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Abstract

Reactive applications are a wide class of computing systems. Despite being studied for a long time, reactive applications
are hard to write and maintain. Reactive programming (RP) is a recent paradigm that overcomes the drawbacks of the
traditional Observer pattern. In the reactive paradigm the relations among reactive entities are defined in a declarative
way and the language runtime automatically takes care of the updates of dependent values.

RP has proved an effective paradigm to design and implement reactive systems. However, two factors limit its applicabil-
ity. On the one hand, current RP implementations have a huge performance impact compared to manual implementation
of the reactive features. On the other hand, RP frameworks often require custom compilers and preprocessors that limit
the applicability of the paradigm. Implementing RP as an embedded domain-specific language (DSL) solves this issues at
the price of awkward syntactic burdens.

We implement OptiReactive, an embedded DSL for RE that uses a recent approach to multistage programming,
Lightweight Modular Staging, to perform runtime code transformations. Based on this technology, we develop several
general purpose optimizations and syntactic transformations to improve the performance and enrich the syntax of RP.
Noticeably, our solutions are general and applicable to other RP frameworks, while current RP research only exploits
optimizations that are specific to the underlying implementation.

The evaluation shows that our optimizations improve the performance of our benchmarks and that the syntactic trans-
formations do not have a negative impact on the runtime performance.







Zusammenfassung

Reaktive Anwendungen sind eine weit verbreitete Klasse von Computerprogrammen. Trotz langer Studien sind reak-
tive Programme schwer schreib- und wartbar. Reaktive Programmierung (RP) ist ein modernes Programmierparadigma,
welches die Nachteile des traditionell verwendeten Beobachter-Musters (Observer pattern) beseitigt. In der Reaktiven Pro-
grammierung werden die Beziehungen zwischen reaktiven Elementen auf eine deklarative Art definiert und zur Laufzeit
automatisch aktualisiert, unter Beriicksichtigung der Abhéngigkeiten.

Es hat sich gezeigt das RP ein sehr effektiver Programmierstil fiir das Entwerfen und Implementieren von reaktiven
Systemen ist. Allerdings ist die Anwendbarkeit durch zwei Faktoren limitiert. Auf der einen Seite haben aktuelle Imple-
mentierungen von RE verglichen mit dem manuellen Implementieren der entsprechenden reaktiven Features, einen sehr
negativen Einfluss auf die Leistung. Auf der anderen Seite erfordern Frameworks fiir RP oft modifizierte Compiler und
Préaprozessoren, welche die Anwendbarkeit einschrianken. Die Implementierung von RP in Form einer Domanenspezifis-
cher Sprache 16st diese Probleme, bringt aber meist syntaktische Lasten mit sich.

Wir implementieren OptiReactive, eine eingebettete doménenspezifische Sprache fiir RE welche einen kiirzlich prasen-
tierten Ansatz fiir Multistage Programmierung, Lightweight Modular Staging, verwendet, mit welchem es moglich ist Pro-
grammcode Transformationen zur Laufzeit durchzufiihren. Basierend auf dieser Technologie entwickeln wir mehrere Op-
timierungen und syntaktische Transformationen um die Performanz und Syntax von RP zu verbessern. Ein wesentlicher
Aspekt ist, dass unsere Losungen allgemein und daher anwendbar auf andere Frameworks fiir RP sind, wéhrend sich
momentane Forschung auf diesem Gebiet auf Optimierungen beschrénkt, welche von der konkreten Implementierung
abhingig sind.

Die Evaluierung zeigt, dass unsere Optimierungen die Laufzeit unserer Beispielprogramme verbessern und die syntak-
tischen Transformierungen keinen negativen Einfluss auf die Ausfithrungszeit haben.
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1 Introduction

Reactive programming has been proposed as a viable solution to implement reactive applications in a composable and
less error-prone way. In this programming paradigm, reactive applications are defined in terms of time-changing values,
and expressions that relate them. As a result, reactions are specified in a declarative way, avoiding the need for callbacks,
whose drawbacks have been known in literature for a long time. Functional reactive programming was introduced in
form of a composable library for animation [EH97]. The same concepts have since then been incarnated in various
designs [NCP02, MGB"09]. More recently, there have been different implementations, fusing object-oriented and reactive
programming in form of events or signals (behaviors) [MRO10, SHM14, GSM ' 11]. Many of the existing implementations
feature performance optimizations, often with solutions that are specific to the underlying framework.

The concept of staging refers to the compilation steps of a computer program. In fact, every program written in a
compiled language has at least two stages, compilation and execution. Between the two stages, the compiler may ap-
ply optimizations to improve the performance of the final program. Multistage programming introduces one or more
intermediate stages, the programmer can leverage to apply transformations, including code optimizations.

This work aims to propose an optimization technique for reactive programming. We make use of a recently presented
approach to multistage programming, called “Lightweight Modular Staging” [RO10] and the associated compiler frame-
work Delite [Rom12]. Access to the intermediate stages provides us with the ability to do syntactic transformations and
program optimizations.

The detailed contributions presented in this work are:

* We developed SimpleReactive, a library for reactive programming in Scala that implements the minimal concepts
of reactive programming, required to demonstrate our approach.

* We propose syntactic transformations at the DSL level to ameliorate the usability of the SimpleReactive library.
* We propose optimizations that can be applied on SimpleReactive to improve the performance of reactive programs.

* We implement OptiReactive, a DSL for reactive programs built on top of SimpleReactive that implements the
aforementioned transformations using Lightweight Modular Staging and Delite.

The rest of the thesis is structured as follows. Chapter 2 introduces the frameworks and techniques used to realize our
implementation. Chapter 3 discusses the design and the implementation of SimpleReactive and OptiReactive. Chapter 4
presents syntactic transformations and optimizations together with their implementation in OptiReactive. Chapter 5 eval-
uates the performance of OptiReactive. Chapter 6 discusses related work, Chapter 7 concludes the thesis and outlines
future work.
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2 Technical Background

This chapter provides an overview of the basic concepts used in the rest of the thesis that are necessary to understand
the design and implementation of OptiReactive. First we introduce multistage programming at a high level of abstraction,
then we present the main technologies used in the rest of the thesis, Scala-Virtualized, Lightweight Modular Staging
(LMS) and the Delite framework.

2.1 Multistage Programming

In case of a compiled language, executing a program consists of at least two stages: compile-time and run-time. The usage
of a program generator such as Yacc or ANTLR introduces another stage, program generation. “A multi-stage program is
one that involves the generation, compilation, and execution of code, all inside the same process” [TS00]. Staging can
improve the performance of a program by applying changes or rewrites to its internal structure, before it is actually run.

2.2 Scala-Virtualized

Scala-Virtualized [MRHO12] is a modification of the Scala compiler and standard library. Its purpose is to provide en-
hanced support for embedded DSLs using the Scala programming language. Key features are the overloading of control
structures like loops and pattern-matching, variable assignment and creation, as well as object instantiation. In addition
to the overloadable constructs, it also allows to add new infix methods on existing types. Listing 2.1 shows an example
on how to define a new infix method, +, on an existing type Point.

case class Point(x: Int, y: Int)

def infix_+(pl: Point, p2: Point): Point = {
(pl,p2) match {
case (Point(x1l,yl),Point(x2,y2)) =>
Point (x1+x2,yl+y2)

Point(21,0) + Point(21,42) // => Point(42,42)

Listing 2.1: Extension methods

In line 3-8 the new extension method is defined. The “infix_” prefix is stripped from the method name, which enables
the call in line 10. Technically, extension methods can also be defined using normal Scala by using an implicit conversion.
Compared to Scala-Virtualized’s extension methods, which are very lightweight, the alternative with implicits requires
more boilerplate code, typically involving a class and a conversion method.

Control structures can be overloaded by overriding the specific method provided by Scala-Virtualized. One example is
the __ifThenElse method, describing the standard conditional expression used in Scala. Programmers can then alter the
semantics of all conditional expressions by overwriting the designated method.

As an example, listing 2.2 shows the definition of an alternative if-statement that prints an additional message, if the
condition evaluates to true.

