus are identical. To
see why using this grammar for checking exhaustiveness leads to wrong
results, consider the case where the pattern Plus(x,x) is used together
with the patterns Succ(y) and Zero in a pattern matching expression: the
exhaustiveness test will succeed which is clearly wrong.

Moreover, it is not possible to construct a grammar that contains all
values of arith-expr that match the pattern A(x,x): to ensure that the
subvalues of the constructor Plus are always identical we would need one
grammar for each possible value of arith-expr. But since there are infinitely
many such values (and grammars are finite objects), we cannot build such a
grammar. In general, it is impossible to construct a grammar for a pattern
where a variable occurring more than once maps to an infinite type in the
respective typing context.

Since an exact grammar is not constructable we could try to use a
finite approximation of the type. Note, that this will not make the type
system unsound, since we err “on the right side”: if the exhaustiveness
check succeeds the answer is correct (but there are expressions that would
never get stuck but that we will reject because of an incorrectly failing
exhaustiveness check).

For example, if we approximate the grammar by the empty type the
exhaustiveness check for the expression

match e : arith -expr

case Plus(x,x) -> ...

case Plus(Zero ,Plus(x,y)) -> ...

case Plus(Zero ,Succ(x)) -> ...

case Plus(Plus(x,y),Zero) -> ...

case Plus(Succ(x),Zero) -> ...

case Succ(x) -> ...

case Zero -> ...

would incorrectly fail. If we make the approximation a little bit better by
using the grammar

G(s, (s -> Plus(z,z),

z -> Zero ))
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the exhaustiveness check would correctly succeed. The better the approx-
imation is, the more exhaustiveness checks will correctly succeed. But
for each approximation we can find an expression where the exhaustive-
ness incorrectly fails. So, how good should the approximations be? The
complexity of the expression above (which is the smallest example for a
expression that incorrectly fails the exhaustiveness check for the worst ap-
proximation, namely the empty type) hints at a reasonable answer: in most
cases it is sufficient to use the empty type as a representation for a pattern
containing variables with more than one occurrence. The complexity of
expressions that incorrectly fail the exhaustiveness check arises from the
fact that a pattern cannot require that two variables have different values.
This means, that in most expressions where a pattern C(x,x) is used, there
will also be a pattern of the form C(x,y) somewhere below it in the list of
case-expressions. Since the pattern C(x,x) is tried before the pattern C(x,y)

the second pattern will actually only match with different bindings for x

and y.

Figure 8 shows the formal definition of the exhaustiveness check. The
function pat2gram constructs a grammar out of a pattern and a given typing
context analog to examples we have seen. Patterns that contain multiple
occurrences of one variable are represented by the empty type (first clause of
the definition). The exhaustiveness check computes one representative grammar
ti for each pattern pati and checks the inclusion t <: �

ti.

exhaustive({pat1, . . . , patn}, t) = t <: �
ti

where
Γi = context(pati, t)
ti = pat2gram(pati, Γi)

pat2gram(pat, Γ) = ∅, if
∃x : count(x, pat) > 1

pat2gram(c(pat1, . . . ,patn), Γ) =

G(s, ( s -> c(n1, ... ,nn),

n1 -> t1,

...

nn -> tn))

where
ti = pat2gram(pati, Γ),
s, n1, . . . , nn fresh

pat2gram(x, Γ) = G(s, (s -> Γ(x)))

Figure 8: Exhaustiveness Check
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4.3 Typing Relation
On the basis of the definitions from the last Sections we are now able to define
the typing relation for expressions. The typing rules are shown in figure 9. As
in the rules of the reduction relation, the conclusion is shown below and the
premises above the horizontal line. A conclusion of the form F, Γ � e : t means
that, assuming the function definitions in F and the assignment of variables to
types in Γ, the expression e has type t. The typing relation is defined as the
smallest relation containing all conclusions derivable by the typing rules.

T-SUB
F, Γ � e : tsub tsub <: t

F, Γ � e : t
T-VAR

(x : t) ∈ Γ
F, Γ � x : t

T-FAPP
f(x1 : t1, . . . ,xn : tn) : t = e ∈ F F, Γ � ei : ti

F, Γ � f(e1, . . . ,en) : t

T-CAPP
π(st) = C(n1, . . . ,nn) F, Γ � ei : G(ni,π)

F, Γ � C(e1, . . . ,en) : G(st,π)

T-MATCH

F, Γ � e : te context(pati, te) = Γi

exhaustive({pat1, . . . , patn}, te) F, Γi ∪ Γ � ei : t

F, Γ � match e : te case pat1 -> e1 . . . case patn -> en : t

Figure 9: Typing Relation for the Simply Typed Language

The rule T-SUB is called the subsumption rule. It says that whenever an
expression is well-typed with type tsub it is also well-typed with type t if t
is a supertype of tsub. Recall that subtyping is defined as subset relation on
languages. This means all terms of tsub are also terms of t. It follows that it is
valid to use an expression of type tsub in the context where an expression of
type t is required. The subsumption rule is essential to make the system usable
in practice. Without the subsumption rule arguments of function applications
for example would have to be well-typed exactely with the type the function
expects.

A variable x can only be a valid expression if we are inside a function
definition with a formal argument called x. In all other cases the occurrence
of x is free. Free variables will not be replaced by values during evaluation.
This means we will arrive at the expression x after a number of reduction steps.
A variable x is neither a value nor can reduce further, hence the expression
should be rejected by the type system. If we are inside the body of a function
definition all formal arguments are mentioned in the typing context Γ with
their respective types. Therefore the rule T-VAR says that an expression of the
form x is well-typed with type t if the typing context Γ contains the assumption
x : t.
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The rule T-FAPP deals with expressions that are function applications. As
already discussed we use only the interfaces of the function definitions defined
by their type annotations for the typing of a function application. A function
application of the form f(e1, . . . ,en) is well-typed with type t under the
following conditions.

• The function context F contains an appropriate function definition in
terms of number of arguments.

• The result type of the function equals t.

• The actual arguments e1 to en are well-typed with the types t1 to tn of
the corresponding formal arguments.

Constructor applications are covered by the rule T-CAPP. The rule says
that a constructor application has type t under the following conditions:

• the start symbol of the grammar G(st,π) exactely one right hand side,
namely a constructor with the right number of arguments.

• the actual arguments of the constructor call have the type of the above
grammar with the respective nonterminal from the right hand side as
start symbol.

It may seem too restrictive to constrain the productions for the start symbol
of the grammar G(st,π) to this one right hand side. It is clear that any type
for the expression C(e1, . . . ,en) needs to have at least one right hand side
of the start symbol’s productions of the abovementioned form. Otherwise the
grammar could not produce values with the constructor C at the top (remember
that grammars are assumed to be normalized). But couldn’t there possibly be a
better type for the expression with more than one right hand side of that form?
This is not the case. The key to understand why is that the subexpressions of
constructor applications are independent from each other. If the subexpression
ei1 is well-typed with type ti1 it can evaluate to any value in ti1 at runtime.
Independently from that the expression ei2 can evaluate to any value in ti2 .
Hence, the best type we can give to the constructor application C(e1, . . . ,en)

is a grammar that contains the whole product space of t1 to tn as possible
subexpressions for the topmost constructor. This means that the one right
hand side is in fact enough.

The rule T-MATCH says that a pattern match has type t under the following
conditions:

• the expression e matched against has the annotated type et

• the patterns are exhaustive with respect to the annotated type et (see
section 4.2)

• each right hand side of the case expressions ei has type t assuming the
typing context Γ extended by the typing context Γi (which assigns types
to the pattern variables of the pattern pati).
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We now illustrate the type system and the process of typing expression by a
set of examples.

Example 4.9
Let’s start very simple with the expression Zero. The following derivation
tree witnesses that Zero has type num.

T-SUB
T-CAPP

π(z) = Zero

F, ∅ � Zero : zero zero <: num

F, ∅ � Zero : num

where zero is defined as G(z, (z -> Zero)).
We first prove that Zero has type zero using the rule T-CAPP. Since Zero

has no subexpression there are no further subderivations in the tree. And
then we use the subsumption rule to conclude that Zero also has type num.

Example 4.10
As a more complex example we show the typing of the following function
plus that adds two numbers.

plus(x : num , y : num) : num =

match x : num

case Zero -> y

case Succ(x ’) -> plus(x’,Succ(y))

The typing rule for programs T-PROG tells us that we need to type the
body of the expression with Γ = {x : num, y : num} as typing context.

Since the outermost expression of the body is a pattern match the
derivation tree starts with an instance of the rule T-MATCH.

T-MATCH
F, Γ � y : num F, Γ ∪ {x’ : num} � plus(x’,Succ(y)) : num

F, Γ �
match x : num

case Zero -> y

case Succ(x’)

-> plus(x’,Succ(y))

: num

The patterns Zero and Succ(x’) are exhaustive with respect to num. Further-
more, matching the pattern Succ(x’) against num yields the typing context
{x’ : num}. The pattern Zero also matches the type num. But the matching in
this case yields the empty typing context because Zero contains no pattern
variables. Hence, for proving the final result we need the following two
subderivations. For simplicity we define Γ� to refer to Γ ∪ {x’ : num}.

T-VAR
(y : num) ∈ Γ
F, Γ � y : num
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T-FAPP
T-VAR

(x’ : num) ∈ Γ�

F, Γ� � x’ : num

T-CAPP
T-VAR

(y : num) ∈ Γ�

F, Γ� � y : num

F, Γ� � Succ(y) : num

F, Γ� � plus(x’,Succ(y)) : num

The first derivation tree shows that the right hand side of the first case
expression, namely y, has type num. This immediately succeeds with the
rule T-VAR, because the typing contexts assigns the type num to y.

The second derivation tree shows the well-typedness of the right hand
side of the second case expression, namely plus(x’,Succ(y)). Since the
expression starts with a function application we have to use the rule
T-FAPP in the first place. The result type of the function plus is annotated
as num which matches with the goal we are trying to prove. What remains
to be done is to show that the arguments x’ and Succ(y) have the correct
type, namely num.

In the process of matching the pattern Succ(x’) against num the as-
signment x’ : num has been added to the typing context. Therefore the
subderivation for the first argument succeeds immediately with the rule
T-VAR. For the second argument we need an additional instance of the
rule T-CAPP to close the prove.

Note, that it is important to use the interface of the function plus for
checking the function application plus(x’,Succ(y)). Since we are in the
midst of typing the body of that very function it is not possible to use the
implementation instead of the interface.

4.4 Soundness of the Type System
To goal of the type system is to define the subset of syntactically correct terms
that cannot lead to a runtime error during evaluation. If this property holds
for all expression e that can be given a type t the type system is sound.

In the following we prove the soundness of the type system as defined by
the inference rules in Figure 9. Similar to Pierce [24] the prove requires two:
progress and preservation. Progress means that a well-typed expression is either
a value or can take a reduction step according to the operational semantics.
Preservation ensures that the well-typedness is an invariant of the reduction
relation: whenever an expression e has type t and can reduce to e� in one step,
e� also has type t. Progress and preservation together imply the soundness of
the type system.

So far, we have defined what it means for a value to be generated by a
grammar (see Section 3). The type system on the other hand specifies what it
means for an expression to be well-typed with a type t. Values are a subset of
the expressions, hence we have implicitly defined what it means for a value to
be well-typed with a type t. In the following proofs we need the fact that a
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value of type t can be derived by the grammar describing the type t. Although
the intention is that these two notions coincide, the fact is not obvious and we
need to prove it.

Lemma 4.1
F, ∅ � v : t ⇒ v ∈ t

Proof. We prove the statement by structural induction on the typing derivation
showing F, ∅ � v : t. As induction hypothesis we can assume that the statement
holds for all direct subderivations of the form F, ∅ � v : t. We proceed by case
analysis on the final rule in the derivation tree. A value v has the form C(v1,

. . . ,vn). Hence, there are only two matching rules: T-CAPP and T-SUB.

• The last rule is T-CAPP with the conclusion F, ∅ � C(v1, . . . ,vn) :
G(s,π). Furthermore, we know from the premises that π(s) = C(n1, . . .
,nn) and that there are subderivations showing F, Γ � vi : G(ni,π). Hence,
by the induction hypothesis it follows that vi ∈ G(ni,π). According to
the definition of derivations of grammars (see Section 3) this implies
immediately that C(v1, . . . ,vn) ∈ G(s,π).

• The last rule is T-SUB with the conclusion F, ∅ � v : t. This means we
have a subderivation showing F, ∅ � v : tsub. By the induction hypothesis
it follows that v ∈ tsub. Since tsub <: t we know by the definition of
subtyping as inclusion of sets that v ∈ t.

Theorem 4.1 : Progress
If F, ∅ � e : t then either

• e is a value or

• there exists an e� to that F � e −→ e�.

Proof. We prove the statement by structural induction on the typing derivation
showing F, ∅ � e : t. As induction hypothesis we can assume that the statement
holds for all direct subderivations of the form F, ∅ � e : t. We proceed by case
analysis on the final rule in the derivation tree.

• The rule T-VAR cannot occur as last rule in the derivation tree, because
it requires a non empty typing context Γ.

• The last rule is T-SUB with the conclusion F, ∅ � e : t. This means
we have a subderivation showing F, ∅ � e : tsub with tsub <: t. By the
induction hypothesis we know that there exists an expression e� so that
F � e −→ e�. Which is exactely what we need in this case.

• The last rule is T-FAPP with the conclusion F, ∅ � f(e1, . . . ,en) : t.
This implies subderivations of the form F, ∅ � ei : ti for all i. By the
induction hypothesis we know that either ei is as value or can reduce to
e�

i. We can distinguish two cases:
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– All ei are values. The rule T-FAPP tells us in the premises that
the function f is defined in F as f(x1 : t1, . . . ,xn : tn) : t = e.
It follows that the whole expression f(e1, . . . ,en) can reduce to
e[xi �→ ei] by FAPP.

– There exist a smallest i so that all ej are values for j < i and ei

is not a value. We know by the induction hypothesis that ei can
reduce to e�

i. Hence, by CONG the whole expression reduces to
f(e1, . . . ,ei−1,e�

i, . . . ,en).

• The last rule is T-CAPP with the conclusion F, ∅ � C(e1, . . . ,en) : t.
We have subderivations showing F, ∅ � ei : ti for all i. Analog to the case
for T-FAPP either all ei are values or can reduce to e�

i. If all ei are values
the whole expression is already a value. Otherwise the whole expression
can reduce by CONG.

• The last rule is T-MATCH with the conclusion
F, ∅ � match ematch : tmatch case pat1 -> e1 . . . case patn -> en : t.
There is a subderivation showing F, ∅ � ematch : tmatch. By the induction
hypothesis we know that either ematch is a value of can reduce to e�

match.

– If ematch reduces to e�
match the whole expression reduces by CONG

to match e�
match : tmatch case pat1 -> e1 . . . case patn -> en.

– If ematch is a value we know by Lemma 4.1 that this value is in tmatch.
Since the patterns pat1 to patn are exhaustive with respect to tmatch
each value in tmatch will be matched by at least one of the patterns.
This means that also ematch will be matched by at least one pattern.
Let i be the smallest i so that match(pati, ematch) = σ. By MATCH
the whole expression reduces to σ(ei).

In the proof of preservation we need the following Lemma.

Lemma 4.2 : Substitution Lemma
If F, Γ � e1 : t1 . . . F, Γ � ek : tk and F, Γ ∪ {x1 : t1, . . . , xk : tk} � e : t then
F, Γ � e[x1 �→ e1, . . . , xk �→ ek] : t.

Proof. The proof uses a structural induction on the typing derivation of F, Γ ∪
{x1 : t1, . . . , xk : tk} � e : t.

Let σ = {x1 �→ e1, . . . , xk �→ ek} be the substitution we want to apply. Let
us further assume that F, Γ � e1 : t1, . . . , F, Γ � ek : tk and that
F, Γ ∪ {x1 : t1, . . . , xk : tk} � e : t.

We proceed by cases analysis on the last rule used in the typing derivation.
As inductive hypothesis we can assume the statement to hold for all direct
subderivations.
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• The last rule is T-VAR.
This implies that e has the form e = x for a variable x. The definition
of substitution tells us that σ(x) = σ(x) if x ∈ dom(σ) and σ(x) = x if
x /∈ dom(σ). Let’s look at both cases separately.

– If x is in the domain of σ, i.e. there exists an i with x = xi the result
of σ(x) is ei. Since we assumed F, Γ ∪ {x1 : t1, . . . , xk : tk} � x : t, t
has to be equal to ti and hence F, Γ � σ(x) = ei : ti = t.

– If x is not in the domain of σ then σ(e) = σ(x) = x. From that it
follows immediately from the assumptions that F, Γ � σ(e) = e : t.

• The last rule is T-SUB.
This implies a subderivation showing F, Γ ∪ {x1 : t1, . . . , xk : tk} � e : tsub
with tsub <: t. By the inductive hypothesis it follows that F, Γ � σ(e) : tsub
and by T-SUB that F, Γ � σ(e) : t.

• The last rule is T-CAPP.
This implies that e has the form e = C(a1, . . . ,an). According to the
definition of substitution, σ(C(a1, . . . ,an)) yields C(σ(a1), . . . ,σ(an)).
Furthermore, we have subderivations showing F, Γ ∪ {x1 : t1, . . . , xk : tk} �
ai : tai . By the inductive hypothesis it follows that F, Γ � σ(ai) : tai . And
hence by T-CAPP F, Γ � C(σ(a1), . . . ,σ(an)) : t.

