
File dependencies in a
disintegrated
development
environment
Dateiabhängigkeiten in einer reintegrierten Entwicklungsumgebung
Bachelor-Thesis
Author: Stefan Kockmann

Day of submission: March 8th, 2016
Examiner: Prof. Dr.-Ing. Mira Mezini
Supervisors: Dr. rer. nat. Sebastian Erdweg
 M.Sc. Sven Keidel

 Department of Computer Science
 Software Technology Group

Erklärung zur Bachelor-Thesis

Hiermit versichere ich, die vorliegende Bachelor-Thesis ohne Hilfe Dritter nur mit
den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus
Quellen entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in
gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den 8. März 2016

(Stefan Kockmann)

 2

Abstract

Among developers the utilization of Integrated Development Environments (IDE) is widely
conducted to improve their work performance. IDEs offer a conglomerate of coding related
tools and features to help the developer in his endeavour including source code highlighting,
context dependent completion and compilers. Various IDEs exist offering different
collections of features. This leads to situations where a developer is missing a feature like
support of a programming language. A lack of feature can usually be encountered by
implementing a plug-in to an Application Programming Interface (API). These plug-ins
however are generally IDE dependent and can therefore not be used by other IDEs. Hence
the quality of the same offered features is different between IDEs. This leads developers into
using multiple IDEs or using a single IDE knowing to relinquish best possible support.

This deficiency is tackled by the framework Monto. It decouples IDEs in different accessable
components. Features for example are encapsulated into services and can thereby be reused
by different IDEs. These services are partitioned in a way that they might be dependent on
other services. The contributions of this thesis are to enhance the existing services by
implementing support for a new programming language, decrease the overhead between
services and analyse the runtime response times of different implemented services.

 3

Inhaltsverzeichnis

1.Introduction..1

2.Background..2

2.1Architecture of Monto...2

2.2Monto Source..4

2.3Monto Sink..4

2.4Monto Broker..6

2.5Monto Services..6

2.6Technologies in testing tool Benchmark...6

2.6.1XML Format...7

2.6.2CSV Format...8

3.Services...10

3.1Basic Service Types..10

3.1.1Tokenizer Service..10

3.1.2Parser Service...10

3.1.3Outline Service...10

3.1.4Code Completion Service..11

3.1.5Viable Service Combinations..11

3.1.6Hypothesis..12

3.2Implementation of Python Services..12

4.Distributor..13

4.1Goal and Hypothesis..13

4.2Concept of the Distributor...13

4.3Implementation of the Distributor..14

5.Evaluation...16

5.1Test Procedure with Testing Tool Benchmark...16

5.2Analysis..17

 4

5.2.1File length comparison...17

5.2.2Service comparison..18

5.2.3Programming Language comparison..20

6.Related Work..21

7.Future Work...22

8.Conclusion...23

9.Acronyms...24

10.Appendix... 1

10.1Plots for Java test data...1

10.2Plots for JavaScript test data...3

10.3Plot for Python test data..5

 5

List of Figures

Figure 1: Monto Architecture..3

Figure 2: Example of a possible config.xml..7

Figure 3: Distributor Concept...14

Figure 4: Distributor Implementation in MontoService...15

Figure 5: Java Parser Delay with 10 lines test file...17

Figure 6: Java Parser Delay with 100 lines long test file...17

Figure 7: Java Parser Delay with 1000 lines long test file..18

Figure 8: JavaScript Tokenizer Delay with 1000 lines long test file...19

Figure 9: JavaScript Parser Delay with 1000 lines long test file...19

Figure 10: JavaScript Outline Delay with 1000 lines long test file...19

Figure 11: JavaScript Code Completion Delay with 1000 lines long test file............................19

Figure 12: Python Parser Delay with 1000 lines long test file..20

 6

List of Tables

Table 1: Example of a Source Message...4

Table 2: Example of a Product Message...5

Table 3: Extracted example content of a CSV file...9

Table 4: Mapping of Startparameter to set of enabled services..11

 7

1. Introduction

To be more efficient and less error prone developers commonly use IDEs. These IDEs offer
functionalities such as highlighting, completion, debugging and often compiling. The
functionalities like highlighting and completion offer visual enhancement and faster
development times and are part of an actual editor. Debugging and compiling though provide
functionalities through toolchains that a user can utilize. The functionalities differ thus
greatly in kind. An IDE is therefore a congestion of different functionalities. To enable
community driven improvements IDEs often offer an API. Utilizing an API plug-ins can be
developed. A common reason to implement a plug-in is to provide support for a
programming language. As the number of different programming languages is vast and the
number of different IDEs is increasing this leads to problems: new IDEs need to implement
support for every programming language and the quality of a programming language support
an IDE has to offer various hugely. To be more precise: assuming for every programming
language support a plug-in would be needed, n programming languages exist and m IDEs
exist. This leads to n * m plug-ins needed with great variety in quality of support. To address
this Sloane, et al. [1] developed an architecture, that represents a decomposition of IDE
functionalities. The IDE functionalities get encapsulated into services that can be accessed via
a broker. Hence the complexity is reduced to n + m. This original version has been enhanced
by Keidel in his master thesis [2]. The services are proportioned into components with single
responsibilities which leads to potential dependencies to other services.

This thesis aims to enhance the services of the Monto framework further. Python Services are
developed and presented in chapter 3. In addition for currently active base service types a
hypothesis of their behaviour at runtime is proposed. To handle potential performance issues
further more a Distributor is created that limits the overhead between services and is
discussed in chapter 4. The hypothesis proposed in 3.1.6 is discussed and validated on the
basis of a runtime test in chapter 5. In the same chapter a developed testing tool is presented.
Chapter 6 focuses on related works to the content of this thesis, while in chapter 7 possible
future works following up the outcome of this thesis are proposed. In chapter 8 the work and
the results of this bachelor thesis are discussed.