Scala-Virtualized plays a key role in “Lightweight Modular Staging”, where it is used to make Scala constructs like
condition expressions work with staged expressions and to define new infix methods on existing types.

2.3 Lightweight Modular Staging

Lightweight Modular Staging (LMS) is “a library-based multistage programming approach that [...] uses only types to
distinguish between binding times” [RO10]. The framework uses Scala-Virtualized to allow the staging of built-in language
features.

15
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11

override def __ifThenElse[T](cond: => Boolean,
thenp: => T, elsep: => T): T = cond match {
case true =>
println("Condition was true.")
thenp
case false =>
elsep

if (true) println("True.") else println("False.")

1

// prints "Condition was true." and "True."

Listing 2.2: Overloading if statements

DSLs in LMS are organized via traits that are later mixed together via mixin composition [OZ05]. By convention, the
traits are separated into “interface”, “core implementation”, “optimization” and “code generation” traits. Interface traits
typically end on -Ops, core implementation traits on -Exp and optimization traits on -Opt. Code generation traits are

prefixed by their target language, e.g. ScalaGen- for Scala code'.

The trait Base, provided by LMS, defines the abstract type constructor [MPOO08] Rep[+T], and is used to distinguish
between binding times. A type of Rep[Int] represents a staged value that will evaluate to an integer expression in the
next stage.

Assuming that there are staged equivalents of all used constructs like numeric operations etc., LMS allows it to stage
a program simply by annotating the correct types with the Rep type constructor. It is noteworthy that all operations on
own types, that are staged, have to be defined by the programmer. In case of a large project, the overhead of writing the
staged versions for all operations is therefore quite large.

The result of a program written in the DSL is a graph of intermediate representation (IR) nodes, representing the
original program, that was expressed using the provided interface. LMS comes with predefined IR nodes for standard
Scala operations together with the relevant Scala code generators and in some cases also for the CUDA platform as well
as other languages. Assuming that the traits are organized according to the conventions, clients of a DSL have no access
to the internal representation as IR nodes. This allows the DSL author to modify the internal representation, for example
by replacing IR nodes with an optimized version. Additionally, the graph of IR nodes can be annotated by the programmer
via the use of normal Scala methods, shown in listing 2.3:

def syms(e: Any): List[Sym[Any]] // value dependence (must before)
def softSyms(e: Any): List[Sym[Any]] // anti dependence (must not after)
def boundSyms(e: Any): List[Sym[Any]] // nesting dependence (must not outside)

def symsFreq(e: Any): List[(Sym[Any], Double)] // frequency information (classify
// sym as hot, normal or cold)

Listing 2.3: Graph Relations, from [Rom12, p. 71]

These methods create annotations in the IR graph, which serve as a guide for the built in code motion and allow the
programmer to restrict the extent of allowed transformations, for example to fix a loop internal variable to the inside of
the enclosing expression. By default, LMS assumes that expressions are pure in a functional sense (i.e. side-effect free).
To mark operations that have side effects, LMS provides a method called reflectEffect, together with some alternatives
[Rom12, p. 76]. Operations enclosed by reflectEffect are tracked and serialized automatically by the framework.

Figure 2.1 shows a minimal example for a DSL in LMS implementing simple integer addition via the + operator on
values of type Rep[Int]. In addition to the basic DSL we introduce one optimization trait to optimize addition with 0.

1 Our naming conventions differ slightly in so far, that we have a -Syntax suffix for interface traits and use the -Ops suffix to denote the core

implementation trait. We find that these names make it more clear what the purpose of a trait is when compared to the standard conventions
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N o »u A

trait AdditionExp extends Addition {
trait Addition { case class Addition(lhs: Rep[Int],
def infix_+(lhs: Rep[Int], 3 rhs: Rep[Int]) extends Def[Int]

-

N)

rhs: Rep[Int]) = addition(lhs,rhs) 4
5 override def addition(lhs: Rep[Int],
def addition(lhs: Rep[Int], 6 rhs: Rep[Int]) = Addition(lhs,rhs)
rhs: Rep[Int]): Rep[Int] 7
3 8}
(a) Interface (b) Core implementation

1 trait ScalaGenAddition {
2 val IR: AdditionExp; import IR._

trait AdditionExpOpt extends AdditionExp { 4 override def emitNode(sym: Sym[Any],

override def addition(lhs: Rep[Int], 5 rhs: Def[Any]) = rhs match {
rhs: Rep[Int]) = (lhs,rhs) match { 6 case Addition(a,b) =>
case (Const(®), y) ==y 7 emitValDef(sym,
case (x, Const(0)) => x 8 quote(a) + " + " + quote(b))
case _ => super.addition(lhs,rhs) 9 case _ => super.emitNode(sym, rhs)
} 10 }
} n o}
(c) Optimization (d) Code generation

Figure 2.1: DSL for integer addition

2.4 Delite

Delite provides “compilation and runtime support for execution [...] to the DSL developer” [RSL"11] on top of LMS,
together with predefined parallel execution templates, that will generate heavily optimized code, according to the tem-
plate. Using LMS, the programmer has to take care of the compilation and execution of generated code himself. This
is not the case in Delite, which provides a separate compilation step that generates so called kernels, units of generated
code, while traversing the graph of IR nodes. During the traversal, Delite also keeps track of interdependencies between
kernels and generates the “Delite Execution Graph” (DEG) which captures a list of in- and outputs together with the
discovered interdependencies. Finally, the DEG together with static machine details, like number of available CPUs/GPUs,
is used to create an execution plan for the target hardware. The plan itself consists of kernel calls with the necessary
synchronizations.

a) Application b)

, OptiMLDSL
defexample(a: Matrixint], b: Matrixint], GallsOptiMLDSL | 1 Matriing) =
c Matrixint], d: Matrixnt]) = { methods delite.defer(OP_mult(this, m))
valab=a*b
val cd =c* d > def m: Matrix(Int]) =
retumab +cd delite.defer(OP_plus(this, m))
}
/
9 . . DS defers OP execution
Delite Runtime to Delite
a ‘ b d)
Hardware Schedule
IS
1 4 Deite mepstask | 50 | I N N I
graph to resources 5!?1 I I .
\°/ — < 2| I I
Time

Figure 2.2: Execution of a Delite application, from [CSB™ 11, p. 5]

Figure 2.2 shows an example application execution using Delite. The two matrix multiplications are scheduled to be
computed in parallel by the scheduling algorithm.
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3 Design and Implementation of OptiReactive

This chapter presents the design and implementation of our DSL, called OptiReactive. Firstly, we present SimpleReactive,
a simple base library for reactive programming in Scala. Afterwards we present OptiReactive, a DSL that fuses multistage
and reactive programming.

3.1 Notations and Conventions

From this point on, we will make use of so called dependency graphs to illustrate the structure of reactive programs. A de-
pendency graph is a directed graph, that typically has no cycles. Nodes in the graph represent reactives like ReactiveVars
or Signals, directed edges denote the direction of the dependency, resulting in a “depends on” relation between the corre-
sponding nodes. Different node types, representing e.g. ReactiveVars or Signals, are distinguished by shape and color
of the node. ReactiveVars only occur as leaves, while Signals may occur as inner nodes or leaves. If there is a directed
edge between two nodes, this means that the origin of the arrow depends on the value of the node the arrow points to.
Figure 3.1 shows an example of a simple code snippet together with its dependency graph.

val variable = ReactiveVar(l)
val s1 = Signal(variable) { variable.get + 1 }
val s2 = Signal(variable) { variable.get * 2 }

sl = variable + 1

Figure 3.1: Example program with resulting dependency graph

s2 = variable * 2

Inside of nodes, we will use the form

identifier = expression
The identifier defines a new name that can be used inside the label of other nodes which depend on the one with the
identifier inside. expression represents some kind of Scala expression, with the simplification that we omit the explicit get
or apply call that is necessary to obtain the current value of a reactive. A slightly different form:
identifier = {expl,exp2,...,expN}

will be used to denote that identifier is set to expl, exp2 etc. in the given order.