• The last rule is T-FAPP.
This case is analog to the T-CAPP case.

• The last rule is T-MATCH. This implies that e has the form
e = match ematch : tmatch case pat1 -> e1 . . . case patn -> en. A subderiva-
tion tells us that F, Γ � ematch : tmatch. Hence by the inductive hypothesis
F, Γ � σ(ematch) : tmatch.
Furthermore, we have subderivations of the form F, Γ ∪ {x1 : t1, . . . , xk :
tk} ∪ Γi � ei : t where Γi is a typing context with dom(Γi) = vars(pati).
Recall that we defined the union of typing contexts in a way that the
second typing context overwrites the first one if the domains are not
disjoint. Let {xi1 , . . . , xil

} = {x1, . . . , xk} \ dom(Γi). Hence, we can
rewrite Γ ∪ {x1 : t1, . . . , xk : tk} ∪ Γi to Γ ∪ Γi ∪ {xi1 : ti1 , . . . , xil

: til
}.

By the definition of substitution the substitution σi is applied to the
subexpression ei. σi is defined as σ without mappings for pattern variables
occurring in the pattern pati. Hence, dom(σi) = {xi1 , . . . , xil

}. With these
insights we can apply the inductive hypothesis yielding F, Γ∪Γi � σi(ei):t.
Together with F, Γ � σ(ematch) : tmatch we can conclude by T-MATCH
that F, Γ � e : t.
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Theorem 4.2 : Preservation
F, ∅ � e : t and F � e −→ e� implies F, ∅ � e� : t.

Proof. Again, we do a structural induction on the typing derivation showing
F, ∅ � e : t. As induction hypothesis we can assume the statement to hold for
all direct subderivations of the form F, ∅ � e : t. We proceed by case analysis
on the final rule in the derivation tree.

• The rule T-VAR cannot occur as last rule since it requires a non empty
typing context Γ.

• The last rule is T-SUB with the conclusion F, ∅ � e : t. This means
there is a direct subderivation showing F, ∅ � e : tsub with tsub <: t. If
F � e −→ e� we know by the induction hypothesis that F, ∅ � e� : tsub.
But then, by T-SUB, F, ∅ � e� : t since tsub <: t.

• The last rule is T-FAPP with the conclusion F, ∅ � f(e1, . . . ,en) : t.
From the premises of the rule we know that f is defined as
f(x1 : t1, . . . ,xn : tn) : t = e. There a two possibilities on how the
expression could reduce.

– There exists a smallest i so that F � ei −→ e�
i. Since we have a

subderivation showing F, ∅ � ei : ti the induction hypothesis applies.
This means we can conclude that F, ∅ � e�

i : ti. Hence, the whole ex-
pression reduces by CONG and by T-FAPP the resulting expression
f(e1, . . . ,ei−1,e�

i, . . . ,en) has also type t.
– All ei are values and the whole expression reduces by the rule FAPP

to e[x1 �→ e1, . . . xn �→ en]. All functions in F are assumed to be
well-typed. This implies F, {x1 : t1, . . . , xn : tn} � e : t. Furthermore,
we know that F, ∅ � ei : ti from the subderivations. It follows by
Lemma 4.2 that F, ∅ � e[x1 �→ e1, . . . , xn �→ en] : t.

• The last rule is T-CAPP with the conclusion F, ∅ � C(e1, . . . ,en) : t. The
only possibility for the expression to reduce is by the rule CONG. This
case is analog to the congruence case for function applications. Hence,
by the same argumentation the resulting expression also has type t.

• The last rule is T-MATCH with the conclusion
F, ∅ � match ematch : tmatch case pat1 -> e1 . . . case patn -> en : t.
There are two possibilities for this expression to reduce.

– The expression reduces by the rule CONG. This implies that there
exists an expression e�

match so that F � ematch −→ e�
match. Hence, by

the induction hypothesis we know that F, ∅ � e�
match : tmatch and thus

by T-MATCH
F, ∅ � match e�

match : tmatch case pat1 -> e1 . . . case patn -> en : t.
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– The expression reduces by the rule MATCH. This means that ematch
is a value and there exists a smallest i so that match(pati, ematch) = σ.
Furthermore, the rule T-MATCH tells us that match(pati, tmatch) =
Γi. This means that for all pattern variables x of the pattern pati

F, ∅ � σ(x) : Γi(x). Recall that matching a pattern against a type
returns a typing context assigning the pattern variable x to a type
containing all possible values that x might bind to at runtime.
We have a subderivation showing F, Γi � ei : t. Hence, by Lemma
4.2 F, ∅ � σ(ei) : t.
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5 Type Inference and Type Checking
The typing relation as defined by the rules in Figure 9 is not algorithmic. This
means that it does not induce a type checking algorithm directly. In this
Section we show how to implement a type checking algorithm on the basis of
type inference.

5.1 Type Checking
The problem case for implementing a type checker in the basis of the typing
rules shown in figure 9 is the subsumption rule T-SUB: the type tsub is only
mentioned in the premise but not in the conclusion. This means that when
constructing a typing derivation bottum up we have to guess tsub. All other
rules though are algorithmic.

The rules in figure 9 allow for the subsumption rule to be used at any place
in a derivation tree. Especially it would be possible to use the subsumption rule
multiple times in a row. Since the subtyping relation is transitive, such rows of
subsumption rules in a derivation tree can be collapsed into one instance of
subsumption rule without affecting the validity of the derivation. Furthermore,
the use of the subsumption rule directly below a rule instance of T-MATCH
can be “pushed up” into the subderivations for the subexpressions ei.

Hence, one could try to inline the subsumption rule into the others in
a manner that enables algorithmicity. For the rules T-VAR, T-FAPP and
T-MATCH this works pretty well. The rule T-MATCH needs not to be modified
at all as mentioned above. The alternative rules for T-VAR and T-FAPP are
shown in figure 10.

T-VAR’
(x : t1) ∈ Γ t1 <: t

F, Γ � x : t

T-FAPP’
f(x1 : t1,. . . ,xn : tn) : tres = e ∈ F F, Γ � ei : ti tres <: t

F, Γ � f(e1,. . . ,en) : t

Figure 10: Typing Rules with Inlined Subsumption

But the rule T-CAPP poses a problem because of the definition of subtyping.
What we know is the following: Any type t = G(s, pi) that an expression
C(e1,. . . ,en) might have must contain at least one right hand side of the form
C(n1,. . . ,nn) in π(s). Suppose that π(s) contains the matching right hand
sides C(n11,. . . ,n1n) to C(nk1,. . . ,nkn). The problem is that there might not
exists a j so that ei : G(nji, π) while still C(e1, . . . ,en) : t is derivable. Hence,
subtyping is not structural.
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To overcome this problem we will approach the task of designing a type
checking algorithm differently. Suppose we had an algorithm that, given an
aribtrary expression, it computes the “best” type of this expression. A type tsub

of an expression e is the best type for that expression if for all t, e : t implies
tsub <: t. Hence, the best type contains the all information about types of an
expression: from derivation tree for e : tsub we can construct a derivation tree
for e : t for all types t that e can have by adding an instance of the subsumption
rule at the bottom.

Computing a type for an expression is called type inference. Thereby the
goal is not to infer an arbitrary type for an expression but to infer the type
containing the most information about that expression. In our case most
information means to compute the most specific type. We will later see that in
other contexts we get different definitions for what most information means.

If we assume an algorithm infer-type that computes the most specific type
for an expression, we can define a type checking algorithm as follows:

has-type(F, Γ, e, t) =
�

true if infer-type(F, Γ, e) <: t
false otherwise

5.2 Type Inference
Figure 11 shows the algorithm for type inference. Although the algorithm
is written as a set of inference rules, it describes a (partial) function from
expressions to types (assuming a set of function definitions and a typing
context). The function is partial, because we can only infer a type for a well
typed expression. We write F, Γ � e :→ t if the inferred type for the expression
e is t.

The rule I-VAR says that the best type we can infer for a variable x is the
type assigned to it in the typing context Γ.

The best type we can infer for a function application is the result type of the
function since we only use the signature of the function for type checking. In
addition, the inferred types for the arguments need to be subtypes of the types
annotating the function’s formal arguments. Note the similarity to the rule
T-FAPP. The only difference is that in I-FAPP the best type for the arguments
is inferred and subtyping is checked already there. If the rule T-FAPP is used
within a derivation tree for the same expression the subtyping will have to
be checked further up in the subderivations via the rule T-SUB (unless the
arguments’ types correspond exactely to the formal arguments’ types).

The best type for a constructor application is the type where all values
start with that constructor and the arguments comprise the complete product
space of the types inferred for the arguments.

The rule for match expressions I-MATCH is also very similar to its counter-
part in the typing relation. The difference to T-MATCH is that in this case the
resulting type is computed as the union of the inferred types of the different
case expression. Here, it becomes very obvious that in type inference the type
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is an output of the function. It only depends on the premises and the input.

I-VAR
(x : t) ∈ Γ

F, Γ � x :→ t

I-FAPP
f(x1 : t1, . . . ,xn : tn) : t = e ∈ F F, Γ � ei :→ tei tei <: ti

F, Γ � f(e1,. . . ,en) :→ t

I-CAPP
F, Γ � ei :→ ti s fresh

F, Γ � C(e1,. . . ,en) :→ G(s, (s -> C(t1, . . . ,tn)))

I-MATCH

F, Γ � e :→ te te <: t match(pati, t) = Γi

exhaustive({pat1, . . . , patn}, t) F, Γi ∪ Γ � ei :→ ti

F, Γ � match e : t case pat1 -> e1 . . . case patn -> en :→
�

ti

Figure 11: Type Inference for the Simply Typed Language

In the following we will prove that type inference really computes the best
type for an expression with respect to the typing relation. The proof will be
done in two steps: first, we will show that F, Γ � e :→ t implies F, Γ � e : t,
e.g. we will show that the inferred type is really type for that expression as
justified by the typing relation. And second, we will show that for all types t,
F, Γ � e : t implies that the inferred type for e is a subtype of t.

To simplify the notation we define infertypeF,Γ(e) to refer to the type t so
that F, Γ � e :→ t. As discussed above, the inference rules actually define a
function so that infertypeF,Γ(e) is well defined.
Theorem 5.1
F, Γ � e :→ t ⇒ F, Γ � e : t

Proof. We will show that we can transform a derivation tree for F, Γ � e :→ t
into a derivation tree yielding F, Γ � e : t by structural induction on the
inference derivation tree. This means that by induction hypthesis we can
assume the statement F, Γ � e :→ t ⇒ F, Γ � e : t to hold for all direct
subderivations of the form F, Γ � e :→ t. Using this we have to show that we
can construct a derivation tree witnessing the final conclusion. We approach
that step by case analysis on the last rule used in the inference derivation tree.

I-VAR: The instance derivation tree

I-VAR
x : t ∈ Γ

F, Γ � x :→ t

becomes
T-VAR

x : t ∈ Γ
F, Γ � x :→ t
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I-FAPP: in this case the derivation tree ends with

I-FAPP
f(x1 : t1, . . . ,xn : tn) : t = e ∈ F

...
F, Γ � ei :→ tei tei <: ti

F, Γ � f(e1,. . . ,en) :→ t

with subderivations showing F, Γ � ei :→ tei. By the induction hypthesis we
know that there exist derivation trees showing F, Γ � ei : tei . With that we can
construct the following derivation tree for the complete expression:

T-FAPP
f(x1 : t1, . . . ,xn : tn) : t = e ∈ F

...
F, Γ � ei : tei tei <: ti

F, Γ � ei : ti
T-SUB

F, Γ � f(e1,. . . ,en) : t

I-CAPP: This case is analog to the I-FAPP case, only that we don’t need the
instance of the subsumption rule here.

I-MATCH: in this case the derivation tree ends with

I-MATCH

...
F, Γ � e :→ te te <: t

...
F, Γi ∪ Γ � ei :→ ti

match(pati, t) = Γi exhaustive({pat1, . . . , patn}, t)
F, Γ � match e : t case pat1 -> e1 . . . case patn -> en :→

�
ti

with subderivations showing F, Γ � e :→ te and F, Γ � ei :→ ti. By the induction
hypthesis we know that there exist derivation trees showing F, Γ � e : te and
F, Γ � ei : ti. With the observation that ti <: �

ti for all i we can construct the
corresponding typing derivation tree:

T-MATCH

T-SUB

...
F, Γ � e : te te <: t

F, Γ � e : t

...
F, Γ � ei : ti ti <:

�
ti

F, Γi ∪ Γ � ei :→
�

ti

T-SUB

match(pati, t) = Γi exhaustive({pat1, . . . , patn}, t)
F, Γ � match e : t case pat1 -> e1 . . . case patn -> en :→

�
ti

Theorem 5.2
F, Γ � e : t ⇒ infertypeF,Γ(e) <: t.

Proof. For this proof we use the result from the last Theorem, namely how to
construct a derivation tree showing F, Γ � e : infertypeF,Γ(e).

Furthermore, we observe the following: for each subexpression of the ex-
pression e all derivation trees witnessing F, Γ � e : t for some type t contain
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exactely one instance of the corresponding typing rule. This means, for each
subexpression that is a variable there is exactely one instance of the T-VAR
rule, for each subexpression that is a function application there is exactely
one instance of the T-FAPP rule, etc. This follows directly from the fact that
subderivations in these rules are always conducted on direct subexpressions. In
addition, the order of rule instances in the derivation tree corresponds to the
respective nesting of subexpressions.

Example 5.1
Any derivation tree witnessing F, Γ � C(f(x),y) : t will have the following
form.

T-CAPP

T-FAPP

T-VAR
(x : tx) ∈ Γ
F, Γ � x : tx
···

F, Γ � f(x) : t2
···

T-VAR
(y : ty) ∈ Γ
F, Γ � y : ty
···

F, Γ � C(f(x),y) : t1
···

F, Γ � C(f(x),y) : t

Hence, two derivation trees witnessing F, Γ � e : t and F, Γ � e : t� can only
differ by instances of the subsumption rule.

Using this insight, we proof F, Γ � e : t ⇒ infertypeF,Γ(e) <: t by showing
that we can transform any derivation tree witnessing F, Γ � e : t into the
derivation tree witnessing F, Γ � e : infertypeF,Γ(e) followed by one instance of
the subsumption rule.

By construction, the derivation tree T1 showing F, Γ � e : infertypeF,Γ(e)
only contains instances of the subsumption rule directly above the rule T-FAPP
and the rule T-MATCH. More precisely, T1 contains exactely one instance of
the subsumption rule for each argument of a function application. Furthermore,
it contains one instance of the subsumption rule for the subderivation showing
that the expression matched against has the annoated type. And finally there
are instances of the subsumption rule witnessing that the inferred type for
each right hand side ei of the case expression i is a subtype of the union of the
inferred types for all ei.

The derivation tree T2 showing F, Γ � e : t on the other hand can contain
instances of the subsumption rule at arbitrary places.

Since both trees can only differ by instances of the subsumption rule
we have to show that we can recursively push additional instances of the
subsumption rule in T2 further down. As already observed, multiple instances
of the subsumption rule in a row can be collapsed into one single instance.

48



Therefore, we can assume that T2 does not contain multiple instances of the
subsumption rule in a row.

Furthermore, the type annotations in function definitions and match ex-
pressions act as a stopper for pushing subsumption rule instances further down
the tree. Hence, we need to consider only the following two cases:

• T2 contains an instance of the subsumption rule directly above an instance
of T-CAPP.

• T2 contains an instance of the subsumption rule directly above an instance
of T-MATCH in a subderivation for a right hand side of a case expression.
Although T1 can contain instances of the subsumption rule at these places
the instances in T2 might differ from those in T1 because there are no
type annotations constraining the use of subsumption rules.

Let’s look at these thow cases separately. Thereby we assume that all sub-
derivations are already transformed into the respective subderivations of T1
followed by one instance of the rule T-SUB.

• T-CAPP:
This means we have an extract of T2 looking as follows.

T-CAPP

F, Γ � ei : tsubi tsubi <: ti

F, Γ � ei : ti
T-SUB

F, Γ � C(e1,. . . ,en) : G(st, (st -> C(t1, . . . ,tn)))

We can replace this by the equivalent extract

T-SUB
T-CAPP

F, Γ � ei : tsubi

F, Γ � C(e1,. . . ,en) : G1 G1 <: G2

F, Γ � C(e1,. . . ,en) : G2

where
G1 = G(st, (st -> C(tsub1, . . . ,tsubn))) and
G2 = G(st, (st -> C(t1, . . . ,tn))).

• T-MATCH: This means we have an extract of T2 looking as follows.