 1

2. Background

In this chapter the basics of the Monto framework modified and outlined by Keidel [3] are
described. A brief overview of the architecture as well as the function of the components is
given. For a more in-depth view on why the components have been partitioned in this way it
is recommended to read “A disintegrated development environment“ [1] and “Monto: A
disintegrated development environment“ [2], which is the original proposal of the
framework. Furthermore basic technologies used are described and justified why they have
been chosen in this bachelor thesis.

2.1 Architecture of Monto
Monto is a framework consisting of several useful components which can be used by an IDE
through an implemented Monto plug-in like in [2] or through the implementation of a client
like in [4]. Four of these components can be identified as main parts. They are namely
broker, source, sink and services. While their functions are described more in detail in later
sections of this chapter, this section will focus on how they interact with each other. Plug-
in/client side sources send Source Messages to the broker. Content of these Source Messages
is amongst other things source code. The broker then distributes the Source Message to
services, which have solely a dependency to this source. Contrary to services, which have
additional dependencies. Tokenizer(a sort of Service) for example has a sole dependency to
Source Messages. The by the broker addressed services return Product Messages, which are
again send to the broker. It then computes for which services the dependent messages are
present and sends these messages to the service, which in return send Product Messages to
the broker. This procedure is repeated until all dependency constellations, that could have
been fulfilled, have actually been fulfilled. While the broker is distributing Product Messages
to dependent Services, it is also distributing them to sinks of the plug-in/client. The
described interaction can be seen in Figure 1.

 2

Used technologies include ZeroMQ (ZMQ) [5] and the JavaScript Object Notation format
(JSON) [6]. Through the ZMQ framework the communication is chanelled. It offers
lightweight communication abilities, a variety of message patterns and compatibility for the
most common programming languages. JSON has been chosen for message interaction due
to it being widely adapted by developers and being both human and machine readable.

 3

Figure 1: Monto Architecture

Services

Broker

Plug-in/Client
SourcesSinks

Tokenizer

Parser

Outline

Completion

Source
Messages

Source and
Product
Messages

Product
Messages

Product
Messages

2.2 Monto Source
Monto Sources are part of the plug-in/client. Their main responsibility is to announce
changes in a source file to the broker. A changed source file potentially results to different
products of services and therefore effects the client. Used communication pattern between
broker and sources is publish-subscribe [7]. In this pattern messages are not directly send to
a receiver, but instead being published with a topic. Interested parties can subscribe to
certain topics and in this way receive desired messages. In Monto sources publish and broker
subscribe to these messages. The type of sended messages is Source Message. An example for
a Source Message is pictured in Table 1.

1 {

2 "source": "hello.py",

3 "version_id": 1,

4 "language": "python",

5 "contents": "print \"Hello World!\"",

6 "selections": []

7 }

Table 1: Example of a Source Message

A Source Message contains various informations. The field “source“ is used to identify for
which source file products should be computed. As the state of a source file continuously
changes an additional field is needed to identify which Product Messages are connected to
which Source Message. Therefore “version_id“ has been introduced. The “language“ field is
e.g. used by Services to check, if the incoming Source Message has the expected language.
“contents“ and “selections“ are used to compute actual products. “contents“ contains the
source code and “selections“ contains a selection in the source code, which is e.g. used by the
Code Completion Service.

2.3 Monto Sink
Like sources Monto sinks are part of the plug-in/client. They as well share the usage of the
publish-subscribe pattern. Unlike sources Monto sinks subscribe to messages from the
broker, which in this case is the publisher. The broker publishes the Product Messages of
Services to the according subscribing sinks. Technically a ZMQ Socket is used to which the
broker publishes and the sink subscribes.

 4

1 {

2 "product": "completions",

3 "contents": [

4 {

5 "insertionOffset": 262,

6 "icon": "",

7 "description": "method: stop",

8 "replacement": "top"

9 }

10],

11 "service_id": "javaCodeCompletioner",

12 "invalid": [],

13 "language": "java",

14 "version_id": 11,

15 "source": "java-10lines.java",

16 "dependencies": [

17 {

18 "product": "ast",

19 "language": "java",

20 "tag": "product",

21 "version_id": 11,

22 "source": "java-10lines.java"

23 }

24]

25 }

Table 2: Example of a Product Message

Services process various informations, which the client requires. To communicate needed
informations Product Messages are used. An example of a Product Message created by a Code
Completion Service is pictured in Table 2. One attribute that transports mentioned
informations is “contents“, in which the main output of a service is encapsulated. Others are
“product“ which contains the name of the product, “product_id“ which is similar to
“version_id“ and “dependencies“ which contains Product Messages that have been used to
process the output of the service [8]. In these dependent Product Messages the field
“contents“ is left out to reduce traffic. Furthermore the Product Message includes
informations similar to the Source Message, from which it was originally derived. They are
namely “language“, “version_id“ and “source“ and fulfill the same purpose as in the Source
Message.

 5

An additional responsibility of sinks is to potentially process the product message. This is
determined by checking certain fields in the Product Message. The sink could for example
decide when reading “product“: “outline“ with “language“: “python“ to visualize the according
content, which is a list of outlines. A different value of the field “language“ might lead to
denial of processing, if the client is accordingly configured. This depends on the
implementation and configuration of the client.