3.2 SimpleReactive

As the back end of our DSL, we use a simplified library for reactive programming, named SimpleReactive which is
modified from an initial base version, contributed by Dr. Guido Salvaneschi.

SimpleReactive provides two kinds of time-varying values: Signals and ReactiveVars. Both represent computations
that may depend on other time-varying values. A ReactiveVar is different from a Signal in the sense, that it provides
methods to directly change the value inside it. Due to their mutability, ReactiveVars may only occur as a root in depen-
dency graphs. In the rest of this work we assume that the expressions inside of Signals or ReactiveVars are pure in the
functional sense, i.e. their stored expression have no side-effects. We will use the more general term reactives to relate to
both, ReactiveVars and Signals.

Figure 3.2 shows the class hierarchy used in SimpleReactive. From a high level point of view, we divide between two
types, dependency holders and dependents. Internally, reactivity is implemented via the Observer pattern [GHJV94]. Nodes
are subjects and observers, allowing them to communicate with their dependency holders on which they depend, as well
as notifying their dependents if changes occur.
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«trait»
ReactiveEntity

+ getDependentsList: List[ReactiveEntity]
+ forceReEval: Unit

«trait»
Dependent

«trait»
DepHolder

+ getDependendOnList: List[DepHolder]
+ addDependOn(DepHolder): Unit

+ removeDependOn(DepHolder): Unit
+ dependsOnChanged(DepHolder): Unit

+ addDependent(Dependent): Unit
+ removeDependent(Dependent): Unit
+ notifyDependents(): Unit

«trait»

AccessableDepHolder[+A]

«trait»
Behavior[+A]
+ get: A
+ apply(: A
é + map(f: A => B): AccessableDepHolder[B]
| A
1 1
1 |
1 |
,,,,,,,,,,,,,,,,,,, ;
! |
! |
! |
! |
! |
| 1
|
L ReactiveVar[A]

Signal[+A]

Constant[+A]

+ set(A): Unit

+ modify(A => A): Unit

Figure 3.2: Design of SimpleReactive
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Anything that may “hold” a value of interest for dependents is represented by the DepHolder trait. DepHolders provide
methods for dependents to register themselves, as well as a method that is called to notify dependents about events.

Entities, that somehow depend on a value of a DepHolder are instances of the Dependent trait. Dependents internally
track the DepHolders they depend on and provide methods to modify this list. Lastly, they expose a method that is
triggered if a change occurs.

The AccessableDepHolder trait extends DepHolders with a type parameter, methods to access the stored expression’s
result and the map function, that applies a function to the AccessableDepHolder and creates a new version.

Up until now, dependents and dependency holders were separate concepts. As ReactiveVars are only allowed to
occur as a root in dependency graphs, they only implement the AccessableDepHolder trait, adding mutator methods.
Signals however, can actually be dependents and dependency holders. Trait Behavior captures this fact by extending
both, AccessableDepHolder and Dependent. Concrete implementations of Behavior are Signal and Constant, repre-
senting a time-varying pure expression and a constant expression that will never change, respectively.

3.3 OptiReactive

OptiReactive, named in the same scheme as other Delite DSLs (see section 6.2.3), is our DSL built on top of Lightweight
Modular Staging (LMS) [RO10] and Delite [Rom12, RSL"11]. The main part of OptiReactive does not depend on Delite,
the only optimization that requires it, is the parallel propagation described in section 4.3.3. First we give an overview of
the design. The next section concentrates on the implementation and in the last we walk through a complete example of
a program written in OptiReactive.

3.3.1 Design

The type hierarchy used in OptiReactive is the same as in SimpleReactive (Figure 3.2), with the difference, that OptiReac-
tive uses only abstract classes and traits. Types are only required to guide the Scala compiler regarding allowed subtype
relations, e.g. treating a Signal as a DepHolder, when using the DSL. This decouples OptiReactive from the concrete
base library we will generate code for. Therefore, changing from our base library SimpleReactive to another implementa-
tion of reactive programming is easy under the condition that the new implementation is also based on abstractions like
ReactiveVars and Signals.

Figure 3.3 shows the trait hierarchy of OptiReactive’s components. Nodes filled with green are nodes that optimize
some part of the DSL, or perform syntactic transformations.

The Reactivity trait defines the interface part of our DSL, by integrating all of our syntax traits into one. Reactivity
therefore represents the complete visible interface available to clients of the DSL. In actual programs, the Reactivity
trait is commonly mixed in with at least one other trait that lifts standard Scala constructs into the DSL. We therefore
define another trait, ReactiveDSL:

trait ReactiveDSL extends Reactivity with ScalaOpsPkg with LiftScala

ScalaOpsPkg provides operations for standard Scala constructs, LiftScala enables implicit lifting of unstaged values,
i.e. from Int to Rep[Int].

Trait ReactivityExp combines the various core implementation traits, that override the abstract methods of the cor-
responding interface traits. The trait ReactivityExpOpt extends the core implementation with the constant folding
optimization and includes the trait that replaces all standard map calls with a fused version. ScalaGenReactivity inte-
grates the code generation traits, required for the conversion of IR nodes to actual code. ScalaGenReactivityOpt extends
on the previous trait, including an alternative version of code generation that applies the constant folding optimization.

3.3.2 Implementation of reactive abstractions

Listing 3.1 shows the traits implementing Signals in OptiReactive. For simplicity, we omit the concrete implementation
of the map method.
The trait SignalSyntax defines a method apply on the Signal object, that can be called as

Signal.apply(dhs) ()

which is equivalent to the syntax used in SimpleReactive. Internally, the call is forwarded to an abstract method,
new_behavior (line 6), which produces a value of type Behavior as the result. In trait SignalOps, line 9, this method
is overridden with a concrete implementation, creating a SignalCreation IR node. In ScalaGenSignals (line 24) we
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As self type requires B ‘ ScalaGenConstantFolding ‘

ScalaGenReactivityOpt ‘ ‘ ScalaGenFusedMapping ‘

ScalaGenVars
ScalaGenSignals
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‘ FusedMappingsOverrides ‘

‘ FusedMappingsOps ‘

ReactivityExp

’ ReactiveEntitySyntax ‘

Figure 3.3: OptiReactive's trait hierarchy
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trait SignalSyntax extends Base {
object Signal {
def apply[A:Manifest] (dhs: Rep[DepHolder]*) (f: => Rep[A]) = new_behavior(dhs, f)
}

def new_behavior[A:Manifest] (dhs: Seq[Rep[DepHolder]], f: => Rep[A]): Rep[Behavior[A]]
b

trait SignalOps extends EffectExp with FunctionsExp {
this: SignalSyntax =>

case class SignalCreation[A:Manifest] (dhs: Seq[Exp[DepHolder]], body: Block[A])
extends Def[Behavior[A]]

override def new_behavior[A:Manifest](dhs: Seq[Exp[DepHolder]],
f: => Exp[A]): Exp[Behavior[A]] = SignalCreation(dhs, reifyEffects(f))

override def boundSyms(e: Any): List[Sym[Any]] = e match {
case SignalCreation(dhs,body) => effectSyms(body)
case _ => super.boundSyms(e)
}
}

trait ScalaGenSignals extends ScalaGenReactiveBase with ScalaGenFunctions {
val IR: SignalOps
import IR._

override def emitNode(sym: Sym[Any], node: Def[Any]): Unit = node match {
case SignalCreation(dhs,f) => emitValDef(sym,
simpleReactivePkg + "Signal(" + dhs.map(quote) .mkString(", ") + ") { ")
emitBlock(f)
stream.println(quote(getBlockResult(£)) + "\n")
stream.println("}")
case _ => super.emitNode(sym,node)
}
B

Listing 3.1: Implementation of Signals in OptiReactive
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generate the necessary code to create an actual Signal. In lines 18 and 19, we specify that any effectful statements inside
the body are bound. Together with the reifyEffects method in line 16, this makes sure that the generated code for the
body of a Signal is not hoisted out by code motion.