T-MATCH
· · ·

F, Γ � ei : ti ti <: t

F, Γ � ei : t
T-SUB

F, Γ � match em : tm case pat1 -> e1 . . . case patn -> en : t

Since we assumed that all subderivations are already transformed into
the corresponding subderivations of T1 followed by one instance of the

49



subsumption rule, we know that ti = infertypeF,Γ(ei). This implies we
can replace this extract of T2 by the equivalent extract

T-SUB

T-CAPP
· · · F, Γ � ei : ti

F, Γ � match em : tm case pat1 -> e1 . . . case patn -> en :
�

ti�
ti <: t

F, Γ � match em : tm case pat1 -> e1 . . . case patn -> en : t

The last two Theorems together imply the correctness of type checking
defined in terms of inference. Hence we can use the following algorithms as a
type checker for expressions of the simply typed language.

has-type(F, Γ, e, t) :=
�

true if infertypeF,Γ(e) <: t
false otherwise
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6 Case Study I: Evaluators
So far we have only seen very small example programs. The goal of the
following case study is to demonstrate that the simply typed language is suited
to implement more complex term transformations. In this case study we show
how to write an evaluator for a small programming language.

But while this case study illustrates the applicability of the simply typed
language for complex term transformation it also shows some limitations. These
limitations motivate further extension of the simply typed language.

We start with a very small language of arithmetic expressions. The syntax
of the language is defined by the following grammar.

arith -expr ::= G(ae , (ae -> Zero | Succ(ae) | Plus(ae ,ae )))

It consists of the literal Zero and the constructors Succ and Plus that can
construct more complex arithmetic expressions out of smaller ones.

Example 6.1
Zero and Succ(Plus(Succ(Zero),Zero)) are examples for arithmetic expres-
sions as defined by the grammar.

When writing an evaluator for a language we need a target domain, i.e. we
need to specify the range of values of that language. In the case of arithmetic
expressions it makes sense to choose the natural numbers as target domain.
Hence, our evaluator for arithmetic expressions takes an arithmetic expression
as argument and produces a value of type num:

eval -ae(e : arith -expr) : num = ...

Now, let’s look at the body of the implementation.
eval -ae(e : arith -expr) : num =

match e : arith -expr

case Zero -> Zero

case Succ(y) -> Succ(eval -ae(y))

case Plus(y,z) -> plus(eval -ae(y),

eval -ae(z))

We need to pattern match on the input e. If e is Zero we are done, because
Zero is already a value. In the other cases of Succ and Plus we make a recursive
call of eval-arith-expr on the respective subexpressions. In the Succ case the
recursive call returns a number and we can construct the result by applying
the constructor Succ to that number. In the Plus case we get back two numbers
from the recursive calls. For combining these two numbers into the final result
we need the helper function plus.

plus(x : num , y : num) : num =

match x : num

case Zero -> y

case Succ(z) -> plus(z, Succ(y))

51



The function plus successively shifts the Succ constructors from its first
argument x to its second argument y.

Both functions eval-arith-expr and plus are well-typed. Note the interplay
between the type annotations of the two functions. The function eval-arith-expr

uses the result of plus as its own result. This is only possible because the type
annotations of the function plus guarantee that the result has type num.

Example 6.2
The program

eval -ae(

(Succ(Plus(

Succ(Succ(Zero )),

Plus(

Succ(Zero),

Succ(Succ(Zero )))))))

is well typed and yields the value
Succ(Succ(Succ(Succ(Succ(Succ(Zero ))))))

after evaluation as expected.

Next, we extend the language of arithmetic expression with a predecessor
construct.

arith -expr -p ::= G(aep , (aep -> Zero | Succ(aep) | Pred(aep )))

We leave out the Plus constructor so simplify the presentation.

Example 6.3
This grammar for example generates the values

Pred(Succ(Zero ))

or
Succ(Succ(Pred(Succ(Zero ))))

But we can also build an expression of the form
Pred(Zero)

If we want to evaluate an arith-expr-p to a value of type num this expression
presents a problem. Since what should the predecessor of Zero be in the
context of the natural numbers?

As the last example has shown, the grammar for the language of arith-expr-p

allows to construct terms that “make no sense”. The simply typed language we
are using as meta-language does only allow to write total functions. Hence, we
have to explicitly encode the possibility of failing when writing an evaluator
for expressions of type arith-expr-p. This means we also have to extend the
target domain by a value representing the case of no result.
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maybe -num ::= G(mn , (mn -> None | Just(n),

n -> Zero | Succ(n)))

In the style of the Haskell datatype Maybe a, we define a maybe-num to be either
the literal None or Just a value of type num. Note that the definition of num is
inlined into the grammar of maybe-num.

With this definition it is straight forward to write an evaluator for
arith-expr-p.

eval -aep(e : arith -expr -p) : maybe -num =

match e : arith -expr -p

case Zero -> Just(Zero)

case Succ(x) -> match eval -aep(x) : maybe -num

case None -> None

case Just(y) -> Just(Succ y)

case Pred(x) -> match eval -aep(x) : maybe -num

case Just(Succ(y)) -> Just(y)

case y -> None

This implementation shows two important things:
• The type annotations make it obvious that eval-aep is in fact a partial

function on expressions of type arith-expr-p. Furthermore, the simply
typed language does enforce these explicit annotations. Assume we try
to implement the function eval-aep as a function with result type number.
This means the case for Pred looks as follows:

case Pred(x) -> match eval -aep(x) : num

case Succ(y) -> y

But then the function does not pass the type checker, because the patterns
are not exhaustive with respect to the type annotation num. For the
patterns to be exhaustive we would need the type annotation positive-num.
But in this case the program would not be well-typed either, because the
result of the recursive call eval-aep(x) does not have the type positive-num.

• The obligation to explicitly deal with partial functions by appropriate
type annotations is a good thing from the point of view of safety. But if
we look at the implementation of eval-aep we see that it leads to much
boilerplate code: First, we need to unwrap subresult every time before
processing them. And second, a subresult of None is always propagated
to the final result. One paradigm of good programming style is to never
repeat oneself and instead abstract over common behavior. Unfortunately,
the simply typed language does not contain mechanisms to abstract over
these kinds of common behavior. One way to tackle that shortcoming
is to add higher order functions to the language. With higher order
functions we could write a function bind of the form

bind(x : maybe -num ,

f : number -> maybe -num) : maybe -num =

match x : maybe -num

case None -> None

case Just(y) -> f(y)
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abstracting over the common parts of eval-aep. With the help of bind we
could rewrite eval-aep to the more concise version eval-aep’.

eval -aep ’(e : arith -expr -p) : maybe -num =

match e : arith -expr -p

case Zero -> Just(Zero)

case Succ(x) -> bind(eval -aep ’(x),j-succ)

case Pred(x) -> bind(eval -aep ’(x),m-pred)

where
j-succ(n : num) : maybe -num = Just(Succ(n))

m-pred(n : num) : maybe -num =

match n : num

case Zero -> None

case Succ(x) -> Just(x)

In Section 7 we examine the addition of higher order functions to the
simply typed language in more detail.

In our next example we extend the arithmetic expressions to a more realistic
expression language.

expr ::= G(e, (e -> True | False | If(e,e,e)

| Zero | Succ(e) | IsZero (e)))

In addition to the arithmetic expressions this language contains the boolean
values True and False. Furthermore, we have the control structure If encoding
the well known if-then-else statement. And finally we have the term IsZero

that tests if the argument is zero. We again omit the Plus constructor from
the first example, because is shows nothing new in this case.

The values of the expression language hence are
val ::= G(v, (v -> True | False | Zero | Succ(n),

n -> Zero | Succ(n)))

Again, the grammar for the language of expressions allows to build mean-
ingless terms like

Succ(True)

or
If(Succ(Zero),False ,True)

This means we have to explicitly deal with the case of failing in the evaluator
for expr. Therefore, we enhance the values with a value representing failure.

maybe -val ::= (mv , (mv -> None | Just(v),

v -> ...))

Now, let’s look at the evaluator.
eval -expr (e : expr) : maybe -val =

match e : expr

case Zero -> Just(Zero)

case True -> Just(True)
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case False -> Just(False)

case If(test ,then ,else) ->

match eval -expr(test) : maybe -val

case Just(True) -> eval -expr(then)

case Just( False ) -> eval -expr(else)

case y -> None

case Succ(y) ->

match eval -expr(y) : maybe -val

case Just(Zero) -> Just(Succ(Zero ))

case Just(Succ(z)) -> Just(Succ(Succ(z)))

case y -> None

case IsZero (y) ->

match eval -expr(y) : maybe -val

case Just(Zero) -> Just(True)

case Just(Succ(z)) -> Just(False)

case z -> None

Like the evaluator for arith-expr-p this evaluator contains much boilerplate
code. We have to wrap and unwrap the results all the time. But even if
evaluating a subexpression yields a value we have to check if the result has the
correct type to continue. Take for example the case for the constructor If. The
result of evaluating the subexpression test can only be used if it is either True

or False. In all other cases the whole expression is meaningless and we have to
return None.

In the context of algebraic datatypes writing an evaluator for languages
similar to expr is a common motivating example for introducing generalized
algebraic datatypes [17, 4]. The main problem is that the grammar for the
language (represented by an algebraic datatype) allows to construct meaningless
terms.

But we are using tree grammars instead of algebraic datatypes. Tree
grammars are more powerful than algebraic datatypes as discussed in Section
8. Hence, the question arises if we can design a better grammar that only
generates the desired class of terms. For the language expr at least the answer
is yes.

expr ’ ::= G(e,

e -> True | False | IsZero ae

| Zero | Succ(ae)

| If(be ,ae ,ae) | If(be ,be ,be)

ae -> Zero | Succ(ae) | If(be ,ae ,ae)

be -> True | False | IsZero ae

| If(be ,be ,be))

The idea is to divide the grammar into two disjoint sets of expressions: arith-
metic expressions represented by the nonterminal ae and boolean expressions
represented by the nonterminal be. The whole grammar is defined as the union
of arithmetic and boolean expressions. The productions for the start symbol e

are the result of normalizing the grammar. expr’ is a subtype of expr which
means that all terms of expr’ are also terms of expr. But the grammar expr’

allows to only construct terms which can be evaluated to a value. We prove
this by implementing a total evaluator.
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Before implementing the evaluator for the whole language, we implement
two mutually recursive sub-evaluators for arithmetic and boolean expressions.
The sub-evaluators have more specific target domains. Arithmetic expressions
evaluate to numbers, and boolean expressions evaluate to boolean values
represented by the grammar

bool ::= G(b, b -> True | False)

To simplify the code we define the following two grammars.
ae ::= G(ae , (ae -> ... ,

be -> ...))

be ::= G(be , (be -> ... ,

ae -> ...))

eval -ae(e : ae) : num =

match e : ae

case Zero -> Zero

case Succ(x) -> Succ(eval -ae(x))

case If(test ,then ,else) ->

match eval -be(test) : bool

case True -> eval -ae(then)

case False -> eval -ae(else)

eval -be(e : be) : bool =

match e : be

case True -> True

case False -> False

case IsZero (y) ->

match eval -ae(y) : num

case Zero -> True

case Succ(y) -> False

case If(test ,then ,else) ->

match eval -be(test) : bool

case True -> eval -be(then)

case False -> eval -be(else)

Together with these two sub-evaluators it is now straight forward to imple-
ment an evaluator for the whole language of expressions.

eval -e(e : expr ’) : val =

match e : expr ’

case True -> eval -be(True)

case False -> eval -be(False)

case IsZero (x) -> eval -be( IsZero (x))

case Zero -> eval -ae(Zero)

case Succ(x) -> eval -ae(Succ(x))

case If(test ,then ,else) ->

match eval -be(test) : bool

case True -> eval -e(then)

case False -> eval -e(else)

In order to make the structure of the code more explicit the evaluator delegates
to the respective sub-evaluators as soon as possible. In most cases the topmost
constructor unambiguously identifies the class of expressions the term belongs
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to. The only exception is the constructor If. In this case the function eval-e

has to do the evaluation itself until it can identify the term to either be an
arithmetic or a boolean expression.

Hence, for the language of expressions expr we succeeded in writing a
total evaluator. This was due to the fact that we could design a grammar
representing only well-typed expressions. Put otherwise, we embedded the
language of expressions in a type-safe way into our meta language. Is this
always possible? The answer is clearly no. As discussed in section 1 most
programming languages need to ensure context sensitive properties. But like
context free grammars, tree grammars are not able to capture context sensitive
constraints. For example, if we enrich our small language of expressions by first
class functions, there is no way to capture the constraints of variable bindings
within the grammar. There is ongoing research about type-safe embedding
of programming languages into others [11, 25, 1, 26, 10]. An opportunity for
further research is to explore whether tree grammars can be extended in a way
to support a broader range of programming languages to be embedded in a
type-safe way. Some ideas are discussed in Section 12.

When comparing the implementations of eval-e and the sub-evaluators
eval-ae and eval-be we can see that they all contain very similar code for the If

case. Higher order functions alone would not help to abstract over the common
parts in this case. To see why let’s try to implement a function if capturing
the common behavior of evaluating an If expressions.

if(test : be , then : ?, else : ?, action : ? -> ?) : ?

match eval -be(test) : be

case True -> action (then)

case False -> action (else)

The problem is that we do not know what types to insert in the places of the
question marks. If we want to call the function from eval-ae we would have to
annotate then and else with ae and action with ae -> num. And the result of
the function would have to be num. If we want to call the function from eval-be

we would get different requirements on the types.
In Section 9 we discuss how to extend our language with generic types.

This enables us to write code that is type independent, i.e. that can be used in
different contexts with different types.
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7 First Extension: Higher Order Functions
Higher order functions are functions that take other functions as arguments.
Furthermore, higher order functions can also return functions as result. Put
differently, in systems with higher order functions functions are first class
entities.

So far, the simply typed language can only work with trees. Functions
consume and produce trees. And we have language constructs to deconstruct
trees and build new trees. Extending the simply typed language with higher
order functions means enriching the data by function values.

Higher order functions provide us with a new kind of abstraction mechanism.
First order functions abstract over values. This enables us to use the same code
with different values. Higher order functions lift this abstraction mechanism to
functions. This means we can now write code that abstracts over behavior.

The case study in Section 6 showed a motivating example for a context
where it was important to abstract over concrete behavior. We defined the
type

maybe -num ::= G(mn , (mn -> None | Just(n),

n -> Zero | Succ(n)))

describing values that are either a number or None representing “no result”. This
type was used to encode partial functions, i.e. functions that are not defined for
all values of the argument type. In the course of writing such a partial function
we often had to write code of the form

match some -expr : maybe -num

case None -> None

case Just(n) -> ...

as to propagate the failure. To abstract over the common parts in this kind of
code fragments we need to abstract over the right hand side of the second case
expression (indicated by ... in the example). This right hand side depends on
the pattern variable n. Hence, we need to abstract over a function. In a system
that supports higher order functions we can write the function bind abstracting
over the common parts of the code fragments.

bind(x : maybe -num ,

f : number -> maybe -num) : maybe -num =

match x : maybe -num

case None -> None

case Just(y) -> f(y)

In the reminder of this Section we extend the simply typed language by
higher order functions. Therefor we first extend the syntax and the semantics
of the language. After that we extend the type system to incorporate higher
order functions and finally we prove the soundness of the resulting system.
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7.1 Syntax
In the simply typed language functions are defined separately at the top
level. Hence, functions play a special role in this system. Especially, function
definitions are not part of the expression language. The only possibility to
make use of the definitions is via function application. In contrast, a system
with higher order functions treats functions as first class entities. Hence, we
need syntax to write down function values.

Since functions are now part of the expression language we don’t need
function definitions as top level construct any more. Hence, a program in the
new system consist of a single expression. We will later see that we can treat
the explicit function definitions from the simply typed languages as syntactic
sugar.

Figure 12 shows the extension of the expression language by function literals.
We adopt the common notation from the simply typed lambda calculus. A
function literal of the form λx : t. e defines a function with an argument x

of type t and the body e. We allow to use additional parentheses to group
subexpressions. Furthermore, we adopt the convention that the function
body extends as far to the right as possible. Hence, λx : t. e(y) means
λx : t. (e(y)) and not (λx : t. e)(y). Finally, we define function applications
to be left associative. Hence, f(g)(h) means (f(g))(h). In addition to the new
syntax for function literals, the syntax for function applications need to be
changed slightly. Since we now have expressions that can evaluate to a function
we allow arbitrary expressions at the function position instead of only function
names.

expr ::= . . .
| λx : t.expr
| expr(expr)

Figure 12: Expressions with Function Literals

Example 7.1
The following example defines a function taking a number as argument and
returning True if the number is Zero.

λx : num.

match x : num

case Zero -> True

case Succ(y) -> False

With this extension of the expression language we can now supply functions
as arguments to functions. Since we require to annotate types for the arguments,
we also need to extend the type language with function types. The extension is
shown in figure 13. The old types from the simply typed language become base
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types in the extended system. A type is then defined to be either a base type or
a function type written as t1 -> t2. Thereby the type t1 represents the type of
the function’s argument and t2 the result type. We adopt the convention that
“->” is right associative. Hence, t1 -> t2 -> t3 means t1 -> (t2 -> t3). Parenthesis
can be used to group types.

t ::= base | t -> t

base ::= G(n, (prod, . . . ,prod))

Figure 13: Function Types

Note, that formally we only allow functions with one argument. Since
functions can return functions as result this is no restriction. A function with
more than one argument can be encoded as multiple nested functions each
taking only one argument. For example, we encode a function of the form

f(x:t1 , y:t2) = body

by
λx:t1. λy:t2. body

As discussed in Section 2, it is essential that a language working on induc-
tively defined trees offers recursive functions as a unit of abstraction. So far,
we have no possibility to express function literals of recursive functions. The
problem is that literal functions are anonymous. But for recursive calls we
need to name that very function we are defining. In the simply typed language
without higher order functions this problem did not occur, because there we
give names to functions when defining them. In a system with higher order
functions the problem is commonly solved by introducing a fixpoint construct
fix.[24]. fix takes a function as argument and produces a new function in the
following way. fix(λf : t1 -> t2. e) evaluates to e where f is replaced by the
whole expression fix(λf : t1 -> t2. e). The syntax is shown in figure 14 We
explain the functionality by a small example.

expr ::= . . .
| fix(expr)

Figure 14: Syntax for Fixpoints
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Example 7.2
We can approximate a recursive function by abstracting over the function
we want to use for the recursive call. The following code shows such an
approximation for the function even.