2.4 Monto Broker
Monto broker communicates with a publish-subscribe mechanism to sinks and sources of the
plug-in/client. To sources the broker subscribes, while to sinks it publishes. Communication
to services is done through a bidirectional ZMQ Pair Connection. The task of the broker in
the Monto architecture is to resolve dependencies of services and distribute messages to sinks
and services. Therefore it constructs a dependency-graph. The dependency-graph depends
directly to the services, whose dependencies it should represent. That's why the dependency-
graph cannot be build until the services have registered to the broker.

2.5 Monto Services
Monto services solely interact directly with the broker. They can't interact with each other. To
communicate with the broker ZMQ pair sockets are used, which provide a bidirectional
connection. Their basic function is to process input, which can be Source Messages or
Product Messages, and turn the result into a Product Message, which is sent back to the
broker. Inside the Product Messages informations are encapsulated which the client can use
to realise various features. The product of the Tokenizer Service can be used for example to
highlight certain locations in the source file. The Code Completion Service can be used to
potentially offer completion suggestions for the user. The services are typically packaged
regarding the support they offer for one programming language.

2.6 Technologies in testing tool Benchmark
The audience, for which Benchmark is designed, are developers of the Monto-Editor. Based
on this technologies were chosen regarding easy configuration of the startparameters and
easy processing of the outcome. For configuration a file in xml-format is used. The recorded
outcome of the process is written in CSV files, one file per service package(e.g. programming
language), that was tested.

 6

2.6.1 XML Format

The Extensible Markup Language (XML) provides a widely used format which main
advantages are to be both human-readable and machine-readable. An example is shown in
Figure 2. In Benchmark it is used to configure parameters with which the Benchmark process
should be executed. The markup <benchmark> has five lower tiered markups: In <timeout>
the time which will be at most be waited for an answer of a service is specified in
milliseconds, <repetitions> is used to configure how often each message will be repeatedly
send to the service, <waitTime> is a parameter specified in milliseconds used to regulate the
waiting time between two repetitions of sending the same message, with <doesPrint> a
boolean value can be specified which determines if the console-log of the started services
should be printed or not and in <services> multiple <service> can be configured. <service>
consists of three lower tiered markups: In <name> the name of the service package, usually
the name of the programming language, is specified, <path> is used to state the path to the
executable jar-file of the service package and in <messages> multiple <message> can be
configured. Each of these messages will be used in the execution of Benchmark. <message>
has three lower tiered markups: <name> to specify the name of a test message (it will reoccur
inside the CSV file), <path> to configure the path to the actual source file and <selection>
which marks a location in the source file used to fill the field “selections:“ in Source Message.

 7

Figure 2: Example of a possible config.xml

<selection> consists of <startOffset>, the position in the source file, and <length>, the length
of the selection.

2.6.2 CSV Format
The Comma-seperated value (CSV) format is widely used by developers and researchers. The
name reflects it core and simplicity: Values can be stored in a file just by seperating them
with a comma. The first line of a file contains typically a header to relate the values to. Like in
this bachelor thesis CSV files are often used as input for statistical analysis due to its
simplicity being both human and machine-readable.

In Benchmark for every set of services tested a new CSV file is created. An example picturing
a fragment of a CSV file is shown in Table 3. The first row “id“ is solely to have an unique
identifier for each line. “Mode“ documentates which services have been active at the test run.
As in the example shown they are logged as abbreviation derived from the parameters used
when starting the services. “-t -p -o -c“ as in the example states, that the services “Tokenizer“,
“Parser“, “Outliner“ and “CodeCompletioner“ have been started. A translation can be seen in
Table 4. As there can be multiple files used to test, the “TestSource“ column documents
which file was used for the measurement. The contents of the columns “TokenizerDelay“,
“ParserDelay“, “OutlinerDelay“ and “CodeCompletionerDelay“ are the difference in time
between sending a Source Message and receiving a corresponding Product Message of the
named service measured in milliseconds.

 8

Id,Mode,TestSource,TokenizerDelay,ParserDelay,OutlinerDelay,CodeCompletionerDelay

0,-t -p -o -c ,10lines,37,41,52,66

1,-t -p -o -c ,10lines,14,19,21,22

2,-t -p -o -c ,10lines,6,15,18,17

3,-t -p -o -c ,10lines,9,11,16,16

4,-t -p -o -c ,10lines,13,17,21,19

5,-t -p -o -c ,10lines,5,15,20,18

6,-t -p -o -c ,10lines,7,12,16,16

7,-t -p -o -c ,10lines,5,8,10,10

8,-t -p -o -c ,10lines,5,8,10,10

9,-t -p -o -c ,10lines,4,7,9,9

10,-t -p -o -c ,10lines,4,11,11,11

11,-t -p -o -c ,10lines,4,7,8,8

12,-t -p -o -c ,10lines,4,6,8,8

13,-t -p -o -c ,10lines,3,6,8,8

14,-t -p -o -c ,100lines,60,94,109,111

15,-t -p -o -c ,100lines,42,59,65,68

16,-t -p -o -c ,100lines,33,55,65,68

17,-t -p -o -c ,100lines,23,40,46,48

18,-t -p -o -c ,100lines,23,36,44,41

19,-t -p -o -c ,100lines,23,44,51,48

20,-t -p -o -c ,100lines,20,40,45,43

Table 3: Extracted example content of a CSV file

 9

3. Services

Services offer products, which can be used by a consuming client or plug-in to be processed
into features for the user. They are implemented to assist in supporting a programming
language. Typically a set of services is packaged to support one programming language.

3.1 Basic Service Types
The original design of Monto services by Keidel covers four different types of services [2].
They are designed to be comparatively small and have a single responsibility to fulfill. This
design favors extensibility by simply adding a new service to a given service set if a new
functionality is desired. As the product dependencies between services need to be resolved by
the broker this potentially leads to longer processing times due to a bigger overhead. This is
later evaluated with multiple tests.