The generated code is where OptiReactive uses the underlying base library. In this case the library is SimpleReactive,
but by changing the code generation for the IR nodes, OptiReactive can support other implementations as well.

3.3.3 A complete example

package dsl.reactive

trait ExampleProgram extends ReactiveDSL {
def main() = {
var variable = 1
val signall = Signal(variable) { variable.get + 1 }
val signal2 = ISignal { variable.get + 1 }

println(signall.get) // => 2
println(signal2.get) // => 2

variable = 5

println(signall.get) // => 6
println(signal2.get) // => 6

Listing 3.2: OptiReactive example code

In this section, we will walk through an example program, written in OptiReactive. Listing 3.2 shows the program
as written by the developer, while listing 3.3 shows the program after replacing the DSL syntax with the underlying
method calls. Finally, listing 3.4 shows the program after the method calls are replaced with the resulting IR nodes. In
the following, we go through these transformation step by step.

Considering only the body of the main method in listing 3.2, the code is almost identical to SimpleReactive, making
it easy to port code from one language to another. In lines 5 and 12 we assume that the Transparency trait is mixed in,
which enables the overloading of variable assignment as will be further described in section 4.2.1. Line 7 demonstrates the
implicit dependency inference, further discussed in section 5.1. For simplicity, we will omit the type signatures, therefore
hiding the fact that the actual types are wrapped inside a Rep type from the DSL clients point of view.

In the first step, the example code from listing 3.2 leads to a row of method calls to the internal helper methods of
the DSL. Listing 3.3 shows the same program, using the explicit method calls. Instead of creating a Scala var in line 5,
we create a regular val with the reactive ReactiveVar as the right hand side. This works due to Scala-Virtualized, which
enables us to intercept the var creation. The same goes for the variable assignment in line 12, which is replaced by our
DSL method dep_holder_set. In the next step, the method calls are evaluated and replaced by IR nodes, represented
by case classes [OACT04]. In the interface traits, these methods are kept abstract. The actual implementation is defined
in implementation traits, which are not visible to clients. In general, these methods return an IR node, representing a
computation that will yield the expected result in a later stage.

Listing 3.4 shows the example again with the corresponding IR nodes that result from the method calls in listing 3.3.
Note that the dependencies of signal2 in line 7 were inferred between these steps, assuming the corresponding trait
(described in section 5.1) was mixed in.

In lines 6 and 7, we use a LMS provided method reifyEffects to mark the expression stored as the second argument
in SignalCreation nodes. By doing this, we disallow the built-in code motion to hoist out the expression during code
generation. In line 12 we use reflectEffect because we are mutating a ReactiveVar and have to make sure that this
effect is serialized properly.

Finally, LMS will use the supplied code generators to generate code from the IR nodes. This is done via the method
emitNode, defined in a base code generator trait, by pattern matching on IR nodes and emitting corresponding code.

24 3 Design and Implementation of OptiReactive



® N o v A

©

10
11
12
13
14
15
16
17

<Y N

[ BN

10
11
12
13
14
15
16
17

1

package dsl.reactive

trait ExampleProgram extends ReactiveDSL {
def main() = {
val variable = new_reactive_var(l)
val signall = new_behavior(variable) (variable.get + 1)
val signal2 = new_inferred_behavior(variable.get + 1)

println(dep_holder_acess(signall)) // => 2
println(dep_holder_access(signal2)) // => 2

dep_holder_set(variable,5)

println(dep_holder_access(signall)) // => 6
println(dep_holder_access(signal2)) // => 6

Listing 3.3: OptiReactive example with explicit method calls

package dsl.reactive

trait ExampleProgram extends ReactiveDSL {
def main() = {
val variable = VarCreation(l)
val signall = SignalCreation(variable, reifyEffects { variable.get + 1 })
val signal2 = SignalCreation(variable, reifyEffects { variable.get + 1 })

println(AccessDepHolder(signall)) // => 2
println(AccessDepHolder(signal2)) // => 2

reflectEffect(SetDepHolder(variable,5))

println(AccessDepHolder(signall)) // => 6
println(AccessDepHolder(signal2)) // => 6

Listing 3.4: OptiReactive example with IR nodes

override def emitNode(sym: Sym[Any], node: Def[Any]): Unit = node match {
case VarCreation(v) => emitValDef(sym, "Var(" + quote(v) + ")")
case _ => super.emitNode(sym,node)

h

Listing 3.5: Code generator for VarCreation
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In addition to the code generator for Signals in listing 3.1, listing 3.5 shows a simpler code generator for VarCreation
IR nodes. Every code generator uses a catch all pattern to delegate up the hierarchy in the case that it cannot handle the
given IR node. In case that no code generator can handle the IR node, there will be an exception at runtime.
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4 Optimizations

OptiReactive enables several program transformations. In this chapter we describe the transformations based on LMS and
Delite, implemented in this thesis. First we describe syntactic transformations that makes reactive programming easier to
use. Then we present optimizations that enable performance improvements. All but one of the following transformations
are applicable to OptiReactive using only LMS. The exception is “Parallel propagation”, which makes use of the Delite
built-in execution patterns.

4.1 Built-in optimizations of LMS and Delite

By using the LMS and Delite frameworks for our DSL, we get some of the classic compiler optimizations that work on the
DSL level. By default, common subexpression & dead code elimination, constant folding, as well as code motion [ALSU06] is
supported. The latter is of restricted use in our DSL as we have to guarantee that expressions inside of reactives are not
hoisted out.

Dead code elimination (DCE) can be quite beneficial in reactive applications, because the indirection introduced by
the DSL implementation of reactive abstractions make it hard for the compiler to apply DCE at the code level. By using
OptiReactive, we gain full support of DCE at the DSL level: reactive values like Signals or ReactiveVars, that are used
in the DSL, but are unreachable after evaluating the first stage of the program, are guaranteed to be removed in the
resulting code. Listing 4.1 shows an example Scala program. The resulting graph structures with and without dead code
elimination are shown in figure 4.1.

var condition: Boolean = true
val a = ReactiveVar(21)
val b = ReactiveVar("25")

val signal = ISignal {
if (condition) {

"Value: " + a.get.toString
} else {
"Value: " + b.get.toString

Listing 4.1: Dead code elimination example

a=21 a=21 b =25

(a) DCE on (b) DCE off

Figure 4.1: Dependency graph with DCE turned on/off

The advantage of removing reactives is that it is not necessary to update them during propagation through the depen-
dency graph, which can considerably speed up the execution of the program. The elimination in listing 4.1 can work in
this case, because the condition is evaluated in a prior stage and is therefore statically known, so that the analysis sees
only one of the two branches. If the condition is a staged boolean, signal depends on both a and b, inhibiting DCE.
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While this is only a small example, in a more sophisticated application there often occur situations where multiple of
these reactive values or whole paths can be eliminated.

Other built-in optimizations like constant folding apply to expressions inside Signals, but do not work at DSL level by
default (we will develop a working version in section 5.2). Common subexpression is of limited use in our implementation,
because updating the dependency graph is a side-effecting operation, which is marked as impure for the framework and
can therefore not profit from this particular optimization in most cases.

4.2 Syntactic transformations

This section presents syntactic transformations, that can be applied by OptiReactive. We will look at an approach to
transparent reactivity in Scala and show OptiReactive’s solution for dependency inference.

4.2.1 Transparent reactivity

Scala-Virtualized enables the overloading of selected constructs in Scala. This makes it possible to override control struc-
tures as well as object creation and enables the addition of methods to existing types. When using a reactive library, there
is syntactic overhead to overload or convert existing mechanisms so that they interact with the reactive constructs. In our
DSL, ReactiveVar is such an example. The code snippet in figure 4.2 (a) shows a simple example program using only
functionalities provided by SimpleReactive.

class Point(x: Int, y: Int) { 1 class Point(x: Int, y: Int) {
val xPos = ReactiveVar(x) 2 var xPos = x
val yPos = ReactiveVar(y) 3 var yPos =y
} 4 1
5
def swap(point: Point) { ¢ def swap(point: Point) {
point.xPos.set(point.yPos.get) 7 point.xPos = point.yPos.get
point.yPos.set(point.xPos.get) 8 point.yPos = point.xPos.get
3 9 3
(a) Using explicit DSL syntax (b) Using Scala-Virtualized

Figure 4.2: Example using explicit DSL syntax and Scala-Virtualized

Using the override mechanisms of Scala-Virtualized, we can write code that looks more like plain Scala, while still
having the same semantics as the previous program. Figure 4.2 (b) shows the example again using overloaded var
creation and assignment.

