
Intelligent Editor Services for
modular languages
Bachelor thesis
Jonathan Müller

Department of Computer Science
Prof. Dr. Dipl.-Ing. Mira Mezini

Thesis Statement pursuant to §22 paragraph 7 of APB TU Darmstadt

I herewith formally declare that I have written the submitted thesis independently. I did not use any
outside support except for the quoted literature and other sources mentioned in the paper. I clearly
marked and separately listed all of the literature and all of the other sources which I employed when
producing this academic work, either literally or in content. This thesis has not been handed in or
published before in the same or similar form. In the submitted thesis the written copies and the electronic
version are identical in content.

Darmstadt, April 23th 2014 Jonathan Müller

i

Contents

1 Introduction 2

2 Background 3
2.1 Java Server Pages . 3
2.2 SugarJ . 4
2.3 Editor Services . 5

3 Embedding JSP 6
3.1 Static HTML documents . 6

3.1.1 Syntax for static HTML . 6
3.1.2 Desugaring for static HTML . 8

3.2 Dynamic Web Pages with Skriptlets . 10
3.3 Syntax for JSP elements . 10

3.3.1 Desugaring of JSP elements . 12
3.4 Dynamic Web Pages with JavaScript . 14

3.4.1 Syntax for JavaScript . 14
3.4.2 Desugaring for JavaScript . 15

3.5 Improved JavaScript . 17
3.6 Possible Extension: CSS . 17

4 Editor Services 19
4.1 Services for static HTML . 19
4.2 Services for dynamic Web pages . 21

5 Related Work 24
5.1 Editor Services . 24
5.2 Modular languages . 24

Bibliography 24

Abstract

Language extension is a powerful tool for adding new syntactical constructs to a base language. SugarJ
is an extensible programming language, which allows modular composition of sugar libraries, containing
both syntax definitions and desugaring rules. Editor services have become a necessity for working with
large software projects, but are often incapable of supporting modular extended languages. In this
thesis, both a modular language based on JSP, HTML and JavaScript for the domain of dynamic web
applications, as well as modular editor libraries to support editor services for the extended language are
introduced. To provide editor services for modular languages, editor libraries are parsed at the same
time as their dependent sourcefiles, which allows the incremental refining of a generic editor service of
the Sugarclipse IDE.

1

1 Introduction

Embedding a Domain Specific Language (DSL) into any kind of host language is supposed to make the
task of solving domain specific problems of that DSL easier.

There exist a number of ways to embed a DSL:

• A string-based embedding: The host language receives a program written in the DSL as a string and
then parses and runs the code. A major drawback of this approach is the loss of static error-checking
for the string, which, as far as the compiler of the host language is concerned, is syntactically
correct. While the syntax of the DSL is practically fully embedded, it is difficult to compose it with
other DSLs.

• Pure embedding as language constructs of the host language: That way only the semantics of the
DSL are embedded with no regards to its syntax. It has been proposed to deploy pure embeddings
as libraries.[9] A major advantage of this approach is the ease of composition, which is a direct
result of only using the host language’s syntax. Some languages, like Scala, partially address the
problem of translating the DSL syntax into the host language syntax, by giving a certain degree of
freedom in the form of overloading function calls.

• Modifications to the compiler of the host language: This allows for a true embedding of the DSL,
both in a syntactical and semantical way. However, the workload of modifying the compiler might
be not worth the value of an additional abstraction layer. Language composition would require
further modifications to the compiler. An example of language extension via compiler modification
would be Scala’s support for XML, which has been directly embedded into the Scala compiler.[13]

An easier approach, retaining both the semantics and syntax of a DSL, as well as allows for modular
composition via library import, is SugarJ[6]. It enables the usage of language libraries on a per-file basis.
It will be shown how to extend the base language of SugarJ to both parse and compile a combination of
JSP, HTML and an improved version of JavaScript.

Once a language has been extended, another problem arises. While a developer may now use the full
extent of a DSL’s specification, it is often the case that s/he does require editor support to fully make use
of it. After all, the best way to learn about a language is to frequently use the auto-complete feature of an
IDE. The best way to navigate large quantities of code is to use reference resolution and code outlining.