The services are implemented using the programming language Java. Originally they were
part of an Eclipse IDE plug-in for Monto. Later they have been refactored and outsourced
into an own Eclipse project by Pfeiffer [4], which can be used as a base to implement new
services [9]. MontoService is an abstract superclass containing common functionality and an
API for communication to the broker. New services have to extend and implement primary
onRequest(), which handles incoming Source and Product Messages and
onConfigurationMessage(), which handles incoming Configuration Messages.

3.1.1 Tokenizer Service
The Tokenizer Service is used for highlighting in a source file. Therefore it is dependent on
the source message, which is parsed with a Lexer of Another Tool for Language Recognition
(ANTLR). An ANTLR Lexer and Parser can be generated by the tool ANTLR [10] using an
ANTLR grammar. As there are grammars for every common programming language it has
been used by Java [11], JavaScript [12] and Python Services [13]. The original ANTLR Tokens
stream is converted into a Monto Token stream with a position, expressed through offset and
length, and a category, which is later used for custom highlighting in the client.

3.1.2 Parser Service
The Parser Service is solely dependent to the Source Message and is used to create an
Abstract Syntax Tree (AST). An AST is a tree representation containing the abstract syntactic
structure to corresponding source code. While the AST directly isn't typically used by the
plug-in/client, other services depend on it like for example the Outline Service or the Code
Completion Service. Like the Tokenizer Service the Parser Service utilizes ANTLR for parsing.
The ANTLR parser produces an ANTLR AST. This ANTLR AST is transformed into a Monto
AST, which is passed inside a Product Message to the broker as its content.

3.1.3 Outline Service
The Outline Service is dependent on the Source Message and on the AST product of the
Parser Service. It is used to identify potentially fundamental parts in the analysed source
code like for example variable names or function names, which can be visualized in the
client/plug-in for an enhanced overview of a source file. The incoming AST is reduced with

 10

usage of a visitor to elements potentially interesting for an overview. The Source Message is
needed to get details in the source code that have been lost when transformed into an AST
like the name of a variable for example.

3.1.4 Code Completion Service
The Code Completion Service's dependendencies are analog to the Outline Service:
dependent on the Source Message and on the AST product of the Parser Service. It is used to
suggest completions to an incomplete statement. For example while an user is adding new
code to the source file a moment will appear, when a function call is being typed, but
incompletely written. The Code Completion Service can suggest completions based on the
previous variable and function names. To identify the potential completion suggestions the
service traverses over the AST and uses the source code similar to the Outline Service.

3.1.5 Viable Service Combinations
A given set of services like the Java Services [11], Python Services [13] and JavaScript
Services [12] can be started with explicitly stating which services should be started. Although
the JavaScript Services offer additional services developed by Pfeiffer in [4], we will constrain
the possible services to the four basic types, which every currently set of services offer. It is
not necessary to start all possible services at once. Due to the fact that dependencies of
services to the products of other services exist not all possible service combinations are
viable. For example it wouldn't be productive to start the Outline Service without starting the
Parser Service as the Outline Service would never yield results since it's dependencies are
never fulfilled. From the four basic Services a fixed set of possible combinations can be
derived. These are listed in Table 4 with the startparameters needed to specify when starting
the service set.

Startparameter Enabled Services

-t -p -o -c Tokenizer Service, Parser Service, Outline Service, Code Completion
Service

-t -p -c Tokenizer Service, Parser Service, Code Completion Service

-t -p -o Tokenizer Service, Parser Service, Outline Service

-p -o -c Parser Service, Outline Service, Code Completion Service

-p -c Parser Service, Code Completion Service

-p -o Parser Service, Outline Service

-t -p Tokenizer Service, Parser Service

-p Parser Service

-t Tokenizer Service

Table 4: Mapping of Startparameter to set of enabled services

 11

3.1.6 Hypothesis
As shown in the previous subsection the number of started services can vary. How this might
effect the runtime response times of each single service is unclear. In the scope of the
bachelor thesis this behaviour is tested. As the services are all started in the same process the
hypothesis is proposed, that service response times increase, if more services are active. This
is checked and evaluated in the chapter 5 Evaluation.

3.2 Implementation of Python Services
To increase the support of programming languages in Monto it was planned to implement a
set of services with the purpose to enable support to the programming language Python.
Python exists in two maintained versions: Python2 and Python3, which have slight
differences in grammar. The implementation for this bachelor thesis focuses on Python3 as
having the better perspective to keep on being maintained in the future. A grammar offered
by ANTLR [14] has been utilized to generate an ANTLR lexer and an ANTLR parser. These
are used in the Tokenizer Service, the Parser Service, the Outliner Service and the Code
Completion Service as mentioned in the previous section.

 12

4. Distributor

In this chapter the Distributor is presented. It is designed to tackle potential performance
issues inside the Monto framework. First the situation before the introduction of the
istributor into Monto is described. Following the concept and implementation are discussed.

4.1 Goal and Hypothesis
In the original design of Monto Keidel planned services to provide single products. The
services are limited to supply one functionality and fulfill one responsibility. Additional
functionality is provided by adding new services in contrast to modifying existing services. As
services depend potentially on the products of other services this leads to overhead and might
influence the overall performance and response times of services. To erase the overhead
would only be possible by merging all functionalities into one service, which is not feasible as
it would reduce extensibility and maintainability. A different measure is to reduce the size of
the overhead. The size of the overhead between services is defined through the size of
Product Messages, which are send by services and received by dependent services via the
broker. The goal of the Distributor is to reduce the size of the overhead. The corresponding
hypothesis is that this has a clear impact on the response time of services.