λeven : num -> bool.

λx : num.

match x : num

case Zero -> True

case Succ(Zero) -> False

case Succ(Succ(y)) -> even(y)

The fixpoint construct ties the knot to get true recursion. The recursive
function even is defined as

fix(λeven : num -> bool.

λx : num.

match x : num

case Zero -> True

case Succ(Zero) -> False

case Succ(Succ(y)) -> even(y))

which evaluates to
λx : num.

match x : num

case Zero -> True

case Succ(Zero) -> False

case Succ(Succ(y)) -> fix (...)( y)

When applying this result for example to the value Succ(Succ(Zero)) it
reduces to

fix (...)( Zero)

which again reduces to
(λx : num.

match x : num

case Zero -> True

case Succ(Zero) -> False

case Succ(Succ(y)) -> fix (...)( y))

(Zero)

Hence, the fix construct ensures that we have as many instances of the
recursive function’s body available as we need.

61



The fixpoint construct fix also allows to encode sets of mutually recursive
functions. We illustrate this by the following example.

Example 7.3
We consider the mutually recursive functions even and odd.

even(x : num ): bool

match x : num

case Zero -> True

case Succ(y) -> odd(y)

odd(x : num ): bool

match x : num

case Zero -> False

case Succ(y) -> even(y)

We define the grammar
s ::= G(s, (s -> Even | Odd ))

containing one constructor per function. With that we can define the
following generator function.

g ::= λgen : s -> (num -> bool ).

λf : s.

match f : s

case Even -> λx : num.

match x : num

case Zero -> True

case Succ(y) -> gen(Odd )(y)

case Odd -> λx : num.

match x : num

case Zero -> False

case Succ(y) -> gen(Even )(y)

With the help of this generator function we can now encode even and odd

as
even ::= fix(g)( Even)

odd ::= fix(g)( Odd)

As we have seen in the previous examples we can encode functions with
more than one argument as well as (mutually) recursive functions in our new
system. Hence, a program in the simply typed language containing to level
function definition can be seen as syntactic sugar. The desugaring works as
follows. We start with a program of the form

f1(x11 : t11, . . . ,x1n1
: t1n1

) : t1 = e1
· · ·

fk(x1k
: t1k

, . . . ,xknk
: tknk

) : tk = ek

e : t

First, we define an anonymous function literal for each function definition fi as
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follows.
fi ::= λx1i : t1i. . . . . λxini

: tini
. e

If necessary we encode sets of mutually recursive function with the help of
a generator function as explained in example 7.3. With the help of these
definitions we can desugar the whole program to the following program in the
higher order system.

(λf1 : t11 -> . . .-> t1n1
.

. . . .

λfk : t1k
-> . . . -> tknk

. e)(f1) . . .(fn) : t

Regarding top level definitions as syntactic sugar allows us to use this more
readable syntax for examples. The formal analysis of the language with higher
order function sticks to the smaller core language.

7.2 Semantics
In order to give a meaning to the new syntactic constructs we need to extend the
semantics of the language. Therefor, we first have to define which expressions
are values. Clearly, all tree values should be values. The same holds for function
literals. But what about expressions of the form C(λx : t. e)? In a system
that works with trees and functions on trees this kind of expression does not
make any sense, since it is neither a tree nor a function. Therefore we choose
to define the set of values to not contain these “mixed” forms. It will be the
task of the type system to reject such terms as ill-typed.

Figure 15 shows the extended reduction relation. In contrast to the old
reduction relation (see Section 4) we don’t need the function context F any
more. As mentioned above, a program now consists only of a single expression.

CONG
e1 −→ e2

E[e1] −→ E[e2]
FAPP

(λx : t.e)(v) −→ e[x �→ v]

FIX
fix(λx : t.e) −→ e[x �→ fix(λx : t.e)]

MATCH

tree(v) ¬ matches(patj, v), j ∈ {1, . . . , i − 1}
match(pati, v) = {x1 �→ v1, . . . , xk �→ vk}

match v : t case pat1 -> e1 . . . case patn -> en

−→ ei[x1 �→ v1, . . . , xk �→ vk]

Figure 15: Extended Reduction Relation

The congruence rule CONG can be adopted directly from the reduction
relation of the simply typed language (see Figure 4). As for this rule to also
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apply to the new syntactic constructs we extend the definition of evaluation
contexts as follows.

E ::= •
| E(expr)

| (λx : t.expr)(E)

| c(value, . . . ,value,E,expr, . . . ,expr)

| match E caseexpr+

| fix(E)

The rule FAPP covers function applications. It says that whenever a
function value λx : t.e is applied to a value v is can reduce to the body of
the function e where the argument x is replaced by the value v. In order for
this rule to be well defined we need to extend to definition of substituting
values in expressions. Figure 16 shows the new version. The cases for variables,
constructor applications and match expressions remain the same. In the case
for function applications we now need to also apply the substitution to the
function expression in addition to applying it to the argument expression. The
cases for fix and for functions are new. In the case of fix the substitution is
propagated into the argument. The case for functions requires more attention.
Since the function λx : t.e binds the variable x, occurrences of x in the body
e should not be replaced. Hence, similar to the case for pattern matching
expressions, we apply a substitution σ� to e. σ� is defined as σ without the
mapping for the variable x.

σ(x) =
�

σ(x) if x ∈ dom(σ)
x otherwise

σ(C(e1,. . . , en)) = C(σ(e1),. . . , σ(en))

σ(e1(e2)) = (σ(e1))(σ(e2))

σ(λx : t.e) = λx : t.σ(e)
where σ� = σ \ {x}

σ(fix(e)) = fix(σ(e))

σ





match e : t
case pat1 -> e1

...
case patn -> en




= σ





match σ(e) : t
case pat1 -> σ1(e1)

...
case patn -> σn(en)





where σi = σ \ vars(pati)

Figure 16: Applying a Substitution to an Expression

The rule FIX implements the behavior of the fixpoint construct as explained
in example 7.2. Whenever fix is applied to a function value it reduces to the
body of that function thereby replacing the argument with the whole expression.
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The rule MATCH differs only slightly from its original counterpart. In the
old system all values where tree values. In the extended system the range of
values also comprises function values. Since pattern matching is a construct
working on tree values only we have to ensure that the value v matched against
is indeed a tree value. This is done by the additional premise tree(v).

Example 7.4
To demonstrate the reduction relation we use the bind function from the
beginning of this Section. bind was defined as follows.

bind(x : maybe -num ,

f : num -> maybe -num) : maybe -num =

match x : maybe -num

case None -> None

case Just(y) -> f(y)

The intention is to lift functions of the type number -> maybe-num to work
on values of type maybe-num. As an example we lift the predecessor function.
The predecessor function is defined as follows.

λx : num.

match x : num

case Zero -> None

case Succ(y) -> Just(y)

Let’s first look at the application
bind(None ,

λx : num.

match x : num

case Zero -> None

case Succ(y) -> Just(y))

Both arguments are values, hence to whole expression reduces to
match None : maybe -num

case None -> None

case Just(y) -> (λx : num.

match x : num

case Zero -> None

case Succ(y) -> Just(y))

(y)

by FAPP and this again reduces to
None

by MATCH. Thus, the values None is propagated automatically to the
result without bothering the lifted function.

As a second example we use an argument different from None.
bind(Just(Succ(Zero )),

λx : num.

match x : num

case Zero -> None

case Succ(y) -> Just(y))
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This expression evaluates to
match Just(Succ(Zero )) : maybe -num

case None -> None

case Just(y) -> (λx : num.

match x : num

case Zero -> None

case Succ(y) -> Just(y))

(y)

in one step.
Since this time the second pattern matches the value Just(Succ(Zero)).

Therefore the rest of the computation is delegated to the lifted function.
(λx : num.

match x : num

case Zero -> None

case Succ(y) -> Just(y))

(Succ(Zero ))

Evaluating this expression finally yields the value Just(Zero).

7.3 Type System
The goal of the type system is to define the set of well-typed expressions. As in
the simply typed language we define an expression to be well typed if evaluating
this expression can never reach a state that is neither a value nor can reduce
further.

In the simply typed language subtyping showed to be an essential feature
for the usability of the system. In the course of extending the language with
higher order functions we also extended the range of types by function types.
Hence, we need to lift the notion of subtyping to function types. Subtyping
on base types is defined as inclusion of languages. From the point of view of
typing this means that we can use an expression of a subtype in all contexts
where an expression of the supertype is expected. For example, we can safely
pass the expression Zero with type (z, (z -> Zero)) to a function that expects
an expression of type num, since (z, (z -> Zero)) is a subtype of num.

Functions are contravariant in the argument type and covariant in the result
type.[24] This means a function type t1->t�

1 is a subtype of a function type
t2->t�

2 under two conditions.

• t�
1 is a subtype of t�

2.

• t2 is a subtype of t1.

This duality arises from the fact that we want to be able to safely use a function
f1 of type t1->t�

1 in any context where a function f2 of type t2->t�
2 is expected.

There are two aspects of using a function. The first aspect is obtaining a result.
If we call a function of type t2->t�

2 we expect a result of type t�
2. Since the

function f1 produces a result of type t�
1 which is a subtype of t�

2, f1 can be
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safely used to produce this result. The second aspect of using a function is
applying it, i.e. passing an argument to the function. The constraints on types
for applying a function are dual to the constraints for using the result. If we
are in a context that expects a function of type t2->t�

2 we know that we can
safely pass any argument of type t2 to that function. Hence, the function f1
needs to be able to handle arguments of type t2. On the other hand it is no
problem if it even accepts a broader range of values as input. Therefore, the
subtype relation on the argument types is reversed. Figure 17 shows the formal
definition of subtyping for function types.

t1 -> t�
1 <: t2 -> t�

2 :⇔ t2 <: t1 ∧ t�
1 <: t�

2

Figure 17: Subtyping for Function Types

Figure 18 shows the typing rules for the extended system. T-FABS, T-FAPP
and T-FIX correspond to the standard typing rules for the lambda calculus
and related systems. A function definition of the form λx:t1.e is well-typed
with the type t1->t2 if the body e is well-typed with type t2 under the extended
typing context that maps the argument x to the annotated type t1. On the
other hand, a function application of the form e1(e2) is well-typed with type t2
if we can show that e1 has the function type t1->t2 and the argument e2 has
the matching type t1. A fixpoint construct of the form fix(e) is well-typed
with type t if the expression e is well-typed with type t-> t.

The rules T-VAR and T-SUB are adopted unchanged from the simply
typed language. The rule T-CAPP did not change either but still needs some
explanation. We already discussed that constructor applications are only valid
if the arguments are trees. Especially, we do not allow functions as arguments to
constructors. This requirement is ensured by the rule T-CAPP by constraining
the types of the arguments to be grammars. Since functions have function types
this rules out the possibility to use functions as arguments to constructors.

The rule T-MATCH covers the case of pattern matching expressions. In
the reduction relation we specified that pattern matching is only possible on
tree values. Hence, the task of the rule T-MATCH is to ensure that in any
well-typed pattern matching expression the expressions matched against will
actually evaluate to a tree value at runtime. This is done by the premise
base(te) which requires that the annotated type te is a base type, i.e. a tree
grammar. Apart from this additional premise the rule T-MATCH coincides
with the corresponding rule for the simply typed language.

Example 7.5
We show that the function bind from example 7.4 is well-typed with type
maybe-num -> (num -> maybe-num) -> maybe-num. As to better see the corre-
spondence from the syntax to the typing rules we desugar the function
definition which contains two arguments into two nested functions each
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T-SUB
Γ � e : tsub tsub <: t

Γ � e : t
T-VAR

(x : t) ∈ Γ
Γ � x : t

T-FABS
Γ ∪ {x : t1} � e : t2

Γ � λx : t1.e : t1 -> t2

T-FAPP
Γ � e1 : t1 -> t2 Γ � e2 : t1

Γ � e1(e2) : t2

T-FIX
Γ � e : t-> t

Γ � fix(e) : t

T-CAPP
π(st) = C(n1, . . . ,nn) Γ � ei : G(ni,π)

Γ � C(e1, . . . ,en) : G(st,π)

T-MATCH

base(te) Γ � e : te match(pati, te) = Γi

exhaustive({pat1, . . . , patn}, te) Γi ∪ Γ � ei : t

Γ � match e : te case pat1 -> e1 . . . case patn -> en : t

Figure 18: Typing Relation for the System with Higher Order Functions

taking only one argument.
bind ::=

λx : maybe -num.

λf : num -> maybe -num.

match x : maybe -num

case None -> None

case Just(y) -> f(y)

The outermost construct is a function abstraction, hence the rule T-FABS
applies. It tells us that in order to show that the whole expression has the
type maybe-num -> (num -> maybe-num) -> maybe-num under the empty typing
context we have to prove that the body of the expression

λf : num -> maybe -num.

match x : maybe -num

case None -> None

case Just(y) -> f(y)

has type (num -> maybe-num) -> maybe-num under the typing context

Γ = {x : maybe-num}

.
The body of the outermost function is again a function definition. By

the same arguments we thus have to show that
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match x : maybe -num

case None -> None

case Just(y) -> f(y)

has type maybe-num under the typing context

Γ� = {x : maybe-num, f : num -> maybe-num}

.
Now, the rule T-MATCH applies. maybe-num is a base type, hence the

check base(maybe-num) succeeds. Both pattern None and Just(y) match the
type maybe-num. Matching the pattern None against the type maybe-num yields
the empty typing context Γ1 = ∅. Matching the pattern Just(y) against
the type maybe-num yields the typing context Γ2 = {y : num}. According
to T-MATCH we need to conduct the two subproofs showing Γ� ∪ Γ1 �
None : maybe-num and Γ� ∪ Γ2 � f(y) : maybe-num. We do this by writing down
the derivation trees.

T-SUB

π(n) = None

Γ� ∪ Γ1 � None : G(n, (n -> None))

T-CAPP

G(n, (n -> None)) <: maybe-num

Γ� ∪ Γ1 � None : maybe-num

T-FAPP
T-VAR

(f : num -> maybe-num) ∈ Γ� ∪ Γ2

Γ� ∪ Γ2 � f : num -> maybe-num

(y : num) ∈ Γ� ∪ Γ2

Γ� ∪ Γ2 � y : num

T-VAR

Γ� ∪ Γ2 � f(y) : maybe-num

7.4 Soundness
The soundness proof for the type system of the simply typed language can be
extended in a straight forward way to yield a soundness proof for the extended
type system. Since the proof shows nothing new we omit the details and only
give an overview of the necessary steps.

The soundness proof for the simply typed language was separated into three
parts: the substitution lemma (Lemma 4.2) and the theorems about progress
(Theorem 4.1) and preservation (Theorem 4.1). All three proofs were carried
out as a structural induction on derivation trees. The main part of the proof
hence consisted of a case analysis on the last rule used in the derivation tree.
What remains to be done is to extend this case analysis with cases for the new
typing rules.
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8 Case Study II: Lists, Maps and Folds
In the world of functional programming, algebraic data structures and their
corresponding higher order traversal functions are an important tool for writing
elegant and concise programs. In this case study we explore how these well-
known techniques can be expressed in our simply typed language with higher
order functions using the example of lists. We show how to encode lists as tree
grammars and demonstrate how to implement the higher order list functions
“map” and “fold”. While algebraic data types and tree grammars have a great
deal in common, there are also some differences. In the last part of this case
study we discuss these differences.

We start by giving a grammar for describing lists of numbers.
num -list ::= (l, (l -> Nil | Cons(n,l)

n -> Zero | Succ(n)))

This grammar corresponds to the standard definition of lists in programming
languages featuring algebraic data types like Haskell or ML.

Example 8.1
Examples for lists are

Nil

representing the empty list or
Cons(Zero ,

Cons(Succ(Succ(Zero )),

Nil ))

representing the list with elements 0 and 2.

Lists are inductive data structures. Hence, most functions on lists have the
recursive form

f(l : num -list) : res

match l : num -list

case Nil -> base -case

case Cons(n,l ’) -> some -fun(n,f(l ’))

Example 8.2
The following function computes the length of a list.

length (l : num -list) : num

match l : num -list

case Nil -> 0

case Cons(n,l ’) -> Succ( length (l ’))
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Example 8.3
The following function increments each element of the list by one.

map -inc(l : num -list) : num -list

match l : num -list

case Nil -> Nil

case Cons(n,l ’) -> Cons(Succ(n),map -inc(l ’))

The length function from example 8.2 is an instance of a more general
recursion scheme called a fold. A fold aggregates the elements of a list into one
value.

The map-inc function from example 8.3 is an instance of a more general
recursion scheme called a map. A map constructs a new list out of a given list
by applying a function to each element.