The programmer does not have to know anything about the specific methods that are used to guarantee that the
reactive framework detects the changes and dependent reactives are updated accordingly.

Unfortunately we cannot overload val assignment with Signal expressions in the same manner. It would be possible
to use explicit type annotations on the left to trigger an implicit conversion ([OAC" 04]). The right side of the assignment,
however is still reduced to an evaluated form, while we actually want the unevaluated expression. Assuming that this
missing feature is added to Scala-Virtualized, it becomes possible to write almost regular Scala code, that will have reactive
semantics, when used with the enabled overloadings. The idea of transparent reactivity is also mentioned in [BCKO7].

4.2.2 Dependency Analysis

Both SimpleReactive and OptiReactive use ReactiveVars and Signals as the main reactive abstractions. Signals are
constructed via Signal Expressions, as in Scala.React [MRO10]. When creating Signals, the dependencies have to be
either explicitly specified or inferred. The Signal.apply method in Scala.React, responsible for discovering the depen-
dencies, makes use of a thread local stack, to track the concrete dependents. A simple alternative is to explicitly pass
the dependencies into the Signal.apply method, when creating the Signal. The explicit approach has the disadvantage,
that it transfers the responsibility to the programmer and in case of incorrect dependencies, the resulting code may not
behave as expected. Furthermore there may be computations at staging time that transform the code of the expression in
ways that are not easy to analyze in advance. Conservatively passing in more dependencies than needed will additionally
inhibit the dead code elimination and may therefore lead to a bigger dependency graph, which the underlying framework
has to maintain, typically manifesting in reduced runtime performance.
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Our base library, SimpleReactive, uses the explicit approach when creating Signals via the Signal.apply method,
similar to Scala.React, but with an additional argument for dependencies. OptiReactive on the other side, extends the
syntax with another form of Signal expressions, defined as ISignal.apply, that is able to infer the required dependen-
cies from the given expression and is syntactically equivalent to the one in Scala.React. The inferred dependencies are
subsequently passed into the Signal expression form that takes explicit dependencies as an argument.

As an example of how this works, consider the example Scala program in listing 4.2 with the resulting dependency
graph, shown in figure 4.3.

val vl = ReactiveVar(5)
val v2 = ReactiveVar(10)
val v3 = ReactiveVar(15)
val sl = ISignal { vl.get + v2.get }
val s2 = ISignal { v2.get + v3.get }
val s3 = ISignal { sl.get * s2.get }

Listing 4.2: Dependency analysis: example code

lvi=5| |[v2=10] [v3=15

Figure 4.3: Result of dependency analysis

The apply or get method, when invoked on a reactive value, will result in an AccessDepHolder IR node. Detecting the
dependencies on reactive values can be done by analyzing the unevaluated expression, passed in to the Signal.apply fac-
tory method after converting it to a Block. Block is provided by LMS and encapsulates a lambda that takes no arguments.
Additionally, LMS provides a method to find all symbols that a given object references. Applying this method to the Block
yields a list of Syms which we can search for IR nodes representing the access to reactive values, i.e. AccessDepHolder.
The LMS trait Expressions provides a method to find definitions given a Sym:

findDefinition: Sym[T] => Def[T]

Applying this method to the list of detected Syms of the Block yields a list of dependency holders. This final list can
be passed into SimpleReactive’s Signal expression form, to create a Signal. Due to the fact that the analysis is done at
staging time, it has no impact on the runtime performance.

In case of dynamic dependencies, the analysis infers conservatively. For example when using if-expressions inside
a Signal expression, there are two different cases. In figure 4.4 (a) the condition of the if-expression is an unstaged
boolean, therefore it will be evaluated in the intermediate stage and our dependency analysis only sees the branch that
was taken. If the condition is a staged value, as in figure 4.4 (b), our dependency analysis will be conservative and infer
both v1 and v2.
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val cond: Boolean = true 1 val cond: Rep[Boolean] = true
2
val vl = ReactiveVar(1l) 3 val vl = ReactiveVar(1l)
val v2 = ReactiveVar(2) 4 val v2 = ReactiveVar(2)
5
ISignal { if (cond) vl.get else v2.get } 6 ISignal { if (cond) vl.get else v2.get }
(@) Unstaged condition (b) Staged condition

Figure 4.4: Two alternatives of if-expressions

4.3 Performance optimizations

This section presents optimizations applied by OptiReactive, that improve the performance of the program. The presented
optimizations are constant folding, map fusion and parallel propagation.

4.3.1 Constant folding

Reactive libraries may require the use of a reactive value, while the client wants to provide a constant. The common
solution is to introduce a special reactive that does not change, therefore lifting constant values. Wrapping constant values
introduces overhead in terms of memory and in terms of propagation performance as well, depending on the concrete
implementation. This is due to the fact that reactives that depend on constant values are included in the dependency
graph, which the library has to maintain over the course of a program execution.

In OptiReactive, we can make use of the DSL IR nodes to resolve these issues. A Signal for which there were no
dependencies found during dependency analysis (section 4.2.2), or if the explicitly supplied dependencies list is empty,
OptiReactive will replace the SignalCreation IR node with a ConstantCreation node, invisible for the client of the DSL.
To summarize, we can replace a Signal with a Constant, if one of the following is true:

(1) the list of explicit/inferred dependencies is empty

(2) all of the specified dependencies are constant themselves

Figure 4.5 shows a example program together with the resulting dependency graph. In the program we can replace all
Signals with constants, because p1 and p2 are constants according to (1), dist and sqDist according to (2).
def euclidDistance(pl: Point,
p2: Point): Double = 777 pl = Point(5,5) p2 = Point(10,5)

val pl
val p2

ISignal { Point( 5, 5) }
ISignal { Point(10, 5) }

val dist = ISignal {
euclidDistance(pl.get,p2.get)
3

dist = euclidDistance(p1,p2)

val sgDist = ISignal {

dist.get * dist.get . . .
} sqDist = dist * dist

println(sqDist.get)

Figure 4.5: Constant conversion example program with dependency graph

What OptiReactive does, is that it replaces the SignalCreation IR nodes with ConstantCreation nodes, if the con-
version described above was applicable. When generating code for constants, we can exploit this knowledge: instead of
an explicit access of the constant via get or apply, we can “unwrap” the expression inside the ConstantCreation IR
node and insert it instead of the explicit access call. Of course, this requires, as stated before, that expressions inside of
reactives are pure.
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Listing 4.3 shows a semantically equivalent snippet of code that will result from the transformations of the program
shown in figure 4.5. If the Delite version of OptiReactive is used, the code will be spread out into kernels, but remain
semantically equivalent. The code shows no trace of reactives at all, because all of them are converted into constants and
the access is unwrapped during code generation.

Point( 5, 5)
Point (10, 5)

val pl
val p2

val dist = math.sqrt(math.pow(pl.x - p2.x,2) + math.pow(pl.y - p2.y,2))
val sgDist = dist * dist

println(sgDist)

Listing 4.3: Constant conversion result

4.3.2 Map fusion

A common operation on Signals is to use the higher-order map function. Mapping over a Signal generates a new Signal,
which applies the given function to its expression at each evaluation. In general, every use of the map function leads to
a new Signal being instantiated and registered in the reactive framework. In some cases, the intermediate Signals are
not of interest at all and slow down the execution of the final program.