4.2 Concept of the Distributor
In the general concept of services designed by Keidel it is not defined in which process
services for one programming language are running. The implementations of Java Services
[11], JavaScript Services [12] and Python Services [13] though share the fact they are running
in the same process of the operating system (OS). This is an important precondition for the
function of the Distributor as it aims to reduce the overhead by providing a cache for a part of
the Product Message. The part being the value of the “contents“ field. The size of “contents“
varies the most depending on the size of the source code as it can be assumed bigger source
files lead to bigger product contents. Caching the value of the contents field effectively limits
the at most size of a Product Message as the other values are comparatively fixed in size. The
cached “contents“ is replaced by a key. Therefore the name of the field is changed to
“contents_key“. Product Messages with “contents_key“ instead of “contents“ are send to the
broker. The broker publishes these Product Messages to services and sinks. In the operating
system process of the services the Distributor receives the Product Messages and substitutes
“contents_key“ with “contents“ including their value by executing a look-up. For services
input and output remain the same: Product/Source Messages with “contents“ field. The
Distributor handles the caching and distribution of “contents“.

Its general structure is pictured in Figure 4. As you can see the services Tokenizer Service,
Parser Service, Outline Service and Code Completion Service don't interact directly with the
broker anymore. In the picture they are abbreviated with their first letter.

 13

4.3 Implementation of the Distributor
Like in the concept defined the Distributor plans on intercepting and adjusting in- and
outgoing Product Messages of services. To achieve this goal the implementation of the
Distributor utilizes the MontoService class of services-base-java [9]. As it is extended by
every implemented service and encapsulates the handling of incoming and outgoing
messages, it offers the ideal place to hook into the implemented base classes.

In Figure 4 the thread inside the MontoService class is shown handling incoming and
outgoing messages. The highlighted parts showcase the adjusted parts to realize the
Distributor. In lines 14 to 20 the handling of incoming Product Messages is shown. First the
incoming JSON Object is decoded. As it is uncertain, if they include “contents” or
“contents_key”, a visitor is used to ensure a Product Message with “contents” field. In the
visitor a look-up on the Distributor is executed which throws an InvalidKeyException, if for
the value of the “contents_key” field no value inside the cache could been found. Valid
Product Messages are forwarded onto the next highlighted part in lines 28 to 34. On each
message the “onRequest” method is executed returning the resulting ProductMessage, which
has a “contents” field. The value of the “contents” field is stored into the Distributor returning
a key as an Integer value. A new ProductMessageWithKey is created with the original Product
Message and the key. Lastly the message is encoded and published to the broker.

 14

Figure 3: Distributor Concept

T

P

O

C

Broker Services process

Distributor

 15

Figure 4: Distributor Implementation in MontoService

5. Evaluation

In chapter 3 a hypothesis is proposed: An increase in the number of active services leads to
longer response times of each service. To validate this a testing tool for automated repeated
message sending and time measuring has been implemented and is discussed in the first
section. Following the test procedure is introduced. After that the measured times are
presented and discussed.

5.1 Test Procedure with Testing Tool Benchmark
To validate the hypothesis of chapter 3 a test was designed: three different Source Messages
per programming language varying in size are published repeatedly to the broker. This is
executed for every possible set of active services as specified in 3.1.5. In the test that was
performed for the following analysis each Source Message was published 100 times for each
service combination. The time difference between sending a Source Message and receiving a
Product Message was recorded for each service in each case. To provide valid and
reproducible data a main requirement to the test is to be noisefree and easily repeatable. User
tests utilizing the plug-in/client wouldn't be feasible as the sending of messages need to be
repeated comparatively often to yield clear results. Therefore a testing tool was developed to
automate the procedure.

The testing tool is named Benchmark. Abbildung 1 shows the interaction of Benchmark with
the other modules. Benchmark registers to the ZMQ sockets of sources and sinks similar to
the plug-in/client. That leaves the plug-in/client bypassed. Source Messages are published to
the broker and Product Messages are received through subscribtion. As the active services
vary through out the execution of one test run Benchmark needs to start and stop the active
set of services as required during the runtime. As a precondition for successful execution the
broker needs to have been started.

 16

Abbildung 1: Benchmark scheme

Plug-in/Client Broker Services

Benchmark

starts and stops
the OS process

5.2 Analysis
The discussed test is executed with three Source Messages per programming language of
different lengths. Basing on the assumption bigger files lead to longer response times files
have been chosen from open source projects with the rough graduation of a length of 10, 100
and 1000 lines of code. The code is partly generic to achieve the condition of fulfilling 10, 100
or 1000 lines of code. The content of the files is diverse including comments etc. While
choosing the test files no demand to the substance other than being executable was made. It
should lead simply to a rough differentiation between the source files.

The test provides 100 data sets per Source Message per enabled set of active services per
programming language. This can be calculated to 100*3*9*3 = 8100 data entries and 36
different possible plots (four per Source Message per programming language). In the
following subsections a selection of the data is presented and discussed.

The test was performed on an Lenovo Y50 running Ubuntu 15.10 64-bit. The corresponding

hardware includes a memory of 11,7 GiB Ram, the processor Intel® Core™ i7-4710HQ CPU

@ 2.50GHz * 8 and the graphic card Intel® Haswell Mobile. The used files can be found at
[15].

The following plots have been created using the programming Language R in version 3.2.3
and ggplot2 version 2.0.0. Only a selection of the data representing plots are discussed. The
others can be found in the Appendix 10.