Editor services such as these are usually implemented for a fix set of languages, though. If the base
language is extended, the editor services should grow with it. Adding editor service support to an IDE
for a new or extended language requires a lot of effort.[3, 12, 11] The capabilities of Sugarclipse[5], an
Eclipse version with editor support for SugarJ, will be explored in order to extend the base editor service
simultaneously to extending the base language.

2

2 Background

2.1 Java Server Pages

JavaServer Pages (JSP) and Servlets are complementary technologies for producing dynamic web pages
via Java. While Servlets are the foundation for server-side Java, they are not always the most efficient
solution concerning development time. Coding, deploying, and debugging a Servlet can be a tedious
task. Fixing a simple grammar or markup mistake requires wading through print() and println() calls,
recompiling the Servlet and reloading a web application. Such a mistake easily happens. and the problem
is compounded in complex Servlets. JSP is designed to complement Servlets by helping to solve this
problem and simplifying Sevlet development.[7]

The syntax of JSP basically extends standard HTML with four new elements:

• <% .. %>- Skriptlet elements, which contain standard Java code

• <%= ... %>- Expression elements, which contain a single Java expression.

• <%@ ... %>- Directive elements, which contain meta-instructions for the JSP compiler (e.g. im-
port instructions)

• <%! ... %>- Declaration elements, which add either Java variables, method declarations or class
declarations to the Servlet upon compilation. Theoretically, other Java classes could access them
as well, but practically, they are only used in a local context.

Since an aim of this thesis is to embed the modular language in Java as the host language, it is
important to know, how JSP documents are translated into Servlets.

In Lst. 2.1 both the source code for a simple JSP document containing pure HTML and its counterpart
after compilation into a Servlet can be seen. Because a Servlet will just print everything into its output,
which is supposed to be interpreted on the client side of a web application, the Servlet contains only a
number of println() statements with the pure HTML passing as their arguments.

Listing 2.1: Hello World as JSP and Servlet
<html>
<head>
<title>Hello, world</title>

</head>
<body>
Hello, world

</body>
</html>

// ...
public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException , IOException{
PrintWriter writer = response.getWriter();
writer.println("<html>");
writer.println("<head>");
writer.println("<title>Hello, world</title>");
writer.println("<body>");
writer.println("Hello, world");
writer.println("</body>");
writer.println("</html>");

}
//...

3

For Java code in Skriptlet elements, which is interpreted on the server side, it is necessary to run
the code in the Servlet’s HTTP-methods. Java code is retained both semantically and syntactically after
compiling the JSP document to a Servlet. Accordingly, the idea of using editor services designed towards
Java on JSP documents is very plausible.

There are some differences between JSP-Java and pure Java, however. For example, instead of Java’s
import statement on the toplevel of a Java source file, JSP documents expect a directive element, con-
taining the same fully qualified Java ID and the JSP import operator. Aside from imports, all kinds of
Java toplevel declarations are prohibited in JSP, since there is no coherent way of translating them into
Java Servlets.

The lifecycle of a JSP document starts with the compilation of the JSP document to a Servlet. After-
wards, the Servlet has to be deployed on a server, where it may handle HTTP requests. Incoming HTTP
requests are handled at the runtime of the Servlet, and simultaneously a web page is created and sent as
a HTTP response.

jspIni t() _ jspServ ice() jspDest ro y()- -

?Ini t ial izat ion Serv let Logic Dest ruct ion

HT T PRequest

HT T PResponse

Figure 2.1: JSP Lifecycle

The method _ jspServ ice() takes on the roles of all of a Servlet’s classical HTTP methods (e.g. doGet
and doPost), which handle the different types of HTTP Requests. jspInit() and jspDestroy() each respec-
tively fulfill the work of a Java constructor or destructor. It is possible to compile JSP documents in
Servlets with classical HTTP methods, as is shown in 3.6.

Another way of creating dynamic content for web pages is to use the client-side interpreted language
JavaScript. JavaScript is a language extension to HTML, which can access a site’s Document Object Model
(DOM) and which defines a set of keywords for event-handlers that can be used as HTML attributes.