In the following we show how to abstract over the common behavior using
higher order functions.

Folds
Folds on lists of numbers aggregate the elements of the lists into one value.
Since we are in a mono-typed setting, we first restrict our discussion to folds
where the result of the aggregation is a number.

We need to consider two cases.

• The first case applies when the input list is Nil. This corresponds to the
base case of the recursion. Since we cannot know in general which value
to return in case of the empty list, we make this into an argument of the
fold function.

• The second case applies when the input list has the form Cons(n,l’).
Recursively applying the fold function to the sublist l’ yields a number
as result. Hence, we need a function that combines the number n with
the result of the recursive call. Since the way of combining these two
numbers will be different in different instances of the fold function, we
also make this function into an argument.

Thus, the fold function has the type
(num -> num -> num) -> num -> num -list -> num

The implementation of the fold function is straight forward.
fold(f : num -> num -> num , base : num , l : num -list) : num =

match l : num -list

case Nil -> base

case Cons(n,l ’) -> f(n,fold(f,base ,l ’))

In case of l = Nil we return base. Otherwise we recursively fold the sublist and
use the function f to combine the result with the element n.
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We can encode the function length from example 8.2 as an instance of a
fold as follows.

length (l : num -list) : num =

fold(λx : num.

λy : num. Succ(y),

Zero ,

l)

The length of the empty list is 0, hence we supply the value Zero as base case
to the fold. Since the length of the list is independent from the concrete values
in the list, the argument function ignores its first argument x and increments
its second argument y by one.

Another example for a concrete fold is computing the sum of the elements
of the list.

sum ::= λl : num -list.

fold(plus ,Zero ,l)

Maps
Analogous to the folds we can define a general map function on lists of numbers
as follows.

map(f : num -> num , l : num -list) : num -list =

match l : num -list

case Nil -> Nil

case Cons(n,l ’) -> Cons(f(n),map(f,l ’))

In case of the empty list we return the empty list. Otherwise we recursively map
the function f over the sublist l’ and add the result of f(n) at the beginning.

With the help of this map function we can encode the function map-inc from
example 8.3 as an instance of a map as follows.

map -inc(l : num -list) : num -list =

map(λx : num. Succ(x),

l)

Discussion
The implementation of functions like map and fold shows how the well-known
techniques on algebraic datatypes carry over to tree grammar types in a straight
forward way.

However, the simply typed language with higher order functions is more
expressive than the mono-typed counterpart of functional languages with
algebraic datatypes. The reason is that our system uses structural subtyping
on tree grammars. Furthermore, we lift the notion of subtyping to function
types. This leads to quite powerful abstraction mechanisms.

Let’s for example assume the constant function
c(x : num) : zero =

Zero
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with
zero ::= G(z, (z -> Zero ))

that maps all numbers to Zero.
Thanks to subtyping on functions we can lift this function to a function

from lists of numbers to lists of numbers as follows.
c- lifted (l : num -list) : num -list =

map(c,l)

In a system without subtyping on functions we would have to change the
result type of c to the more imprecise type num in order for the function c-lifted

to be well-typed. But this implies that we cannot use the function c any more
in a context where a result of type zero is expected.

On the other hand, let’s assume a function f of type arith-expr -> num,
where arith-expr is defined as follows.

arith -expr ::= G(ae , (ae -> Zero | Succ(ae) | Plus(ae ,ae )))

The type num is a subtype of arith-expr. Hence, the function type
arith-expr -> num is a subtype of the function type num -> num. This implies
that we can lift the function f to a function from lists of numbers to lists of
numbers in the following way.

f- lifted (l : num -list) : num -list =

map(f,l)

While in the first case we could change the result type of the function c to the
more imprecise type num, in this case it is not possible to change the argument
type of f to num: the function f is not well-typed with type num -> num.

While higher order functions are a very powerful abstraction mechanism
they don’t solve the problem of how to abstract over types. For example, our
map function from above works only on lists of numbers. If we want to map a
function over a lists with different element types, say boolean values, we have
to implement another instance of the map function, namely

map(f : bool -> bool , l : bool -list) : bool -list = ...

The same holds if we want to lift a function of type num -> bool or bool -> num.
All instances share the same code, the only difference are the type annotations.

In the next Section we introduce polymorphic types to our language.
This allows us to implement the map function with the polymorphic type
(X -> Y) -> list(X) -> list(Y). Note, that with polymorphic types we can
even express the map function as an instance of the fold function as follows.

map(f : X -> Y, l -> list(X)) : list(Y) =

fold(λx : X.

λy : list(Y).

Cons(f(x),y),

Nil ,

l)
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9 Second Extension: Parametric Types
Both case studies (see Section 6 and Section 8) clearly showed that the simply
typed language lacks an important abstraction mechanism, namely the possi-
bility to abstract over types. So far, the simply typed language features two
different kinds of abstraction mechanisms. The first abstraction mechanism are
functions which abstract over values. This enables us to use the same piece of
code with different values. The second abstraction mechanism are higher order
functions which abstract over behavior. This means we can factor out pieces
of code that are similar except for context specific behavior at certain points.
But there also exist situations where we have multiple pieces of code that vary
only in their type annotations. In the previous case study we showed how to
encode lists and higher order list functions in the simply typed language. In
this course we implemented the map function map-num as follows.

map -num(f : num -> num , l : num -list) : num -list

match l : num -list

case Nil -> Nil

case Cons(n,l ’) -> Cons(f(n),map -num(f,l ’))

If we want to apply a function with a different result type to all elements of
the list, we need to write a new instance of the map function. For example, a
map function that lifts a function of type num -> bool to lists looks as follows.

map -bool(f : num -> bool , l : num -list) : bool -list

match l : num -list

case Nil -> Nil

case Cons(n,l ’) -> Cons(f(n),map -bool(f,l ’))

Note that the function map-bool exactly corresponds to the function map-num

except for the type annotations.
Many programming languages offer parametric polymorphism [24] as a

solution to abstract over type independent code. Parametric polymorphism
essentially allows to use type variables instead of types with the following
semantics: the code is valid for any instantiation of the type variables with
concrete types. Hence, it is possible to abstract over types. For example, the
map function in Haskell has the type (a -> b) -> [a] -> [b]. This means: for
all types a and b, given a function of type a -> b and a list of type a the map
function yields a list of type b.

In the reminder of this Section we discuss how to incorporate the notion
of type parametricity into our calculus for metaprogramming. Therefor, we
first need to clarify what parametricity means in the context of regular tree
grammars. After that, we extend the simply typed language with System F
[24] like polymorphism. This includes extensions to the syntax and semantics
of the language and additional typing rules. And we also prove the soundness
of the resulting system.
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9.1 Parametric Tree Grammars
In Section 3 we specified the language a grammar generates by defining how trees
can be derived by the grammar. In a nutshell, a tree is derived by successively
replacing nonterminals by right hand sides of productions starting with the
start symbol. As a small example we look at the grammar for numbers.

num := G(n, (n -> Zero | Succ(n)))

We start a derivation with the start symbol n. The productions tell us that we
can replace n by Zero or by Succ(n). If we choose to replace n by Zero we are
done. There are no nonterminals left and hence Zero is value of the grammar
num. But we can also choose to replace n by Succ(n). Succ(n) still contains the
nonterminal n. We continue this process of replacing n by one right hand side
of the productions until we finally reach a value.

But what is the meaning of a grammar that contains type variables?

Example 9.1
As an example we consider a grammar for parametric lists.

list := G(l, (l -> Nil | Cons(X,l)))

Thereby X is a language variable that abstracts over the concrete types of
the list elements. According to the rules of derivation we can for example
derive the trees Nil or Const(X,Cons(X,Nil)). These trees are not yet values,
because they still contain the language variable X. But for each instantiation
of the language variable X with a concrete grammar G we can continue the
derivation process by replacing X with the start symbol of that grammar G.

Hence, parametric grammars can be seen as generators for grammars or
functions from grammars to grammars: Given an input grammar, a parametric
grammar generates a new grammar by instantiating the respective language
variable with the input grammar.

Figure 19 shows the syntax extension of grammars with language variables.
Differences are highlighted with boxes. We assume the set of language variables
to be distinct from the set of constructor names.

base ::= G(n, (prod, . . . ,prod))

prod ::= n -> rhs | . . . |rhs

rhs ::= c( N , . . . , N )

N ::= n | X

X ::= type variable names

Figure 19: Syntax Extensions for Grammars

Figure 20 shows the formal definition of instantiating a language variables
with a grammar. We purposely reuse the syntax for applying a substitution to
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an expression (see Section 2.2.3), because the concept of replacing a variable
with a concrete value is similar to replacing a language variable with a concrete
grammar, only at a different abstraction level. The instantiation works as
follows: we want to replace the language variable X within the grammar G(s,π)

by the grammar G(s�
,π�

) . To this end we need to replace the variable X by
the start symbol s� of the second grammar. In addition we need to add the
productions π� to the productions π. If necessary, we rename the nonterminals
in the grammar G(s�

,π�
) appropriately before applying the substitution as to

avoid name clashes.

G(s,π)[X �→ G(s�
,π�

)] = G(s,π[X �→ s�] ∪ π�
)

Figure 20: Instantiation of Language Variables

Example 9.2
We consider the case of instantiating the language variable X in the list
grammar of Example 9.1 with the grammar num. According to the definition
of instantiation we need to replace the language variable X with the start
symbol n of the grammar num in the productions of the grammar list.

The resulting grammar arises from adding the productions of the gram-
mar num to the modified productions of the grammar list. Hence, the result
is

G(l, (l -> Nil | Cons(n,l),

n -> Zero | Succ(n)))

which corresponds exactly to our definition of number lists in Section 8.

There is one subtle problem that we need to be aware of. The nonterminals
of a grammar are implicitly bound within the definition of the grammar. This
also means that we can rename them at will as to avoid name clashes. So far,
we have not yet discussed the scope of language variables. But in the case
where both the grammar we substitute in and the grammar we substitute with
contain the same language variable X, the process of substitution establishes a
connection between the two language variables from different grammars. In
the course of extending the simply typed language with language constructs
for type abstraction we introduce binding mechanisms for type variables. It
turns out that we never need to substitute grammars containing free language
variables. Hence, the definition for instantiation as is produces the expected
results.

9.2 Syntactic Extensions
So far, we have introduced the notion of language variables ranging over
grammar types. But grammar types are not the only kind of types in our
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language: there are also function types. The example of the polymorphic
identity function

id(x : X) : X = x

shows that it is overly restrictive to constrain type variables to range over
grammar types. Hence, we like to extend type language as follows.

t ::= base | t-> t | X

This allows us to use a type variable X in place of any type, including function
types.

9.2.1 Type Abstractions

With the extension of the type language as discussed above we are able to
write down types that contain type variables. Pushing this extension into
the syntax of our language implies that we can use type variables inside of
type annotations. But this is not enough to yield parametric polymorphism.
While we have a mechanism to use type variables we still lack a corresponding
binding mechanism. In the context of values this compares to offering syntax
for variables without including a language construct like functions that can
bind them.

Example 9.3
We consider an implementation of the polymorphic map function.

λf : A -> B.

λf : list(A).

...

In this context it is clear that both type variable A should belong to the
same scope. The type of the list elements needs to correspond to the
argument type of the function f. Hence, the scope of the type variables A

and B consists of the whole expression.
As second example we consider the following function.

map -const :=

λf : X -> num.

λl : list(Y).

map(f)(l)

This function map-const takes a function as argument that turns any input
into a number. One example for such a function is the constant function
λ.x : X. Zero. The second argument of the function map-const is a list with
element type Y. In this case the type of map-const should be something
like (∀X.X -> num) -> list(Y) -> list(num). Hence, the scope of the type
variable X does not extend into the function definition.
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The last example showed that we need a language construct for binding
type variables. There exists two well-known approaches that we discuss in the
following.

Let-Polymorphism Systems with let-polymorphism have top-level language
constructs which constrain the scope of type variables. One prominent example
for a language featuring let-polymorphism is Haskell. Haskell has top-level
definitions of the form

f x = ...

In the signature for a top-level definition it is possible to use type variables.
For example we can write the polymorphic identity function as follows.

id :: a -> a

id x = x

Top-level definition implicitly bind type variables. Hence, the signature essen-
tially is a shorthand notation for f :: ∀a. a -> a.

Let-Polymorphism hence allows to abstract over types and use the same
piece of code with different types in different contexts. For example we can
apply the identity function to a number as in

id 10

which implicitly instantiates the type variable with the concrete type Int. But
we can also apply the function to a boolean values as in

id True

A more verbose notation would write the applications as
id <Int > 10

and
id <Bool > True

respectively, making the instantiation with the concrete type Int explicit.
In Haskell this in not necessary, because the type instantiations are done
automatically using type inference.

However, only top-level definitions can bind type variables. This means
that the most fine grained scope for type variables corresponds to these top-
level definitions. Especially, we cannot express a function like the function
map-const from example 9.3 that requires a more fine grained scoping mechanism.
Since this restriction turned out to be a serious limitation in practice, there is
ongoing research about extending Haskell with more powerful type abstraction
mechanisms [23].

Universal Types Due to the limitations of let-polymorphism, we choose to
extend our language with a more powerful means of parametric polymorphism,
called universal types [24]. The general idea is to make type abstractions and
type applications part of the expression language.
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In the same way as abstraction over values is encoded by functions from
values to values we can abstract over types by the means of functions from types
to values, called type abstractions. We write a type abstraction with the type
parameter X and the body e as ΛX.e. The upper case lambda Λ syntactically
distinguishes normal functions from type abstractions. Correspondingly, we
extend the language of types with generator types, called universal types, of
the form ∀X.t. The dual to type abstraction is providing a type abstraction
with a concrete type, hence type application. We write type applications as
e<t>.

Example 9.4
The polymorphic identity function can be implemented as follows.

id :=

ΛX. λx : X. x

We can use this function by instantiating the type variable with a concrete
type.

id <num >( Zero)

First, we apply the function id to the type num yielding the identity function
on numbers. This resulting function can then be applied to the number
Zero.

Figure 21 summarizes the syntax of the extended language. The new
language constructs are highlighted with boxes.

9.3 Values and Semantics
With the syntactic extension of the language by type abstractions and type
applications we introduce a new class of values, namely type abstractions. As
discussed in Section 7 we don’t allow to use function values as arguments to
constructors, since the result cannot be described by a tree grammar.

We need to discuss how to deal with type abstractions as arguments to
constructors.

Example 9.5
Suppose we are in a context where x has the type

t := ∀X. G(s, (s -> Zero | Succ(X))

Now, suppose we allowed expressions of the form C(x). With the
hypothetical notation using the forall quantifier inside of grammars we
could assign the type

t’ := G(a, (a -> C(b),

b -> ∀X. G(s, (s -> Zero | Succ(X)))))

to the expression C(x).
If we deconstruct this expression by pattern matching as in
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expr ::= x
| λx : t.expr
| expr(expr)

| fix(expr)

| ΛX.expr
| expr<t>
| c(expr, . . . ,expr)

| match expr : t caseexpr+

caseexp ::= case pat -> expr
pat ::= x | c(pat, . . . ,pat)

t ::= base | t-> t | X | ∀X.t
base ::= G(n, (prod, . . . ,prod))

prod ::= n -> rhs | . . . |rhs
rhs ::= c(N, . . . ,N)

N ::= n | X

x ::= variable names
c ::= constructor names
n ::= nonterminal names
X ::= type variable names

Figure 21: Syntax of the Language with Parametric Types

match C(x) : t’

case C(y) -> ...

we forward the parametricity of x to the right hand sides of the case
expression. This means we could instantiate the pattern variable y with
different types at different places. In contrast to that, an expression of the
form

ΛX. C(x<X >)

forces the instantiation of the subexpression with only one concrete type.

The additional flexibility of allowing type abstractions as arguments to
constructors raises some problems.

• We need to extend regular tree grammars in a way that supports quan-
tification inside of productions.

• Since we don’t allow functions as arguments to constructors, we need
to distinguish between type abstractions with a function body and type
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abstractions with a tree body.

We believe that this additional flexibility does not increase the expressivity
of the language for the following reason. The only possible value with type

∀X.G(s, (s -> Zero | Succ(X)))

is the value ΛX.Zero, because the second production s -> Succ(X) cannot be
used to construct values as long as we don’t know the concrete instantiation for
the type variable X. Hence, values of type ∀X.t where t is a grammar cannot
exploit the parametricity but always need to treat the type variable as a “black
box”.

Hence, we can define the values of the language as shown in figure 22. There
are three classes of values: tree values, functions and type abstractions. As can
be seen from the definition of tree values, arguments to constructors have to
be tree values.

val ::= treeval | ΛX.expr | λx:t.expr
treeval ::= c(treeval, . . . ,treeval)

Figure 22: Values of the Language with Parametric Types

With the help of the definition of values it is now straight forward to
formalize the operational semantics. The reduction rules are shown in Figure
24. The only new rule is the rule TAPP. It says that a type application of the
form (ΛX.e)<t> reduces to the body e where the type variable X is replaced
by the concrete type t.

As for the rule CONG to also cover the case of type applications we need
to extend the definition of the evaluation contexts by the following clause.