5.2.1 File length comparison
The assumed impact described in the hypothesis (An increase in the number of active
services leads to longer response times of each service) might not take effect with small files,
as they are processed potentially faster than longer files. To compare the influence of the file
length three plots are presented where the programming language and the service examined
are the same in Figure 5, Figure 6 and Figure 7. As a programming language Java is chosen.
This selection is rather arbitrary as the choice of the programming language should not make
a notably difference. As a service the Parser Service is selected. This is due to the fact that
most viable services include the Parser Service. The selected plots therefore offer the most
content.

 17

Figure 5: Java Parser Delay with 10 lines test
file

Figure 6: Java Parser Delay with 100 lines
long test file

The delay pictured in Figure 5 shows no clear variation in mean or standard deviation
between the different running sets of active services. The standard deviation even range into
the negative area. The response times are for an user not noticeable. Minor differences
between the modes should even decrease, if the number of repetitions in the test would have
been higher. The hypothesis in 3.1.6 can not be confirmed so far.

The mean of the Parser Delay pictured in Figure 6 shows a similar variation as the mean in
Figure 5. The value is a bit higher than for the 10 lined file, which has been expected. No clear
differences in the standard variation are visible. The mode -p -c has a bit higher standard
deviation than the others. It is not enough to derive a real difference.

The delays associated with a 1000 lines long file pictured in Figure 7 are considerably higher
than with the other two files. Response times vary around 2000 milliseconds. Clear
differences both in mean and standard deviation can be observed. The highest standard
deviation is connected to the mode -t-p, while the lowest standard deviation is monitored
with the mode -p -o. The modes with a started Tokenizer Service tend to have bigger delays
than the sets of active services without a tokenizer.

Comparing the three figures confirms our presumption, that the file length considerably
impacts the response time of a service. We can determine that response times for file lengths
up to 100 lines are likely to be not noticeable by the user, while the duration of 2 seconds
waiting time should lead to a poor user experience. A critical turning point in perception of
this delay times should be with a file length between 100 and 1000 lines. Our original
hypothesis from 3.1.6 Hypothesis can not be confirmed. The waiting time for a service
response is not proportional to the number of started services, though a tendency could be
recognized: The response time of the Parser Service increases, if the Tokenizer Service is
active.

5.2.2 Service comparison
The performed test recorded additional to the Parser Service response times of the Tokenizer
Service, the Outline Service and the Code Completion Service. As we have seen in the
previous subsection: for small files no clear difference in the waiting time could be perceived.
Therefore response times between services are compared using the comparatively large 1000

 18

Figure 7: Java Parser Delay with 1000 lines
long test file

lines long file. For a better comparability the programming language is arbitrarily chosen to
be JavaScript for each examined service.

The delays of the Tokenizer Service pictured in Figure 8 show little differences. The means of
every measured mode is in range of the standard deviation of each other measurement.
Standard deviations are nearly the same with a slight tendency of a smaller standard
deviations for the mode -t. The JavaScript Parser Delays showcased in Figure 9 indicate the
tendency of a slightly higher response times in the modes where the Tokenizer Service is
started. It is a slight tendency though, as the calculated means are in close range to
eachother. Standard deviations are very similar with a slight tendency to be smaller for the
sets of active services started without a Tokenizer Service. The same tendencies can be
observed in Figure 10 even a bit slighter. The mode with the least number of active services,
-p -o, has the lowest mean and the lowest standard deviation. The measured values are still in
a close range to eachother so a clear regularity can not be derived. Response times to the
JavaScript Code Completion Service shown in Figure 11 are similar to those of the Outline
Service. The mode -p -c has the smallest mean and smallest standard deviation. The
calculated means and standard deviations of the other modes are slightly higher with “-t -p -o
-c” having the highest values. Comparing the results of the four observations it can be
determined that no clear regularity can be derived. Though for each service type the same
slight tendendies have been discovered: a smaller number of active services tend to lower

 19

Figure 8: JavaScript Tokenizer Delay with
1000 lines long test file

Figure 9: JavaScript Parser Delay with 1000
lines long test file

Figure 11: JavaScript Code Completion Delay
with 1000 lines long test file

Figure 10: JavaScript Outline Delay with
1000 lines long test file

standard deviations and means. Especially enabling the Tokenizer Service tend to a slight
higher response times of the other services. The data is still not clear enough to confirm 3.1.6
Hypothesis.

5.2.3 Programming Language comparison
The third varying factor while performing the test is the programming language. To
determine if the response times behave differently depending on the programming language
three test cases are compared as a showcase with each other. The Parser Service is chosen as
the service type in each test case due to the fact it offers the most test data. As smaller files do
not provide clear data the chosen files size is 1000 lines.

The Python Parser Delay pictured in Figure 12 shows no clear regularity. Still tendencies can
be observed like in the previous subsections. Modes including an active Tokenizer Service
tend to have higher means of response time and slightly higher standard deviations than
modes without an active Tokenizer Service. The tendencies of the Java Parser with a 1000
lines long test file are discussed in 5.2.1 File length comparison and are pictured in Figure 7.
The plot to JavaScript case is discussed in 5.2.2 Service comparison and is visible in Figure 9.

Comparing the test results with eachother it can be noticed they don't show a clear regularity.
They all share the same slight tendency though: service sets with active Tokenizer Service
tend to have higher response times and bigger standard deviations than those without active
Tokenizer Service. As the impact of the varying modes are similar for each programming
language it can be stated that the absolute response times are massively different. For Java
the response times vary around approximately 1950 milliseconds while they vary around 275
milliseconds for JavaScript and around 440 milliseconds for Python. This can be explained as
Java has a considerably more complex grammar than the other two languages and the
utilized ANTLR Parser and Lexer being not optimized for runtime.