OptiReactive introduces a modified version of map, called fuseMap, that does not generate intermediate structures. By
using a special trait, the standard map method can be overridden to use the fused version. The fusing works by replacing
the IR node representation used in OptiReactive. Without the optimization, calling the map function on a Signal creates
an MappedBehavior IR node, storing the function we are mapping, as well as the behavior we are mapping over. Listing 4.4
shows an example where map-calls on a signal are chained.

signal.map(i => i + 1).map(i => i + 2).map(i => i + 3)

Listing 4.4: Sequence of map calls

MappedBehavior(i => i + 1, signal)} 1 MappedBehavior((i => i + 1, signal)
2
MappedBehavior(i => i + 2, 3 MappedBehavior((i => i + 2) compose
MappedBehavior(i => i + 1, signal))} 4 (i =1+ 1, signal)
5
MappedBehavior(i => i + 3, 6 MappedBehavior((i => i + 3) compose
MappedBehavior(i => i + 2, 7 (i = i + 2) compose
MappedBehavior(i => i + 1, signal)))} 8 (i=>1i+ 1, signal)
(a) (b)

Figure 4.6: IR nodes with unfused (a) and fused (b) mapping

The resulting IR nodes of each intermediate map-call are shown in figure 4.6 (a). The unfused version results in
nested MappedBehavior nodes. In this form, code has to be generated for each IR node, because the outermost depends
transitively on all inner ones.

OptiReactive’s map fusion avoids the creation of intermediate nodes by accumulating the function that will be mapped
via function composition. Instead of wrapping every map call with MappedBehaviors we accumulate the function that will
be applied at the end as the first argument to the IR node. The repeated map calls from listing 4.4 therefore result in IR
nodes of the form as shown in figure 4.6 (b), where compose is the standard Scala function composition in staged form.
The actual code generation for the resulting IR node is unchanged from the original, with the addition of a simple gener-
ator for the staged function composition. The result is that no intermediate reactives are created. Instead the function is
accumulated via composition and finally used as the argument to the standard map function of the underlying libray, in
our case SimpleReactive.
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4.3.3 Parallel propagation

OptiReactive can optionally generate code to propagate changes through the dependency graph at the DSL level, in
addition, or as a replacement for the propagation that may be done by the base library. The advantage is that the built-in
Delite execution patterns for parallel operations can be used, offering high level abstractions and loop fusion. In this
section we investigate two approaches on how to make use of this infrastructure. We concentrate on propagation using
the DSL abstraction and assuming that the base library does no propagation by itself.

When a reactive value changes, for example via the ReactiveVar. set method, all dependents of this reactive have to
be notified. Performing this in parallel is straightforward: simply notify each dependent in parallel. Listing 4.5 shows a
concrete implementation for the built in Delite execution pattern DeliteOpForeach.

case class NotifyDependents(dh: Exp[ReactiveEntity])
extends DeliteOpForeach[ReactiveEntity] {
def func: Exp[ReactiveEntity] => Exp[Unit] = _.reEvaluate()
val in: Exp[DeliteCollection[ReactiveEntity]] = dh.getDependents
val size: Exp[Int] = dh.getDependents.size
def sync: Exp[Int] => Exp[List[Any]] = _ => List[Any]()

Listing 4.5: DeliteOpForeach for parallel execution

In line 1 we declare a new IR node called NotifyDependents, which extends from DeliteOpForeach, parameterized
over the collection element type, ReactiveEntity. The four necessary definitions (line 2-6) are:

func the function that is applied to each element
in the collection to iterate over which is acquired by requesting all dependents of the reactive
size the number of elements

sync a list of Syms that have to be synchronized

With this IR node defined, we can extend the definition of IR nodes that should invoke a propagation, e.g. for
ReactiveVar.set. NotifyDependents itself propagates one level, the remaining task is to apply it so that the whole
graph is updated.

A simple, recursive algorithm would involve the following steps:

* external detection that a propagation is necessary
* reevaluate the expression of the node
* retrieve a list of all dependents affected by the change

* recursive application to all dependents

This is straightforward to formulate in Delite. Unfortunately, the runtime does not (yet) support the execution of
recursive methods'. This is due to the fact, that Delite supports heterogeneous hardware (GPUs,CPUs. . .), which makes
it complicated to support recursion, as it might not be supported on all types of target hardware. An implementation of
the algorithm in an iterative form resulted in a version, that only supports propagation up to a finite depth, which has
to be specified in advance. Problems with the Delite implementation made it not possible to generalize the algorithm to
update the complete dependency graph.

We expect that this is a minor issue, and may already be fixed in some of the developer versions, which we were unable
to test due to some incompatibilities regarding the framework. In the evaluation, we set the number of levels to propagate
manually to the value that would be used by the generalized version.

1 According to a conversation with Arvind Sujeeth on the Delite mailing list (delite-devel@googlegroups.com) on July, 2nd.
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5 Evaluation

This chapter evaluates the functionalities presented in chapter 4. First, we discuss dependency analysis regarding usability
and correctness. The rest of the chapter investigates performance improvements of constant folding, map fusion and the
Delite version of OptiReactive. The results show, that the presented optimizations do improve the performance of the
generated programs and that there is no significant performance overhead when using OptiReactive, compared to the
base library, even if no optimizations are applicable.

The benchmarks were run on a Thinkpad X220 with an Intel dual core i7 2620M 2.7 GHz processor and 8GB of RAM.
The code was compiled and executed with Scala 2.10.0-M1-virtualized, the OpenJDK Runtime Environment (IcedTea
2.3.10) and the OpenJDK 64-Bit Server VM (build 23.7-b01). The project branched from the official Delite ‘optiml-beta’
branch at commit 14f30dd and uses LMS in version 0.3.

Each of the following experiments was run at least 15 times. The first five runs were discarded and the mean of the
remaining runs was taken as the final result.

5.1 Dependency Analysis

In most cases, explicit dependencies can be provided manually by the programmer. Besides the fact that automatic in-
ference is less error prone, there are use cases where it is not possible to determine the actual dependencies in advance.
Listing 5.1 shows an example where the programmer cannot explicitly provide the minimal set of dependencies manually,
due to a computation at the intermediate stage. The explicit type annotations are only given to improve readability and
would normally be omitted.

val reactives: Seq[Rep[AccessableDepHolder[Int]]] = collection.Seq( /*...%/ )

val sum: Rep[AccessableDepHolder[Int]] = ISignal {
def filtered: Seq[Rep[AccessableDepHolder[Int]]] =
reactives.filter(_ => util.Random.nextBoolean)

filtered.foldLeft(unit(0)) ((acc,r) => acc + r.get)
h

println(sum.get)

Listing 5.1: Advantage of dependency analysis

In line 1, we define a sequence of reactives. The signal sum (line 3) depends on a subset of the defined reactives
sequence. If explicit dependencies were used, the programmer would have to state all reactives as dependencies, because
he cannot know which or if any of the reactives will be filtered out. Dependency Analysis, however can infer the correct
dependencies, because the filtering is done at staging time.

5.2 Constant folding

The impact on the performance of our constant folding optimization depends on the target program. The implicit removal
releases clients of the reactive library to specify constant signals explicitly, if they use a reactive library that offers an API
that requires reactives as e.g. the argument of a method. For example, consider a geometric reactive library, that offers
a method to calculate the distance between two time-varying points. As a client, we only want to measure the distance
between a fixed point (e.g. the screen center) and one time-varying point (e.g. the mouse cursor position). One possible
method to address this is to introduce a special reactive for constant values. In OptiReactive, we can handle this situation
without requiring the use of a special type of reactive by automatically detecting if a reactive is constant or not.