E ::= . . . | E<t>

Furthermore, we need to lift the notion of substituting a type inside a
grammar to expressions. Figure 9.3 shows the definition. The interesting parts
are the cases for type application and type abstraction. In the case of type
abstractions we only apply the substitution to the body of the type abstraction
if the bound variable is different from the variable to be replaced. If we look at
the reduction relation in figure 24, the only place where a substitution of types
in initiated is in the rule TAPP for type applications. When specifying the
type system, we will see that in any well-typed type application the supplied
type does not contain free type variables. Hence, it is not possible that type
variables are accidentally captured in the process of substitution.

We illustrate the extension of the language by some examples.
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x[X �→ t] = x

(λx:t1.e)[X �→ t] = λx:t1[X �→ t].e[X �→ t]
(e1(e2))[X �→ t] = e1[X �→ t](e2[X �→ t])
fix(e)[X �→ t] = fix(e[X �→ t])

(ΛY .e)[X �→ t] =
�

ΛY .e if X = Y
ΛY .e[X �→ t] otherwise

(e<t1>)[X �→ t] = e[X �→ t]<t1[X �→ t]>
C(e1, . . . ,en)[X �→ t] = C(e1[X �→ t], . . . ,en[X �→ t])
(match em:tm case pi -> ei)[X �→ t] = match em[X �→ t]:tm[X �→ t]

case pi -> ei[X �→ t]

Figure 23: Substitution of Types

Example 9.6
We start with a simple example using the following parametric type for
pairs.

pair(X,Y) := G(p, (p -> Pair(X,Y)))

As before, the definition pair(X,Y) := ... is only syntactic sugar to give
names to pieces of code in order to not have to inline the definition all the
time. Formally, these kind of definitions are not part of the language.

With this definition we can write polymorphic functions for accessing
the first and second element of the pair respectively.

fst := ΛX.ΛY.

λp : pair(X,Y).

match p : pair(X,Y)

case Pair(x,y) -> x

snd := ΛX.ΛY.

λp : pair(X,Y).

match p : pair(X,Y)

case Pair(x,y) -> y

The function fst and snd first abstract over the types X and Y.
To use these function we have to supply concrete types. For example

the expression
fst <num ><bool >( Pair(Zero ,True ))

instantiates the type abstractions in fst with the concrete types num and bool

yielding a function of type pair(num,bool) -> num. This resulting function
is then applied to the value Pair(Zero,True) yielding the final result Zero.
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CONG
e1 −→ e2

E[e1] −→ E[e2]

TAPP
(ΛX.e)<t> −→ e[X �→ t]

FAPP
(λx : t.e)(v) −→ e[x �→ v]

FIX
fix(λx : t.e) −→ e[x �→ fix(λx : t.e)]

MATCH

tree(v) ¬ matches(patj, v), j ∈ {1, . . . , i − 1}
match(pati, v) = {x1 �→ v1, . . . , xk �→ vk}

match v : t case pat1 -> e1 . . . case patn -> en

−→ ei[x1 �→ v1, . . . , xk �→ vk]

Figure 24: Semantics of the Language with Parametric Types

The next example shows the interplay between type abstractions and
recursive functions.

Example 9.7
We can define the type for parametric lists as follows.

list(X) := G(l, (l -> Nil | Cons(X,l)))

Now, there are two different possibilities for implementing the the polymor-
phic map function mentioned at the beginning of this Section.

The first possibility is to place the type abstractions outside the fixpoint
construct.

ΛA. ΛB.

fix(λmap : (A -> B) -> list(A) -> list(B).

λf : A -> B.

λl : list(A).

match l : list(A)

case Nil -> Nil

case Cons(n,l’) -> Cons(f(n),map(f)(l ’)))
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The second possibility is to push the type abstractions inside the fixpoint
construct.

fix(λmap : ∀A.∀B.(A -> B) -> list(A) -> list(B).

ΛA.ΛB.

λf : A -> B.

λl : list(A).

match l : list(A)

case Nil -> Nil

case Cons(n,l’)

-> Cons(f(n),map <A><B>(f)(l ’)))

While in the first case we compute the fixpoint of a monomorphic function,
in this case the result is the fixpoint of a polymorphic function. This means
we have to explicitly instantiate the function with type arguments for the
recursive call. In this case we just forward the type arguments A and B.
But this is not necessary in general. Instead we could use different type
arguments for the recursive call yielding polymorphic recursion.

9.4 Parametric Type System
The goal of the type system is to reject invalid programs, i.e. programs that
lead to an error when executed. With the introduction of type abstractions
and type applications to the language there are new sources of errors which
the type system needs to deal with.

Example 9.8
We get back to our previous example of pairs (see Example 9.6). There,
we defined the function accessing the first element of a pair as follows.

fst := ΛX.ΛY.

λp : pair(X,Y).

match p : pair(X,Y)

case Pair(x,y) -> x

Suppose we try to instantiate the type variable X with a function type.
fst <num -> num >

This means that we would need to substitute X with num -> num within the
grammar

pair(X,Y) := G(p, (p -> Pair(X,Y)))

But this is invalid, because the substitution is only defined on grammars
and not on arbitrary types. Hence, the rule TAPP does not apply and the
expression fst<num -> num> cannot reduce further. Since the expressions is
also not a value, the whole program should be rejected as ill-typed by the
type system.
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The last exampled showed that there exist type abstractions that are
only defined for a certain set of instantiations and not for instantiations with
arbitrary types.

A similar problem can be found in the context of functions and their
arguments. Functions are usually only defined for certain input values. For
example, the function

pred(x : positive -num) : num =

match x : positive -num

case Succ(y) -> y

is only defined for arguments of type positive-num. This restriction of valid
input values is made explicit by the type annotation x : positive-num so that
the type system can check the corresponding function applications.

This suggest that we need a similar annotation mechanism for type abstrac-
tions. Classification of types is usually called kinding [24]. In our case, the
kind system needs two different kinds separating grammar types from the rest.
We call them base and any. With kind annotations we can rewrite the function
fst from example 9.6 as follows.

fst := ΛX : base.ΛY : base.

λp : pair(X,Y).

match p : pair(X,Y)

case Pair(x,y) -> x

With this additional information the type checker is able to reject the expression
fst <num -> num >

as ill-typed since the type num -> num is not of kind base, i.e. it is not a grammar.
To incorporate kind annotation into the language we have to extend the

syntax as follows.

expr ::= . . . | ΛX :k .expr | . . .

t ::= . . . | ∀X :k .t

k ::= base | any

With the help of the kind annotations we can phrase the typing rules for
type application and type abstraction as follows.

T-TABS
Γ, T ∪ {X : k} � e : t

Γ, T � ΛX:k.e : ∀X:k.t

T-TAPP
Γ, T � e : ∀X:k.t1 T � kind(t) = k

Γ, T � e<t> : t1[X �→ t]

In addition to the typing context Γ we use a kinding context T that maps
type variables to kinds. The rule T-TABS covers the case of type abstractions.
A type abstraction of the form ΛX:k.e is well typed with type ∀X:k.t if the
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body e is well typed with type t in using a kinding context that maps the type
variable X to the kind k. The typing rule T-TAPP accordingly checks that
the argument of a type application has the correct kind. Since the type t can
contain free type variables, we need the kinding context T to determine the
kind of t.

The definition of kinding of types is shown in figure 25. The kinding rules
resemble closely the typing rules of the simply typed language. The difference
is that the kind system is much more coarse-grained than the type system of
the simply typed language. We have only two kinds base and any. The main
goal of the kind system is to check whether all type variables are defined and
whether a grammar only uses type variables of kind base. Note that the rule
K-SUB establishes a subkind relation between the kinds base and any.

K-BASE
∀X ∈ typevars(π) : (X : base) ∈ T

T � kind(G(s,π)) = base

K-VAR
(X : k) ∈ T

T � kind(X) = k
K-SUB

T � kind(t) = base

T � kind(t) = any

K-FUN
T � kind(t1) = any T � kind(t2) = any

T � kind(t1 -> t2) = any

K-ALL
T ∪ {X : k} � kind(t) = k

T � kind(∀X:k.t) = any

Figure 25: Kind System

With the typing rules T-TABS and T-TAPP it is now possible to tell that
the application

fst <num >

is well-typed while rejecting the application
fst <num -> num >

as ill typed. But we still need typing rules that enforce the kind annotation
base in the function definition of fst. Otherwise we could simply annotate the
type variable with the kind any yielding an invalid program.

There are three places in the type checking process where we need to ensure
kinding constraints.

Type Annotations in Functions We have to ensure that type annotations
in function definitions are well-kinded. This means especially that there are no
free type variables and that type variables are used according to their kinds.
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Example 9.9
The type annotation pair(X,Y) in the function fst from Example 9.6 uses
the type variables X and Y inside of a grammar. Therefore, the type can
only be well-kinded if the type variables both have the kind base. This
forces us to use the kind annotation base in the definition of fst.

This leads to the following typing rule for function definitions.

T-FABS
T � kind(t1) = k Γ ∪ {x : t1}, T � e : t2

Γ, T � λx : t1.e : t1 -> t2

Pattern Matching A pattern matching expression also uses a type anno-
tation. For the same reason as for function definitions this type annotation
should be well-kinded.

But in this case it is not enough that the type annotation is well-kinded
with an arbitrary kind. Since pattern matching works only on trees we need to
ensure that the expression matched against has a grammar type. This means
we have to require the kind base for the type annotation.

The difficult part in typing pattern matching expressions is to compute
appropriate typing contexts for checking the right hand side of the case ex-
pressions. Since we require that the type annotation is a grammar, the only
difference to pattern matches in the simply typed language is the existence of
type variables inside of the grammar used as type annotation.

The algorithm for computing the typing contexts for pattern variables can
be generalized to grammars with type variables in a straight forward way. The
only problem is that the algorithm needs to check for the emptiness of types at
certain points (see the discussion in Section 4.1). The type variables inside the
grammar abstract over types. All we know is that the type variables will be
instantiated with a grammar. But we cannot know if the grammar describes
the empty type or not.

Example 9.10
We look at the grammar for pairs

pair(X,Y) := G(s, (s -> Pair(X,Y)))

and the pattern
Pair(x,y)

If we treat the type variables X and Y as non-empty types, we get the typing
context Γ1 = {x : X, y : Y} according to the algorithm from Section 4.1.
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On the other hand, if we treat the type variables as empty types, we
get the typing context Γ2 = {x : ∅, y : ∅}.

It is important to note that each expression, that is well typed under
any typing context Γ with dom(Γ) = {x, y} is also well type under the
typing context Γ2 but not vice versa. This implies that for any instantiation
of X with tx and Y with ty, if an expression is well-typed under the typing
context Γ = {x : tx, y : ty} it is also well typed under the typing context Γ2.
On the other hand, if an expression is well-typed under the typing context
Γ2 it is not necessarily well-typed under the typing context Γ.

The last example has shown that we need to treat type variables as non-
empty types when computing the typing context for pattern variables. Other-
wise we don’t get a sound type system.

Figure 26 shows the adaption of the algorithm from Section 4.1 for our ex-
tended setting. Thereby we define type variables to be non-empty. Furthermore,
the function type is defined as follows.

type(X, π) = X

type(n, π) = G(n,π)

contexts�(x, t) =
�

{∅} if empty(t)
{{x : t}} otherwise

contexts�(C(p1, . . . ,pn), G(s,π)) = �
G�

j

where
C(N1j , . . . ,Nnj ) ∈ π(s)
Gij = contexts�(pi, type(Nij , π))
Gj = G1j ×uni · · · ×uni Gnj

G�
j = filter-nonempty(Gj)

Figure 26: Computation of Typing Contexts for Pattern Variables

In order to typecheck pattern matching expression we also have to ensure
that the pattern are exhaustive with respect to the annotated type. The
formulation of the exhaustiveness check for the simply typed language makes
use of the subtyping relation on grammars. However, we have not yet discussed
what subtyping means in the context of parametric grammars. We defer this
discussion to section 9.5.

Assuming a subtyping relation on parametric tree grammars, we can define
the typing rule for pattern matching expressions as follows.
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T-MATCH

T � kind(te) = base Γ, T � e : te context(pati, te) = Γi

exhaustive({pat1, . . . , patn}, te) Γi ∪ Γ, T � ei : t

Γ, T � match e : te case pat1 -> e1 . . . case patn -> en : t

Constructor Application When typing constructor applications we have
to make sure that all arguments have a grammar type. Hence, the typing rule
for constructor applications looks as follows.

T-CAPP

π(st) = C(N1, . . . ,Nn)

type(Ni, π) = ti Γ, T � ei : ti T � kind(ti) = base

Γ, T � C(e1, . . . ,en) : G(st,π)

Figure 27 summarizes the typing rules for the language with parametric
types.

There is a very subtle problem with the typing rule for type abstractions.
We demonstrate it by the following example.

We consider the expression
ΛX : any. λx : X.

ΛX : base. (λy : X. Succ(y))(x)

The outer type abstraction assigns the kind any to the type variable X. However,
the inner type abstraction constrains the type variable X to the kind base.
This means that inside the inner type abstraction the type variable X ranges
over grammars types. The function λy : X. Succ(y) exploits this fact, since it
supplies the argument y as argument to the constructor application Succ(y).
Since x was bound outside of the inner type abstraction it may be instantiated
with any value, not only with tree values. Hence, the whole program is invalid
and should consequently not be well-typed.

However, with the original formulation of the rule T-TABS it is possi-
ble to construct the following derivation tree. We abbreviate the grammar
G(s, (s -> Succ(X))) by G. The problematic parts are highlighted with boxes.

T-TABS
T-FABS

T-TABS
T-FAPP

· · ·
{ x : X }, { X : base } � (λy:X.Succ(y))(x) : G

{x : X}, {X : any} � ΛX:base.(λy:X.Succ(y))(x) : ∀X.G

∅, {X : any} � λx:X.ΛX:base.(λy:X.Succ(y))(x) : X->∀X.G

∅, ∅ � ΛX:any.λx:X.ΛX:base.(λy:X.Succ(y))(x) : ∀X.X->∀X.G

The upper instance of the rule T-TABS overwrites the binding for the type
variable X within the kinding context. However, the mapping x :X in the typing
context still refers to the type variable which was bound by the outer type
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T-VAR
(x : t) ∈ Γ
Γ, Tx : t

T-SUB
Γ, T � e : tsub T � tsub <: t

Γ, T � e : t

T-TABS
X �∈ T Γ, T ∪ {X : k} � e : t

Γ, T � ΛX:k.e : ∀X:k.t

T-TAPP
Γ, T � e : ∀X:k.t1 T � kind(t) = k

Γ, T � e<t> : t1[X �→ t]

T-FABS
T � kind(t1) = k Γ ∪ {x : t1}, T � e : t2

Γ, T � λx:t1.e : t1 -> t2

T-FAPP
Γ, T � e1 : t1 -> t2 Γ, T � e2 : t1

Γ, T � e1(e2) : t2

T-FIX
Γ, T � e : t-> t

Γ, T � fix(e) : t

T-CAPP

π(st) = C(N1, . . . ,Nn)

type(Ni, π) = ti Γ, T � ei : ti T � kind(ti) = base

Γ, T � C(e1, . . . ,en) : G(st,π)

T-MATCH

T � kind(te) = base Γ, T � e : te context(pati, te) = Γi

exhaustive({pat1, . . . , patn}, te) Γi ∪ Γ, T � ei : t

Γ, T � match e : te case pat1 -> e1 . . . case patn -> en : t

Figure 27: Typing Rules for the Language with Parametric Types

abstraction. This discrepancy allows us to close the derivation tree with the
following two subderivations.

T-FABS
T-CAPP

· · ·
{x : X, y : X}, {X : base} � Succ(y) : G

{x : X}, {X : base} � λy:X.Succ(y) : X->G

T-VAR
(x : X) ∈ {x : X}

{x : X}, {X : base} � x : X

The solution we propose is to rename the type variable bound by a type
abstraction appropriately in order to avoid name clashes. This renaming is
implicitly enforced in the version of the typing rule shown in figure 27 by the
requirement X �∈ T .
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9.5 Subtyping
In the context of type variables the definition of subtyping becomes more
complex. In the following, we propose an approach to define and compute the
subtype relation for parametric types. The intention is to give a starting point
for further exploration rather than to present a complete solution. Therefore,
we leave the formal correctness proof to future work.

Semantically, we want the following definition of subtyping: A type A is
a subtype of type B if and only if for all instantiations σ = {Xi �→ ti} for
free type variables Xi, σ(A) is a subtype of σ(B). But since the universe of
types is not finite, there is no possibility to literally check this requirement for
all instantiations. Hence, we need a structural way of computing the subtype
relation. Furthermore, we need to discuss what subtyping means in the context
of quantified types.

We first deal with the case of grammars with type variables. There is one
very important observation. Suppose we have two type variables X and Y. In
this case we can both find an instantiation {X �→ t1, Y �→ t2} such that t1 <: t2
and an instantiation {X �→ t3, Y �→ t4} such that t4 <: t3. Since a polymorphic
type t can only be a subtype of another polymorphic type t� if the relation
holds for all possible instantiations, a type variable can never be in the subtype
relation with a different type variable.

As discussed in Section 3, the tree grammars we use are not closed under
complement. This comes from the fact that we are not able to express a most
general grammar, i.e. a grammar that describes all possible values. This also
implies that we cannot write down two grammars G1 and G2 such that the
union G1 ∪ G2 contains all values, since tree grammars are closed under union.
This has interesting consequences for the subtyping of parametric grammars.