 20

Figure 12: Python Parser Delay with 1000
lines long test file

6. Related Work

The implementation of the Distributor is an adaption of the Broker Pattern, which is
presented in [16]. The communication between two parties, Monto Broker and Monto
Services, is chanelled through a broker, the Distributor. To not confuse Monto Broker and
Distributor with one another, the Distributor can be seen as a service broker and the Monto
Broker as a system broker as it coordinates the communication between all components in
the Monto architecture. The Broker Pattern is a commonly used pattern, hence multiple
other research projects have been conducted.

Francu et al have developed an Advanced Communication Toolkit (ACT) [17]. The included
tools aim to provide technologies that let the Broker Pattern be implemented in a structured
way. They claim through using ACT to be able to for example replace primitive
communication mechanisms, protocols and data marshalling. Patterns which can be seen as
simplified versions of the Broker Pattern should be able to implement including Client-
Dispatch-Server or Forwarder-Receiver[18].

A way of “Securing the Broker Pattern” [19] is examined by Morrison et al. Decoupling into
multiple components leads to the challenge to secure communication between the
components. As the current implementation of the Monto architecture is running on a single
system, this is not an issue. If the architecture would run on a distributed system however,
means to authenticate and authorise components to each other have to be implemented. The
“Secure Broker” presents an approach to tackle this problem by introducing identities of
components, providing authorization facilities and use Reference Monitors, that handle
access by checking the rights of a requester.

 21

7. Future Work

In chapter 3 the four current base service types are described. State-of-the-art IDEs though
offer essentially more features. To close this gap more services need to be developed. As the
services rely on Product Messages to be transmitted, these have to be equally enhanced,
which has to be done by reworking product conventions. A small collection of possible new
services would be: refactoring facilities, auto completion of programming language
dependend expressions and a debugger.

Beside new types of services the amount of supported programming languages could be
enhanced. With three different types it offers still comparatively little support. Beside
programming language support the support for web application frameworks like AngularJS,
BackboneJS or TypeScript could be introduced as they are based on JavaScript but add new
expressions to extend programming abilities.

The testing tool presented in section 5.1 provides the capability for automated runtime tests.
Behaviour of the system at runtime is already tested and analysed as a part of this bachelor
thesis. As the Monto framework is continuously refined and therefore changes it's structure
the results of chapter 5 might soon not be up-to-date anymore. The tool offers the possibility
to gather constant performance data. It could be enhanced to offer more than just recorded
delay times of services. For example it could monitor the system processes of broker and
services, when stressed with continuous send Source Messages. Thus it has the potential to
be a constantly used testing tool at development time.

 22

8. Conclusion

In this thesis the Monto framework developed by Keidel is enhanced. It is a relatively new
framework decoupling an IDE into reusable parts. Most of the IDEs currently used by
developers have been improved by multiple people for quite some time. Therefore a lot of
catching-up has to be done to make Monto able to compete with established IDEs.

The first improvement provided and presented in this thesis is the implementation of Python
Services increasing the number of supported programming languages to three. The Python
Services cover the four basic service types: Tokenizer Service, Parser Service, Outline Service
and Code Completion Service. For these a hypothesis is proposed: The number of active
services effect the responding time of each active service. This is analysed utilizing test data
previously recorded. Although the collected data does not reveal a clear regularity, slight
tendencies could be observed: the Tokenizer Service tends to delay response times and
increase the standard deviation of other services.

While the presented test aims to get an insight of possible performance issues, the
Distributor introduced intents to improve the performance by limiting the overhead between
services. Product Messages published before contain the product as the value of the
“contents” field. Therefore the size of these Product Messages are proportional to the size of
the product. The size of the new Product Messages containing the field “contents_key” is
fixed, which leads to decrease of overhead and thus should lead to a better performance for
bigger source files.

 23

9. Acronyms

IDE Integrated Development Environment

API Application Programming Interface

XML Extensible Markup Language

CSV Comma-seperated values

ANTLR Another Tool for Language Recognition

-t Startparameter to activate Tokenizer Service

-p Startparameter to activate Parser Service

-o Startparameter to activate Outline Service

-c Startparameter to activate Code Completion Service

OS Operating System

ACT Advanced Communication Toolkit

 24

10. Appendix

10.1 Plots for Java test data

Anhang+Literaturverzeichnis I

AppendixFigure 1: Java Parser Delay with 10
lines long test file

AppendixFigure 2: Java Tokenizer Delay with
10 lines long test file

AppendixFigure 3: Java Outline Delay with
10 lines long test file

AppendixFigure 4: Java Code Completion
Delay with 10 lines long test file

AppendixFigure 5: Java Parser Delay with
100 lines long test file

AppendixFigure 6: Java Tokenizer Delay with
100 lines long test file

 2

AppendixFigure 7: Java Outline Delay with
100 lines long test file

AppendixFigure 8: Java Code Completion
Delay with 100 lines long test file

AppendixFigure 9: Java Parser Delay with
1000 lines long test file

AppendixFigure 10: Java Tokenizer Delay
with 1000 lines long test file

AppendixFigure 11: Java Outline Delay with
1000 lines long test file

AppendixFigure 12: Java Code Completion
Delay with 1000 lines long test file

10.2 Plots for JavaScript test data

 3

AppendixFigure 13: JavaScript Parser Delay
with 10 lines long test file

AppendixFigure 14: JavaScript Tokenizer
Delay with 10 lines long test file

AppendixFigure 15: JavaScript Outline Delay
with 10 lines long test file

AppendixFigure 16: JavaScript Code
Completion Delay with 10 lines long test file

AppendixFigure 17: JavaScript Parser Delay
with 100 lines long test file

AppendixFigure 18: JavaScript Tokenizer
Delay with 100 lines long test file

 4

AppendixFigure 19: JavaScript Outline Delay
with 100 lines long test file

AppendixFigure 20: JavaScript Code
Completion Delay with 100 lines long test file