Listing 5.2 shows an example, where the method manhattanDistance, that may be provided by a library, only accepts
reactive values. The signal staticCenter is detected as a constant. Therefore, during code generation, instead of ex-
plicitly querying the content via the get method, OptiReactive will insert the value, Point (0, 0). This reduces the cost
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def manhattanDistance(

pointl: AccessableDepHolder[Point],

point2: AccessableDepHolder[Point]
): AccessableDepHolder[Int] = ISignal {

math.abs(pointl.get.x - point2.get.x) + math.abs(pointl.get.y - point2.get.y)
3

val staticCenter = ISignal { Point(0,0) }
val dynamic = ReactiveVar(Point(0,0))
val mouse = ReactiveVar(Point(10,0))

val semiStaticDistance = manhattanDistance(staticCenter,mouse)
val dynamicDistance = manhattanDistance(dynamic,mouse)

Listing 5.2: Calculating the distance between points

of calculating the time varying signal semiStaticDistance, because only mouse has to be queried. Calculating dynam-
icDistance requires the program to query both, mouse and dynamic for its value. The main benefits of this optimizations
are:

* reactives are replaced by normal code

* the resulting code can be optimized further

The first point means, that the reactive framework has less reactives to maintain over the course of the program
execution. The second point may lead to additional optimizations being applicable, which can speed up the execution
further. This is due to the fact, that the code is scattered inside reactives, hiding the internal computation structure and
providing only access to the result. Constant folding merges the computations back into one place, allowing individual
optimizations to inspect the computation as a whole. As an example where this optimization can dramatically improve
the performance, consider the program shown in listing 5.3.

val vl = ISignal { 43 }
val v2 = ISignal { 43 }
val v3 = ISignal { 43 }

val s1 = ISignal { fib(vl.get) + fib(v2.get) + fib(v3.get) }
val s2 = ISignal { fib(vl.get) + fib(v2.get) + fib(v3.get) }
val s3 = ISignal { fib(vl.get) + fib(v2.get) + fib(v3.get) }

val result = ISignal { sl.get + s2.get + s3.get }
result.get

Listing 5.3: Evaluation example for constant folding

Without the optimization, the resulting program will have a dependency graph as shown in figure 5.1. As a result,
the computation of £ib(43) is done nine times, where actually one computation would suffice. With constant folding
activated, the Signals are replaced with Constants, which in turn are eliminated during code generation. This allows
LMS’s built-in common subexpression elimination to detect, that the same pure computation occurs repeatedly and can
be reduced to only one occurrence. The generated code, with activated constant folding is shown in listing 5.4

Instead of calculating fib(43) repeatedly, the result is calculated only once and summed up the required number of
times. In fact, the above code is a more verbose version of “9 * fib(43)”.
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s2 = fib(s1) +fib(s2) +fib(s3)

s1 = fib(s1) +fib(s2) +fib(s3) s3 = fib(s1) +fib(s2) +fib(s3)

result = s1+s2+s3

Figure 5.1: Dependency graph for constant folding example

val x3 = 43

val x4 = fib(x3)

val x5 = x4 + x4

val x6 = x5 + x4

val x8 = x6

val x9 = x8 + x8

val x10 = x9 + x8
val x12 = x10

Listing 5.4: Generated code with constant folding

5.3 Map fusion

To evaluate the performance improvements that result from the fusion of consequent map calls we consider an example
program as shown in figure 5.2.

1 val v = ReactiveVar(43)
2 val f: Rep[Int] => Rep[Int] = x => fib(v.get)+x

4 val sl = ISignal(fib(v.get))
s val s2 = sl.map(f)
6 /* repeated calls of map(f) */
7 val sN = s2.map(f)

v = {43,42}

9 println(sN.get) s2 = sl.map(f)
11 v.set(42)
12 println(sN.get)

Figure 5.2: Example program for map calls with dependency graph

The general structure of the resulting dependency graph has a root in form of a ReactiveVar, initialized with 43 and
one or more Signals. The signals have a dependency on the root and calculate the Fibonacci number at the specified posi-
tion. After the first calculation is done, we change the root node’s value to 42, which triggers an update of all dependents.
In the following, we measure the total run time of this program with a different number of chained map calls.

In figure 5.3 we show the performance of the previous example in figure 5.2, executed with an increasing number of
maps. We see that the fused version is much faster than the unfused version. The reason is that without map fusion, each
call to map results in an intermediate Signal being created and registered for updates. Therefore, when the value at the
top of the dependency graph is modified, all intermediate Signals will be updated as well, although only the final result
of the map calls is actually referenced. With our fusion optimization from section 4.3.2, we avoid the creation of these
intermediate Signals by accumulating the function to map via regular function composition. The result is that none of
the intermediate reactives are created, thereby reducing the overall memory consumption of the program and a change
to the root node’s value results only in one update of the final Signal’s value.
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5.4 Parallel propagation & Dead code elimination

5.4.1 Flat Fibonacci tree

Our first test case is a program that calculates Fibonacci numbers inside of a reactive tree-like structure. The root of
the tree is a mutable reactive that holds the integer value that gives us the wanted position of the Fibonacci number to
calculate. Depending on the root, we create reactives that calculate the requested Fibonacci number. A visualization of
the dependency graph resulting from this program can be seen in figure 5.4.

x = {1,40,39,41}

Figure 5.4: Flat fibonacci tree

A single run of the benchmark goes through the following steps: Initially, the root of the tree is set to 1. Afterwards, the
Signals are instantiated. This marks the first measure point, Setup Time. The remainder of the run changes the content of
the root to a different value three times and measures the time needed to update the dependency graph (1st propagation,
2nd propagation, 3rd propagation). Finally, we measure the execution time of the whole run (Total Time).

Figure 5.5 shows the result of the benchmark and visualizes the numbers. SimpleReactive as a standalone library
(Library) has comparable run times to OptiReactive using the propagation algorithm of SimpleReactive (Sequential).
OptiReactive with parallel propagation enabled (Parallel) is about twice as fast as the other two versions. This result
shows that reactive programs can benefit dramatically from parallel propagation. As expected, both OptiReactive versions
exhibit a marginally higher warmup time due to the form of the generated code, which is asymptotically negligible.

If we use the same program as in the previous benchmark, but only reference (i.e. by printing to the console or using
it in another expression) ten out of the twenty Signals, the built-in dead code elimination will remove the unreferenced
half, leading to even better runtime performance. The results of the described benchmark are shown in figure 5.6. We
can see that both OptiReactive versions run about twice as fast as in figure 5.5, because only half as much Fibonacci
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Figure 5.5: Results for the flat Fibonacci tree

computations have to be done during one propagation. The same program written in SimpleReactive does not show any
improvement because there is no dead code elimination for reactives when using pure Scala.
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Figure 5.6: Results for the flat fibonacci tree with less references

5.4.2 Deep Fibonacci tree

As a second test case, we use a tree of Fibonacci computations, with the dependency graph structure shown in figure 5.7.
Note that the dependencies between children and the root are omitted. The execution of one run follows the same
methodology as in the previous benchmark in section 5.4.1.

The results of the regular execution are shown in figure 5.8. Unsurprisingly, the running times of all three versions
are almost the same because the parallel propagation only speeds up the propagation from the root node to the first
level of children and not further. Although not by much, OptiReactive with parallel propagation performs better than the
sequential version which itself is slightly better than the pure library version using SimpleReactive.

If we keep the same graph structure, but reduce the number of actually referenced reactives, dead code elimination
can speed up the program. This circumstance can be easily demonstrated by a variant of the previous experiment. In the
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x = {1,40,39,41}

a2 = al + fib(x) b2 = bl + fib(x)

Figure 5.7: Deep Fibonacci tree
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variation the root node references only one of the two branches, The results for the case are shown in figure 5.9. Again
on account of dead code elimination, we see that both OptiReactive versions run twice as fast as in figure 5.8, while the
version written in SimpleReactive shows no improvement.
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Figure 5.9: Results for the deep Fibonacci tree with less references

We note that while we referenced only the a5 Signal, resulting in the complete removal of the right path, any Signal
that is not referenced will speed up the execution, albeit not as dramatically as in the previous case, where one whole
path is eliminated.

5.5 Usability

Using the DSL. The syntax of OptiReactive is a super set of SimpleReactive, which makes it easy to convert programs
between the two. When using syntactic transformations, the syntax of OptiReactive programs is shorter and porting
them to SimpleReactive may require some additional work. When using Delite, the users of the DSL are provided with
a compilation and execution infrastructure that makes it easier to use the programs written in the DSL. Using only LMS
allows for more dynamic compilation and execution during regular programs, but the user has to take care of compiliation
and excecution.