Example 9.11
We consider the grammar

G1 := G(s, (s -> C(X)))

where X is a type variable. It is not possible to construct a grammar G2

such that G1 <: G2 and G2 does not literally use the type variable X at the
corresponding position. This means it is not possible to define G2 as

G2 := G(s, (s -> C(n1) | C(n2),

n1 -> ... , n2 -> ...))

since we cannot define two grammars n1 and n2 such that the union n1 ∪
n2 is a supertype of any possible type.

The last example shows that we have to treat type variables in grammars
as named “black boxes”. The only thing we know about these black boxes
it that two boxes with the same name are equal. All other types except for
the empty type are not comparable to a black box in terms of the subtype
relation. This observation implies that we can reduce the subtyping check for
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parametric tree grammars to a subtyping check without type variables by using
a unique and fresh constructor name in place of each type variable. Using
a constructor without arguments in place of type variables ensures that the
resulting language cannot be treated as empty language. And the freshness of
the constructor name ensures that the resulting language is incomparable to
all other non-empty languages in terms of the subtype relation.

Example 9.12
We consider the parametric grammars

G1 := G(s, (s -> Base(X) | Succ(s)))

and
G2 := G(s, (s -> Base(X) | Succ(s) | Plus(s,s)))

where X is a type variable. In order to check the relation G1 <: G2 we
introduce a fresh constructor name Foo for the type variable X and transform
the grammars as follows.

G1 ’ := G(s, (s -> Base(f) | Succ(s),

f -> Foo ))

G2 ’ := G(s, (s -> Base(f) | Succ(s) | Plus(s,s),

f -> Foo ))

After this transformation the resulting grammars do not contain any type
variables any more and we can proof the relation G1’ <: G2’ with our
usual algorithm. According to our discussion above, this result implies the
subtype relation G1 <: G2.

On the other hand, neither of the following two grammars G3 and G4 is
in a subtype relation with the grammar G1’.

G3 := G(s, (s -> Base(f) | Succ(s),

f -> Zero ))

G4 := G(s, (s -> Base(f) | Succ(s),

f -> ))

It still remains to discuss how to lift this notion of subtyping to quantified
types. The main goal of subtyping in the context of a type system is to ensure
that any expression of type t1 can be used in a context where an expression of
type t2 is expected whenever t1 <: t2.

Expressions with quantified types have the form ΛX:k.e. Suppose we have
the type abstraction ΛX:k1.e with type ∀X:k1.t1 and want to use it in a context
that expect an expression of type ∀X:k2.t2. Using a type abstraction means
applying it to a concrete type. This implies two things.

• Since the context expects an expression of type ∀X:k2.t2, the expression
can be instantiated with any type of kind k2. Hence, as to be able to use
the expression ΛX:k1.e the subkind relation k2 <:k k1 must hold. This
shows that type abstractions are contravariant in their argument, just
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like functions.

• The result of the type application is expected to have the type t2[X�→t]
for whatever type t has been supplied. Hence, for any type t we need
that t1[X�→t] <: t2[X �→t] holds. With that condition we are back to our
original formulation of subtyping for parametric types.

The complete definition of subtyping for parametric types in summarized
in Figure 28. Thereby, the operation “tv2const” turns each type variable in a
grammar into a unique fresh constructor name and uses the normal subtyping
definition for non-parametric grammars. The rule S-FUN is the same we used
in the language with higher order functions (see Section 7). Similar to function
types, quantified types are contravariant in the argument type. Therefore we
have to check that the kind k2 is a subkind of the kind k1. The subkinding
relation consist of the reflexive closure of base <: any. Note, that the subtype
relation is only defined on well-kinded types.

S-VAR
X <: X

S-BASE
tv2const(G(s1,π1)) <: tv2const(G(s2,π2))

G(s1,π1) <: G(s2,π2)

S-FUN
t�
1 <: t1 t2 <: t�

2
t1 -> t2 <: t�

1 -> t�
2

S-ALL
k2 <:k k1 t1[X1 �→ X] <: t2[X2 �→ X] X fresh

∀X1:k1.t1 <: ∀X2:k2.t2

Figure 28: Subtyping for Parametric Types

9.6 Soundness
The soundness proof for the polymorphic type system is more complex than
the simply typed counterpart. It goes beyond the scope of this thesis to provide
the full soundness proof. In particular, the correctness proof of the subtype
relation defined in the previous Section is needed. However, in the following
we sketch the necessary proof steps.

For the soundness proof two important lemmas are needed. The first one
concerns the canonical forms of values.

Lemma 9.1 : Canonical Forms of Values
A value of a grammar type is a tree generated by this grammar.
A value of type t1->t2 has the form λx:t1.e, where {x : t1}, ∅ � e : t2.
A value of type ∀X:k.t has the form ΛX:k.e, where ∅, {X : k} � e : t.
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In order to show that type preservation holds in the case of type applications
we need a substitution lemma for types.

Lemma 9.2 : Substitution Lemma for Types
Γ, T ∪ {X : k} � e : t, X �∈ Γ, T and T � kind(tx) = k implies
Γ, T � e[X �→ tx] : t[X �→ tx]

Furthermore, the Substitution Lemma for values (see Lemma 4.2) needs to
be extended for the new language constructs.
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10 Implementation
We have implemented a prototype version of the simply typed language on top
of PLT Redex [20]. This implementation includes the implementation of the
operational semantics and the type system. Also the case study from Section
6 has been implemented on top of that framework. The code is available at
https://github.com/haselhorst/Tree-Grammars.

The goal of this Section is twofold. First, we describe some of the algorithms
on regular tree grammars that we use in our implementation. And second,
we discuss our experience of implementing our language withing PLT Redex.
Since like our language, PLT Redex is also a domain specific language for term
transformations it is very interesting to compare them to each other.

10.1 Algorithms on Tree Grammars
The main operations on tree grammars that we use in the formalization of our
language are union, intersection, inclusion and check for emptiness. Further-
more, we assume the grammars to be normalized, hence we need an algorithm
which normalizes a given grammar. In the following we discuss the general ideas
of the algorithms. For more details we refer the reader to our implementation.

Normalization

A regular tree grammar is defined as a start symbol s and a set of productions
π, written as G(s,π). While in general, the right hand sides of productions can
consist of any tree, normalized grammars only allow productions of the form
n-> C(n1, . . . ,nk).

The algorithm for normalization works in two steps.

• First, all trees are flattened. This is done by introducing a new nontermi-
nal for each subtree. For example, the production

n -> C(D,E(m,F))

is transformed into the set of productions
n -> C(n1 ,n2)

n1 -> D

n2 -> E(m,n3)

n3 -> F

• Second, all productions of the form n1 -> n2 need to be eliminated. This
is done by computing the transitive closure of right hand sides for each
nonterminal. As an example we consider the grammar

G(n, (n -> even | odd ,

even -> Zero | Succ(odd),

odd -> Succ(even )))
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The productions for the nonterminal even and odd are already in normal-
ized form. The production n -> even tells us that anything we can derive
from even can also be derived from n. Hence, the transitive closure for
this production is n -> Zero | Succ(odd). The same argument gives us
the production n -> Succ(even) as transitive closure of the production
n -> odd. Hence, the resulting grammar looks as follows.

G(n, (n -> Zero | Succ(odd) | Succ(even),

even -> Zero | Succ(odd),

odd -> Succ(even )))

After these two steps, the resulting grammar is in normalized form.

Union

The union of two grammars G1 and G2 is defined as the grammar than
contains exactly all trees that can be derived by G1 or by G2. Hence, we
can compute the union of G1 = G(s1,π1) and G2 = G(s2,π2) as G1 ∪ G2 =
G(s,{s-> π1(s1) | π2(s2)} ∪ π1 ∪ π2), where s is a fresh nonterminal name.

This works well as long as the set of nonterminals in G1 is distinct from the
set of nonterminals in G2. Otherwise we get name clashes when unifying π1
and π2. Since nonterminals are bound within a grammar they can be renamed
without changing the meaning of the grammar. Hence, before computing the
union of two grammars we need to rename nonterminals appropriately as to
avoid name clashes.

Example 10.1
We consider the grammar

G(s, (s -> A(x,y),

x -> X, y -> Y))

and the grammar
G(s, (s -> B(n),

n -> N))

Both grammars contain the nonterminal s, hence we have to rename it first.
We choose to rename the nonterminal s to s1 in the second grammar which
yields

G(s1 , (s1 -> B(n),

n -> N))

Now, we can compute the union of the two grammars as follows.
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G(s_fresh , ( s_fresh -> A(x,y) | B(n),

s -> A(x,y),

x -> X

y -> Y

s1 -> B(n)

n -> N))

Note, that the union of two grammars G1 and G2 is normalized if both G1 and
G2 are normalized.

Check for Emptiness

A grammar generates the empty language if no trees can be derived. A
derivation always starts with the start symbol of the grammar. Hence, the
grammar is empty if either there are no productions for the start symbol or if
none of the right hand sides of the productions generates a tree.

A right hand side has the form C(n1, . . . ,nk). We cannot derive any trees
from this right hand side if any of the nonterminals n1 to nk describes the
empty language. Hence, we have to recursively check for emptiness of the
grammars starting with the nonterminals n1 to nk respectively.

The only problem are infinite derivations. For example, the grammar
G(s, (s -> Succ(s)))

is empty, but the algorithm sketched above would get into an infinite loop. The
solution is to keep track of the nonterminals we have already seen. If we arrive
at the same nonterminal for the second time we can conclude that the language
is empty.

Example 10.2
We consider the grammar

G(s, (s -> A(x,y),

x -> X,

y -> A(x,y)))

We start with the start symbol s. The only right hand side is A(x,y). Hence,
s describes the empty language if any of x or y describes the empty language.
We thus recurse into x and y.

The production x -> X tells us that x is not empty. On the other hand,
the production y -> A(x,y) requires us to recurse into x and y again. As
above, x is not empty. Since we are in course of visiting the nonterminal
y for the second time, we can conclude that y is empty. This implies the
emptiness of the whole grammar.
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Inclusion and Intersection

For testing inclusion of two grammars we need to check whether all trees that
can be derived by the first grammars can also be derived by the second grammar.
It is well-known that the worst case complexity of the inclusion problem for
regular tree grammars is EXPTIME-complete [5]. This comes from the fact
that a production for the same nonterminal may contain multiple alternatives
with the same constructor and the same arity.

We first consider the simplified setting, where each constructor can only
be used once with the same arity within the productions for the same nonter-
minal. In this case the inclusion problem can be implemented in a structural
way. Suppose we have grammars G1 = G(s1,π1) and G2 = G(s2,π2) and want
to check if L(G1) is included in L(G2). Then for each constructor applica-
tion C(n1, . . . ,nk) in π1(s1) we need a corresponding constructor application
C(m1, . . . ,mk) in π2(s2). Furthermore, for each i we have to recursively check
if the inclusion holds for the grammars G(ni,π1) and G(mi,π2). Like in the
algorithm for checking for emptiness of grammars, we can conclude that the
inclusion holds if we visit the same pair of nonterminals ni and mi for the
second time during the computation.

Matters are different if multiple constructors with the same arity are allowed
withing the productions for the same nonterminal.

Example 10.3
We consider the grammar

G1 := G(s, (s -> C(x),

x -> A | B))

and the grammar
G2 := G(s, (s -> C(a) | C(b),

a -> A, b -> B))

Both grammars generate the same language, namely the set {C(A), C(B)}.
Hence, the inclusion G1 ⊆ G2 should hold. However, the grammar with
startsymbol x is neither included in the grammar with startsymbol a nor in
the grammar with startsymbol b. Rather, the values generated by x are
partly generated by a and partly by b.

Note, that in the last example it would have been possible to transform G2

into an equivalent grammar G2’ with only one alternative of the form C(n) by
introducing a new nonterminal n defined as the union of a and b. However, this
is not always possible. A counterexample is the grammar

G(s, (s -> A(b,c) | A(d,e),

b -> B, c -> C,

d -> D, e -> E))

This grammar generates the language {A(B,C), A(D,E)}. If we introduce the new
nonterminals bd defined as the union of b and d and the nonterminal ce defined
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as the union of c and e we get the following grammar.
G(s, (s -> A(bd ,ce),

bd -> B | D,

ce -> C | E))

This grammar is not equivalent to the first one, since it generates the language
{A(B,D), A(B,E), A(D,C), A(D,E)}.

We get back to the grammars from example 10.3. To conclude that the
grammar G1 is included in the grammar G2 we need first to subtract all values
from C(x) that are generated by C(a). Then, we can check that the resulting set
of values is included in C(b). Hence, we need a means to compute the difference
between two grammars.

Checking the inclusion of a grammar G1 in a grammar G2 can then be
defined by computing the difference G2 − G1 and checking for emptiness of the
result. In a similar way, the intersection of two grammars can be expressed by
the difference operator: G1 ∩ G2 = G1 − (G1 − G2).

In the following we present the general ideas of how to compute the difference
between two grammars.

Suppose we have two grammars G1 = G(s1,π1) and G2 = G(s2,π2) and
want to compute the difference G1 − G2. We have to subtract right hand sides
C(m1, . . . ,mk) in π2(s2) from all corresponding right hand sides of the form
C(n1, . . . ,nk) in π1(s1).

We first consider the case of subtracting the one right hand side
C(m1, . . . ,mk) from another right hand side C(n1, . . . ,nk). If we recursively
apply the algorithm to all pairs (ni, mi) we get the grammars ni − mi. To get a
grammar that describes all values that are in C(n1, . . . ,nk) − C(m1, . . . ,mk)

we have to observe the following. Suppose we have a value v1 ∈ n1 − m1.
This value is generated by n1 but not by m1. This implies that any value of
the form C(v1, . . . ,vk) cannot be generated by the grammar C(m1, . . . ,mk),
independently of the values v2 to vk. Hence, all values in C(n1−m1,n2, , . . . ,nk)

are in C(n1, . . . ,nk)−C(m1, . . . ,mk). The same holds for all other arguments
of the constructor. Thus subtracting constructors with k arguments from each
other yields k right hand sides in the result.

Additional right hand sides in π2 of the corresponding form have to be
subtracted from all resulting right hand sides which leads to an exponential
blowup.

Although the worst case complexity of the inclusion problem is exponential,
we believe that this is not a severe problem in practice. The problem of
exponential complexity only arises if a grammar contains multiple productions
with multiple instances of the same constructor. Our experience from the case
studies is that such multiple constructor instances are only necessary in very
rare cases. However, this needs to be further explored.
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10.2 PLT Redex as Term Transformation Language
PLT Redex is a domain specific language for specifying languages and their
operational semantics.

Languages in Redex are described by a restricted form of context free
grammars. The restriction is that right hand sides of productions have to be
well-formed s-expressions [21]. For example, our definition of the language of
types looks as follows.

(define - language Type

(x omitted)

(c omitted)

(raw -t ( start raw -prod ...))

(t ( start prod ...))

(start x)

( nonterm x)

(raw -prod ( nonterm raw -right ...))

(prod ( nonterm right ...))

(raw - right nonterm

(c nonterm ...))

(right (c nonterm ...)))

The ellipsis mean zero or more repetitions of the preceding element. For
example, the line (t (start prod ...)) means that the nonterminal t can be
replaced by an opening bracket followed by the nonterminal start, any number
of instances of the nonterminal prod and a closing bracket.

Hence, language definitions are very similar to our regular tree grammars.
Since in the language definitions all right hand sides of productions need to
be correctly bracketed, terms of the language are well-formed s-expression.
S-expression can be seen as a linear representation of tree structured data. The
main difference to regular tree grammar is that the language definition does not
fix one distinguished nonterminal as start symbol. Rather, each nonterminal
itself defines a language, namely the set of terms that can be derived from this
nonterminal.

One main tool for working with terms are metafunctions. Metafunctions
allows to define domain specific functions working on terms of the embedded
languages. For example a metafunction of the form

(define - metafunction Type

...)

defines a function that works on terms of the type language we defined above.
Metafunctions use pattern matching as their main deconstruction mecha-

nism. For example, the following definition computes the start symbol of a tree
grammar.

(define - metafunction Type

[( startsym ( start raw -prod ...)) start ])

startsym is the name of the function and (start raw-prod ...) is the pattern
which is matched against the input term. Patterns in Redex are much more
expressive than the pattern in our language. A nonterminal matches all values
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that can be derived by that nonterminal. In the example above, the nonterminal
start matches against any value that can be derived by start in the context
of the language definition for Type. The ellipsis raw-prod ... matches any
numbers of terms that can be derived by the nonterminal raw-prod. While in
our language, patterns are trees that may contain variables, patterns in Redex
correspond to right hand sides of productions. The task of the nonterminals in
patterns is twofold. First they are used to check if the input has the expected
form. And second they give names to the corresponding subparts of the input.
In the example above we return the start symbol of the grammar by using the
nonterminal start as result.