AppendixFigure 21: JavaScript Parser Delay
with 1000 lines long test file

AppendixFigure 22: JavaScript Tokenizer
Delay with 1000 lines long test file

AppendixFigure 23: JavaScript Outline Delay
with 1000 lines long test file

AppendixFigure 24: JavaScript Code
Completion Delay with 1000 lines long test
file

10.3 Plot for Python test data

 5

AppendixFigure 25: Python Parser Delay
with 10 lines long test file

AppendixFigure 26: Python Tokenizer Delay
with 10 lines long test file

AppendixFigure 27: Python Outline Delay
with 10 lines long test file

AppendixFigure 28: Python Code
Completion Delay with 10 lines long test file

AppendixFigure 29: Python Parser Delay
with 100 lines long test file

AppendixFigure 30: Python Tokenizer Delay
with 100 lines long test file

 6

AppendixFigure 31: Python Outline Delay
with 100 lines long test file

AppendixFigure 32: Python Code Completion
Delay with 100 lines long test file

AppendixFigure 33: Python Parser Delay
with 1000 lines long test file

AppendixFigure 34: Python Tokenizer Delay
with 1000 lines long test file

AppendixFigure 35: Python Outline Delay
with 1000 lines long test file

AppendixFigure 36: Python Code Completion
Delay with 1000 lines long test file

Bibliography

[1] : Scott Buckley Tony Sloane Matt Roberts and Shaun Muscat. "Monto: A Disintegrated
Development Environment" . In: Software Language Engineering. 2014

[2] : Keidel, Sven. A disintegrated development environment. Technische Universität
Darmstadt. April 2015

[3] : Monto-Editor. https://github.com/monto-editor/, Accessed: 23.02.2016

[4] : Wulf Pfeiffer. A web-based code editorusing the Monto framework. Technische
Universität Darmstadt. October 2015

[5] : ZeroMQ. http://zeromq.org/, Accessed: 23.02.2016

[6] : JavaScript Object Notation format. http://json.org/, Accessed: 23.02.2016

[7] : Frank Buschmann, Kevlin Henney and Douglas C. Schmidt. "Publish-Subscriber". In:
Pattern-oriented Software Architecture. 214-220

[8] : Monto Message Conventions. https://github.com/monto-editor/message-conventions,
Accessed: 23.02.2016

[9] : Java Base Service Package . https://github.com/monto-editor/services-base-java,
Accessed: 23.02.2016

[10] : Another Tool for Language Recognition. http://www.antlr.org/, Accessed: 23.02.2016

[11] : Monto Java Services. https://github.com/monto-editor/services-java, Accessed:
23.02.2016

[12] : Monto JavaScript Services. https://github.com/monto-editor/services-javascript,
Accessed: 23.02.2016

[13] : Monto Python Services. https://github.com/monto-editor/services-python, Accessed:
23.02.2016

[14] : ANTLR Python3 grammar. https://github.com/antlr/grammars-
v4/blob/master/python3/Python3.g4, Accessed: 10.10.2015

[15] : Used files to perform the Benchmark test.
https://github.com/skockmann/bachelorthesis, Accessed: 08.03.2016

[16] : Frank Buschmann, Kevlin Henney and Douglas C. Schmidt. "". In: Pattern-oriented
Software Architecture. 73-75

[17] : Cristian Francu and Ivan Marsic. "An Advanced Communication Toolkit for
Implementing the Broker Pattern". Distributed Computing Systems, 1999. Proceedings. 19th
IEEE International Conference on. 1999.

[18] : Frank Buschmann, Kevlin Henney and Douglas C. Schmidt. "Forwarder-Receiver". In:
Pattern-oriented Software Architecture. 218

[19] : Patrick Morrison and Eduardo B. Fernandez. "Securing the Broker Pattern". EuroPLoP.

 7

2006.

 8

	2.1Architecture of Monto 2
	2.2Monto Source 4
	2.3Monto Sink 4
	2.4Monto Broker 6
	2.5Monto Services 6
	2.6Technologies in testing tool Benchmark 6
	3.1Basic Service Types 10
	3.2Implementation of Python Services 12
	4.1Goal and Hypothesis 13
	4.2Concept of the Distributor 13
	4.3Implementation of the Distributor 14
	5.1Test Procedure with Testing Tool Benchmark 16
	5.2Analysis 17
	10.1Plots for Java test data 1
	10.2Plots for JavaScript test data 3
	10.3Plot for Python test data 5
	1. Introduction
	2. Background
	2.1 Architecture of Monto
	2.2 Monto Source
	2.3 Monto Sink
	2.4 Monto Broker
	2.5 Monto Services
	2.6 Technologies in testing tool Benchmark
	2.6.1 XML Format
	2.6.2 CSV Format

	3. Services
	3.1 Basic Service Types
	3.1.1 Tokenizer Service
	3.1.2 Parser Service
	3.1.3 Outline Service
	3.1.4 Code Completion Service
	3.1.5 Viable Service Combinations
	3.1.6 Hypothesis

	3.2 Implementation of Python Services

	4. Distributor
	4.1 Goal and Hypothesis
	4.2 Concept of the Distributor
	4.3 Implementation of the Distributor

	5. Evaluation
	5.1 Test Procedure with Testing Tool Benchmark
	5.2 Analysis
	5.2.1 File length comparison
	5.2.2 Service comparison
	5.2.3 Programming Language comparison

	6. Related Work
	7. Future Work
	8. Conclusion
	9. Acronyms
	10. Appendix
	10.1 Plots for Java test data
	10.2 Plots for JavaScript test data
	10.3 Plot for Python test data