Developing optimizations. While the actual process of developing individual optimizations is straight forward, it
requires knowledge of multistage programming in general as well as some specifics of the used library, LMS. The extensive
use of traits in the framework allows composition of individual components in a flexible way, but is hardly traceable at
the beginning.

External libraries. A big drawback of using OptiReactive and LMS in general is, that it is not possible to mix arbitrary
external library code with DSL code. The lifting of the operations has to be done manually by the DSL author which can
be quite cumbersome if there are a lot. By default, LMS comes with traits that do some of the lifting for many standard
Scala operations, but the support is by far not complete and lacks some essential methods, for example on collections.
Some recent developments start to address this issue, for example Scopes, an addition to the Scala-Virtualized compiler.
A Scope is a “compiler-provided type that acts as a tag to encapsulate DSL blocks” [SRB13], and enables composition of
DSL and arbitrary host code blocks.

Tool chain. LMS requires a modification of the standard Scala compiler, provided by Scala-Virtualized. While LMS can
be used as a prepackaged library, at the time of writing this is not the case for Delite. Getting the setup correct is not easy
because of interdependencies between the used LMS and Delite versions. Delite however is currently in alpha only and
under active development so it is to be expected that the user experience will improve, given some time.
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6 Related Work

In this chapter we reference the research that is strictly related to the work presented in this thesis. An exhaustive
overview is out of the scope of this chapter. The reader can refer to [SHM14] for a survey on reactive programming and
to [SM13] for the connections with related fields and open research issues.

6.1 Reactive programming in Scala

6.1.1 Scala.React

Scala.React [MRO10] integrates composable reactive programming abstractions into Scala. It has a discrete model of
time in the sense that the propagation proceeds in cycles. A propagation cycle is divided into two phases: first, all
reactives are updated, and second, all observers are run. The reason for this is to avoid inconsistent data, called glitches
that might be seen by observers. The propagation model itself is purely push-driven. To further ensure that inconsistencies
are avoided, the dependency graph is topological sorted. During a propagation cycle all reactives are updated in their
topological order. Dynamic dependencies are handled by throwing exceptions and reevaluation of the respective entities.

6.1.2 REScala

REScala unifies abstractions of reactive languages and object-oriented programming and “[...] supports the development
of reactive applications by fostering a functional declarative style which complements the advantages of object-oriented
design” [SHM14]. It extends the design of EScala [GSM " 11] and unifies imperative events and reactive values, thereby
supporting a mixed object-oriented and functional style. Additionally, REScala comes with a rich API to combine events
and reactive abstractions, which makes it easy to compose the best of both worlds.

6.2 LMS and Delite

6.2.1 Scala-Virtualized

Scala-Virtualized [MRHO12] is a customized version of the standard Scala compiler and library, that provides enhanced
support for developing DSLs in Scala. It allows the definition of infix extension methods on existing types and overloads
Scala’s control structures, variables, object creation etc. In addition Scala-Virtualized provides implicit source locations
which reify source information and if added to the method signature are generated by the Scala compiler without further
actions.

6.2.2 Lightweight Modular Staging

Lightweight Modular Staging (LMS) [RO10] is a dynamic code generation approach, provided in form of a library in
Scala, that uses staging [JS86]. LMS is related to multi-stage programming (MSP) [Tah99]. It differs from other MSP as
Mint [WRI"10], MetaOCaml [CTHLO3] and MetaML [TS00] which use a syntactic MSP approach. In LMS binding times
are distinguished using only types.

6.2.3 Delite DSLs

OptiML [SLB"11] is a domain specific language for machine learning using Delite [CSB* 11]. The evaluation of different
machine learning algorithms indicates that code written using OptiML can outperform optimized MATLAB code in most
cases. Machine Learning algorithms are a good use case because most of them have large parts of data- and calculation-
parallelism that can be exploited on “heterogeneous hardware” [AMDO8]. The main benefit of using OptiML instead
of MATLAB is that the Delite compiler generates efficient, domain-specific optimized code for heterogeneous devices
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without exposing parallelism or device details to users of the DSL. OptiQL, heavily inspired by LINQ [MBBO06] is “a
DSL for data querying of in-memory collections” [Rom12]. OptiMesh implements Liszt [DJP11], a “DSL for mesh-based
partial differential equation solvers” [Rom12]. OptiGraph is a DSL based on Green-Marl [HCSO12], a DSL for static graph
analysis. OptiCollections [Rom12] provides collections that are optimized via the optimizing compilation techniques of
Delite. The optimized version can be used transparently in DSLs and speedup common operations.

6.3 Optimizations for reactive programming

6.3.1 FrTime - Lowering

The idea of Lowering [BCK07] is similar to our “Constant folding” optimization. The technique was developed to improve
the performance of FrTime [CK06], an FRP approach in DrScheme [FCF*02]. FrTime, unlike our reactive libraries, uses
implicit lifting of functions to construct the dataflow graph. The graph constructions does not happen statically, as it is the
case in our work, but dynamically, allowing incremental development. In fact, the optimized result of figure 4.5, shown
in listing 4.3 is similar to an example shown in [BCK07], Figure 5. A main difference is that the lowering approach makes
no static dataflow analysis, something that is natural using our DSL and LMS.

6.3.2 Causal Commutative Arrows

Causal Commutative Arrows (CCA) [LCHI11] are an optimization technique that is applicable to a subclass of the
ArrowLoop typeclass for Arrows [Hug00], named ArrowInit. Additionally, instances should satisfy a product and commu-
tativity law. For CCAs the authors provide a normal form together with a normalization procedure. Finally, an optimization
is presented, that is based on the observation that “any CCA program can be transformed into a single loop containing
one pure arrow and one initial state value” [LCH11]. The optimization is implemented via Template Haskell [SJ02] and
is therefore performed at compile time. Essentially, recursive arrows are transformed into a single imperative loop, re-
moving much of the typical overhead of arrow loops. The static compilation restricts the applicability, as only information
known at compile time can be used. Dynamic reactivity (higher-order reactivity) can therefore not be optimized via this
technique.

6.3.3 Dynamic Optimization for FRP using GADTs

Yampa [NCPO2] is a domain specific language for functional reactive programming in the form of an arrow combinator
library. Using generalized algebraic data types (GADTs) in Haskell [JWW04, JVWWO06], [Nil05] proposes an optimization
that further optimizes Yampa. Yampa already uses some optimizations, but, according to the authors, many more could
not be implemented because of the restricted Haskell98 type system. The authors of [Nil05] describe general arrow
optimizations together with some Yampa specific ones. For example, Yampa’s event processing is optimized by using
GADTs: to enable the handling of event-processing functions specially. This approach is similar to what we do via LMS, as
we are using IR nodes for operations on which we can match and eventually optimize by changing the representation.
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7 Conclusion & Future work

In this work, we presented OptiReactive, a domain-specific language for reactive programming based on multistage pro-
gramming. In addition, we introduced SimpleReactive, a reactive library which is used as the target of the DSL generated
code. In this thesis, we explored several optimizations provided by the synergies of multistage and reactive programming.
The evaluation of OptiReactive shows promising results regarding runtime performance improvements of each optimiza-
tions. Besides performance optimizations, syntactic transformations like dependency inference can be performend at
staging time. As a result, they have no negative impact on the programs’ performance, while still enriching the base
library with additional constructs or more concise syntax.

7.1 Research Perspectives

The design space of possible optimizations emerging from the combination of multistage and reactive programming
is largely unexplored. In future work, besides new optimizations, we see at least two main areas that remain open to
further development. Firstly, in future versions of Delite the issues regarding parallel propagation may be solved. As the
benchmarks showed, parallel propagation can drametically improve the performance of a reactive program. Therefore we
recommend further exploring this area. Secondly, we observe that when reactivity is modeled using a dependency graph,
transformations are very easy to perform. The constant folding optimizations could be extended to collapse unreferenced
intermediate reactives in paths of the dependency graph, thereby reducing the total number of updates that have to be
done.
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