Metafunctions can be optionally given a signature. For example, the startsym

function from above can be rephrased as follows.
(define - metafunction Type

startsym : raw -t -> start

[( startsym ( start raw -prod ...)) start ])

Signatures of functions can be compared to type annotations in our language:
they specify the range of valid input values and the range of possible output
values. However, signatures in Redex are not statically verified but only checked
at runtime. When either the input or the output of a function does not match
its contract a runtime error is produced. In the course of implementing our
language in Redex we have experienced the following. The signatures have been
a lot of help in debugging the code. Every time a runtime error was thrown
due to contract violations it clearly showed whom to “blame”. If the input
contract was violated, the error was located at the calling position. And if the
output contract was violated, the function implementation had to be wrong.
The debugging process would have been much harder without dynamic type
checking. However, with a static type system, most of the errors would have
been caught before even executing the code. This experience was an affirmation
for the usefulness of static type checking.

But apart from not being statically checked, the function signatures in
Redex are closely related to our type annotations. Each nonterminal represents
a language, namely the set of terms it generates. Hence, a language definition
in Redex can be seen as a scoping mechanism for grammar definitions. This is
also the reason why a metafunction needs to know the name of the language it
works on. Otherwise the system works in a complete structural way: a term
belongs to a language represented by a nonterminal if it can be derived from
this nonterminal. This corresponds to our notion of typing.

There are two severe shortcomings that we experienced in the course of
implementing our language. The first shortcoming is that metafunctions are
first order. There were many situations where we had to apply a certain
function to a list of terms or were we needed to accumulate a list of terms in
a certain way. Since metafunction are first order, we ended up in manually
writing concrete maps and folds for different functions. All of these function
have the same structure but with first order functions we had no way to abstract
over this boilerplate code.
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The second shortcoming is the lack of polymorphic annotations. In our
implementation there are many functions that work the same of different types
of input values. For example we have functions that add an element to a
list or check if a list contains a certain element. Redex offers the symbol any

which matches any value. Hence, we could for example give the signature
any (any ...) -> (any ...) to the function add that adds an element to a list.
However, this does not capture exactly our intention. A signature of the form
X (X ...) -> (X ...) for all X would have been more appropriate. The more
general signature using any allows to use lists containing elements of different
types. This has lead to errors that were very hard to debug, because the
dynamic type checker was not able to find them. Of course we could have
written one instance of the function add for each type. But since add is not
the only function with this problem, this would have implied an explosion of
the size of the implementation caused by this additional boilerplate code. A
polymorphic type system is a much better solution to this problem.

These two shortcoming, namely the lack of higher order functions and
of polymorphism, have to a great part influenced and motivated the kind of
extensions we incorporated into our language.
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11 Related Work
Program transformations are an important domain in the universe of metapro-
gramming. The applications include static analysis of programs, code optimiza-
tion, desugaring, etc., to only mention a few of them. The common ground of all
these applications is that they work on an abstract syntax tree representation
of programs. There is much research centered around the question how to
design good languages and tools for program transformations. In the following
we discuss the most relevant pieces of related work.

11.1 Data Types for Syntax Trees
Traditionally, term transformations are implemented within general purpose
languages like C, Java or Haskell. Hence, the syntax trees need to be represented
by available language constructs.

Regular tree grammars are closely related to algebraic datatypes as can
be found for example in Haskell or ML. Syntax trees can be encoded by
algebraic datatypes in a convenient way, since algebraic datatypes describe tree
structured data. However, there is one main shortcomings with this approach.
Algebraic datatypes are closed. This means that the set of constructors cannot
be extended by new constructors within a program. However, in the area of
term transformations it is often important to be able to add new nodes to
syntax trees. Swierstra [29] shows that it is possible to encode extensible data
types on top of algebraic data types. The main problem with the solution it
that it is not convenient to use. Extensible data types cannot be used with the
same syntax as algebraic data types but require very explicit construction and
destruction operations.

Axelsson [2] uses the extensible data types mentioned above to develop a
generic abstract syntax model for embedded languages. The abstract syntax
trees are typed and support generic traversals. The core idea is to encode
abstract syntax trees by a data type with two constructors. One constructor
produces AST nodes while the second constructor encodes the application of
AST nodes to arguments. One challenge thereby is to distinguish partially
applied syntax trees from function-valued expression.

In our system the problem of closed datatypes does not occur, because
constructor names are not tied to types. Any set of trees that can be defined by
a regular tree grammar is a type. Furthermore, our system features structural
subtyping. This enables us to express types containing only a subset of the
values of another type which is not possible with algebraic datatypes. The case
study in Section 8 discusses the differences and commonalities of algebraic data
types and regular tree grammar types.

Mishra et. al. [22] approach the problem of closed data types in a different
way. Instead of requiring data definitions they the programmer to use con-
structor names in their programs and automatically infer the corresponding
types. Types in their system are represented as regular tree expressions, i.e.
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trees with free variables and fixpoints.
Other very powerful mechanisms for expressing data types for syntax trees

are generalized algebraic datatypes (GADTs) [28, 27] and the combination of
traits and abstract types in the programming language Scala [26]. These ad-
vanced concepts allow to capture context sensitive constraints of the embedded
language in a type-safe way. For example, it is possible to embed the simply
typed lambda calculus in a type-safe way using GADTs in Haskell [33] or traits
in Scala [11]. In Section 12 we discuss some ideas on how to extend regular
tree grammars in order to be able to express such type-safe embeddings.

11.2 Domain Specific Term Transformation Languages
As an alternative to using general purpose languages to implement term trans-
formations, several domain specific languages for term transformations have
been developed recently.

One example is Stratego [31]. Stratego is a very expressive domain specific
language for implementing transformations on tree shaped data. The most
powerful language feature are the so called generic traversals. These generic
traversals allow to apply a certain transformation to all nodes of a tree recur-
sively. For example, Stratego offers the generic transformations “bottomup” or
“topdown” which apply a given transformation recursively to all subtrees in a
topdown or bottomup fashion respectively.

While Stratego offers very powerful mechanisms for term transformations it
does not provide static guarantees about the results of transformations, since
it is not statically typed. In contrast to Stratego, our language is type safe but
is not yet able to express generic tree traversals.

Another example for a domain specific term transformation language is PLT
Redex [20]. PLT Redex was mainly developed to study semantic properties of
programming languages. PLT Redex allows to annotate term transformations
with types describing the input and output domains. However, these type
annotations are only checked at runtime. We have implemented a prototype
version of our simply typed language on top of PLT Redex. In Section 10 we
discuss how PLT Redex compares to our language.

11.3 Generic Traversals
We already mentioned the Stratego [31] as a programming language featuring
generic traversals of trees. When working with tree data a programmer often
needs to change some specific parts of the tree while leaving the rest unchanged
[19, 3]. Without generic traversals this task leads to much boilerplate code
which deconstructs and reconstructs the parts of the tree that don’t need to be
changed. This motivates a lot of research in the area of generic traversals.

Lämmel et. al. [18, 19] propose generic traversal combinators as a way to
generate tree traversal functions for arbitrary data types in the programming
language Haskell. The core idea is to lift a function that transforms certain
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subtrees to a function that transforms complete trees as follows: if the subtree
has the right type, the function is applied. Otherwise, a default operation
is used. There are two kinds of combinators: generic transformations and
generic queries. In generic transformations the default operation is the identity
function. This means that transformations are able to change certain parts of a
tree while leaving the remaining part unchanged. Generic queries return a fixed
default value instead of using the identity function for the parts of the tree
which are not affected by the function to be lifted. These traversal combinators
are strongly typed, however the possible types are constrained to types that can
be expressed by Haskell types. Since constructors are typed, transformations
cannot change the type of a subtree. Hence, generic transformations have
the type ∀α.α → α, while generic queries have the type ∀α.α → τ for a fixed
τ . Since Haskell supports parametric polymorphism, it is possible to write
polymorphic traversals.

Brand et. al. [3, 30] extend the algebraic specification formalism of ASF+SDF
[6] with generic tree traversals very similar the the work of Lämmel et. al.
[19, 18]. They offer two different traversals, namely transformers and accumula-
tors that are closely related to the generic transformations and generic queries
in [19]. Transformers have to be type preserving, i.e. they cannot change the
type of the tree during the traversal. Accumulators don’t change a tree but
only extract information. In contrast to [19] this system is mono-typed, i.e.
does not support parametric polymorphism.

Dolstra [7] proposes a programming language closely related to Stratego
featuring generic traversals. The main innovation is a type system for the strict
subpart of the language. The type system is able to prove the safety of type
preserving and type unifying generic transformations similar to the generic
transformations in [3] and [19].

As discussed in Section 12 our goal is to extend our language with the
possibility to express generic traversals. We believe that our language is a
good starting point for exploring how to express a much broader range of
tree traversals for the following reasons. First, constructors are not typed,
i.e. they can be used essentially everywhere. And second, due to structural
subtyping it is possible to assign more precise types to terms. This is especially
important for implementing desugarings, since usually the goal is to remove
certain constructors from the abstract syntax trees. Hence, in order for the
type system to ensure that the result does not contain any instances of that
constructor any more, it is necessary to express this fact with a type. In
both systems mentioned above [19, 30] this cannot be expressed. Instead it is
necessary to use the more imprecise type ∀α.α → α for such a transformation.

11.4 Grammars as Types
The most related work we know of that also exploits the idea of using languages
as types is the work of Hosoya et. al. [14] in the context of XML. Their goal is
to design a polymorphic type system for XML processing. The language is very
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similar to our first order calculus. It includes first order functions and pattern
matching as main language constructs. While we use regular tree grammars as
types, they define so called regular expression types [16] which are equivalent
to regular tree grammars from the expressiveness point of view.

The main difference to our first order calculus is the definition of patters.
While we define patterns as trees that can contain variables, in their system
patterns are types. The semantic is as follows: a tree matches a pattern if it
has the type of the pattern. In addition patterns can give names to subparts of
the types which are bound to the matching part of the corresponding value
during evaluation. This more flexible definition of patterns allows them to
conveniently express the kind of patterns which are often needed during XML
transformations. However, this additional flexibility has a price. Formalizing
the semantics and the typing rules for pattern matches becomes much more
complex. There are alone two publications [15, 13] concerning the semantics of
pattern matches. Furthermore, they only support linear patterns, i.e. patterns
where each pattern variable occurs only once while our language can cope with
multiple instances of pattern variables.

The second difference concerns the definition of parametric polymorphism.
They support a weaker form of polymorphism, namely let-polymorphism, while
we extended our language with the full flexibility of universal types. Further-
more, they employ a syntactic definition of parametricity: type parameters
are treated as syntactic markers instead of as a semantic abstractions. The
key motivation for using this approach is the high complexity of computing
the subtype relation in the context of quantification. This high complexity
comes from the fact that their types are closed under complement. Especially,
it is possible to define a most general type. In contrast to that, we assume an
infinite set of constructor names which implies that the tree grammars are not
closed under complement. As discussed in Section 9.5 we are able to reduce the
subtyping of parametric tree grammars to the subtyping of non-parametric tree
grammars without the need to switch to a syntactic definition of parametricity.
In addition, it is not clear if the marking approach can be used in a system
with higher order functions.
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12 Future Work
The results of this theses raise several opportunities for future work. In the
following we discuss some ideas.

Improvements to the Existing System

In the context of the language with parametric types there are several open
questions. First, the soundness proof is not yet complete. In addition, much
of the complexity of the type system stems from introduction of the kind
system separating grammar types from the other types. Therefore, it would
be interesting to investigate if a different formulation of the system leads to a
simpler formalism.

In our system, type abstractions and type applications are part of the
expression language. However, functional languages featuring parametric poly-
morphism like Haskell or ML don’t require the programmer to explicitly write
them down. Rather, they infer the correct instantiations for type variables
automatically. We think that this inference if crucial to the usability of a lan-
guage. Thus, we need to examine if and how type inference can be incorporated
into our language.

There are two different directions for further extending the existing system.
The first direction is to rise the expressiveness of types by using more powerful
classes of grammars. The second direction is to add more powerful language
constructs like generic traversals to the language and investigate how the type
system needs to be extended to cope with these constructs.

Expressiveness of Types

In our first case study (see Section 6) we showed how to embed a small example
language into our metalanguage in a type-safe way by defining a grammar
that only allowed to express well-typed programs. This type-safe embedding
enabled us to write a total evaluator for programs written in the embedded
language. However, with regular tree grammars as types is not always possible
to express type-safe embeddings, since regular tree grammars are not able to
capture context sensitive constraints.

One idea is to use arbitrary tree grammars instead of regular tree grammars
as types. Tree grammars in general allow productions of the form α → β where
α and β are tree expressions over a set of nonterminal names and a set of
variable names [5]. Hence each production can be seen as a context-sensitive
rewriting rule. For example we can express the following language consisting of
arithmetic and boolean expressions, if-statements and pairs in a type-safe way.
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G(s, (s(Num) -> Zero | Succ(s(Num )),

s(Bool) -> True | False | IsZero (s(Num )),

s(Pair(x,y)) -> Pair(s(x),s(y)),

s(x) -> If(s(Bool),s(x),s(x))

| First(s(Pair(x,t)))

| Second (s(Pair(t,x))),

t -> Num | Bool | Pair(t,t)))

Tree grammars are very powerful. For example they can simulate a Turing
machine [5]. But this expressiveness probably makes them unsuited for use in a
type system, because many interesting problems like inclusion of grammars are
not decidable any more. A compromise both in expressiveness and complexity
between regular tree grammars and general tree grammars is the class of context-
free tree grammars [5]. The question is whether context-free tree grammars are
enough to get an expressiveness comparable to generalized algebraic datatypes.

Another idea for extending the type language is to go away from “pure” tree
grammars and allow to use arbitrary types in productions. This means that
we allow to use values of arbitrary type inside constructor applications. For
example, we could use list of functions instead of only lists with tree elements.
We think that this generalization leads to a very powerful calculus for functional
programming with inductive datatypes. The main advantage of these inductive
datatypes based on tree grammars over algebraic datatypes is their flexibility.
Constructors are not tied to data definitions, especially they are not typed.
This allows us to define structural subtyping on the inductive datatypes.

Generic Traversals

One very important tool for program transformations are generic tree traversals
(see Section 11). Our calculus cannot yet express generic traversals, because it
lacks certain abstraction mechanism as for example the possibility to apply a
function to all children of an arbitrary constructor.

There are two alternatives to incorporate generic traversals into the language.

• We add generic strategies like “bottomup” or “topdown” that recursively
apply functions to all subtrees as language primitives. The main challenge
of this approach it to find appropriate types for these primitives. The
disadvantage of traversals as language primitives is that the set of possible
traversals is fix and thus a programmer cannot define custom traversals.
He can only use the predefined ones.

• We add language constructs which enable to express generic traversals
within the language. The following are some ideas for basic language
constructs which are helpful for expressing generic traversals.

Abstraction over Constructor Names This allows us to deconstruct
arbitrary trees with pattern matching as long as we know the arity of the
constructors. For example, the following program transforms any binary
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tree into a tree of the language G(s, (s -> Leaf | Node(s,s))). Thereby
X is a constructor variable.

f(x) = match x

case X(a,b) -> Node(f(a),f(b))

case X -> Leaf

All Another useful construct is the language primitive “all” which
applies a given function to all children of a constructor. The type of “all”
would be something like

(L1 -> L2)

-> G(t, (t -> X(L1 ,... , L1 )))

-> G(t, (t -> X(L2 ,... , L2 )))

This shows that we need constructor polymorphism in types to express
the type of “all”.

Try It is often the case that programmers only need to change certain
parts of the tree while leaving the rest unchanged [19]. To this end, we
can use a primitive language construct “try” which applies a function to
a value only if the value has the right type and otherwise acts as identity
function. Try takes as input a function of type L1 -> L2 and an expression
of type L3 and applies the function to the expression if L3 <: L1. Hence,
“try” has the result type if L3 <: L1 then L2 else L3 which demands for
a much more powerful type language.
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13 Conclusion
The goal of this thesis was to design a core calculus for program transformations
and investigate its formal properties. To this end we first identified a minimal
set of language constructs which enables to express reasonably complex program
transformations, namely pattern matching and recursive functions. On this
basis we defined the syntax and semantics of the core calculus.

Furthermore, we specified a domain specific type system for our calculus
using regular tree grammars as types. The type system ensures that well-typed
programs do not lead to runtime errors. We formally proved the soundness of
the type system with respect to the semantics of the calculus.

In order to explore the applicability of the calculus to express complex
program transformations, we conducted a case study comprising the implemen-
tation of an evaluator for a small programming language. The result of the
case study was twofold. First, it clearly showed that we can express complex
program transformations. We even succeeded in writing a total evaluator
for a language for which in functional programming languages with algebraic
datatypes only partial evaluators can be expressed. But second, the case study
also showed that our calculus lacks important abstraction mechanisms which
leads to much boilerplate code.

This observation motivated further extensions of the calculus. In the course
of this thesis, we explored two different language extensions, namely higher
order functions and parametric types. To this end, we extended both the syntax
and semantics of the core calculus with the corresponding language constructs
and the type system. For the language with higher order functions we formally
proved the soundness of the system. While the extension with higher order
functions turned out to be very straightforward, parametric types essentially
increased the complexity of the type system. Especially, the definition of
subtyping in the context of parametric types and the introduction of a kind
system proved to be challenging. Therefore, we proposed one possibility to
define the type system and the computation of subtyping intended as a starting
point for further exploration. A complete correctness proof went beyond the
scope of this thesis and we left it as future work.

We believe that our calculus constitutes a solid basis for further research
on program transformation languages. Especially due to its simplicity, the
calculus is well-suited as a good tool for studying formal properties.
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