2.2 SugarJ

Embedding DSLs is a problem which arises from the desire to express domain specific problems in their
own language. To do so, the host language, in which the DSL is embedded, has to be able to run the
DSL code. SugarJ[6] is an extensible programming language, allowing the organization of language
extensions as sugar libraries, which can be imported and combined on a per-file basis.

Such libraries can contain code for a syntactic extension and code for its desugaring. Typically, the
desugaring target language would be Java, the host language of SugarJ application code. Nevertheless,
it is also possible to desugar into further syntactic extensions or desugarings.

Syntactic extension code is written in the Syntactic Definition Formalism language (SDF)[8]. The base
grammar of SugarJ is a standard Java grammar, extended by toplevel sugar declarations. To write an
extension for a DSL, it is sufficient to write down the DSL grammar in SDF inside a sugar library. To use
the DSL syntax in a SugarJ program, it is necessary to import the extension as one would import a Java
library.

2.2 SugarJ 4

Desugaring rules are expressed as transformations from abstract syntax trees to abstract syntax trees
written in Stratego[2]. SugarJ complements those desugaring rules by allowing concrete Java syntax on
either side of the transformation rule. Once all possible desugaring rules have been applied and, if the
resulting abstract syntax tree can be pretty-printed as a valid Java program, it is pretty-printed.

The SugarJ compiler will incrementally compile files, one toplevel declaration at a time. This serves
the purpose of modifying the grammar and desugarings, by using the user defined sugar libraries. That
way, their content may influence both the parsing and the desugaring of the subsequent program.

Lst. 2.2 shows the sugar library code of the SugarJ case study for mathematical pairs[4], where the
desugaring rules contain concrete Java syntax (enclosed by special parentheses |[and]| for concrete
syntax) on the right. pair.Pair denotes a Java class, which uses generics to implement pairs semantically.
The unary prefix operator is used to insert Stratego terms into concrete Java syntax.

Listing 2.2: SugarJ Pairs
public extension PairExtension{
context-free syntax
"(" JavaType "," JavaType ")" ! JavaType{cons("PType")}
"(" JavaExpr "," JavaExpr ")" ! JavaExpr{cons("PExpr")}

desugarings

desugar-pair-type
desugar-pair-expr

rules

desugar-pair-type :
PType(t1, t2) ! |[pair.Pair<~t1, ~t2>]|

desugar-pair-expr :
PExpr(e1, e2) ! |[pair.Pair.create(~e1, ~e2)]|

}

SugarJ’s capability for language composition makes it a perfect candidate for modular languages.
Ideally, all it takes is to import sugar libraries to compose multiple DSLs. However, ambiguities can
arise. For example, since SDF does not have namespacing, it could prove necessary to manually rename
overloaded non-literals.

2.3 Editor Services

To implement editor services, Sugarclipse [5] is utilized. It combines the sugar libraries of SugarJ[6] with
the IDE foundation of Spoofax [10]. Like in SugarJ, it is possible to write editor libraries for Sugarclipse,
which are parsed incrementally while extending the grammar of a generic editor component. This is
done by adding a new compiler phase to the SugarJ compiler. After parsing a toplevel declaration, an
AST will be created. The analzye phase will transform this AST into an equivalent AST with annotations;
those annotations have no influence on the desugaring of the program. As with regular SugarJ, the
desugared AST can then be used to generate the compiled base language.

Sugarclipse’s editor services are imported like sugar libraries on a per-file basis. That way, it is possible
to create editor libraries for multiple languages and combine them on a modular level. Usually, editor
libraries are written for a specific DSL and will only affect the specific subtree of the AST, where that DSL
will appear. That way, conflicts between different editor libraries for the same service should be avoided.
If two libraries are describing different editor services altogether, there will not be any conflict at all.

Some conflicts cannot be avoided, though. Depending on the conflicting service, it may be resolved
implicitly by either aggregating the results of different editor libraries (e.g. code completion), or by
using a heuristic. In Sugarclipse, the closest-match heuristic will be used to decide, which result should
be shown in the editor view.[5]

It has been proposed in the Sugarclipse paper[5] that editor libraries can be as easily extended and
composed as sugar libraries, having similar restrictions regarding hostile environments.

2.3 Editor Services 5

3 Embedding JSP

3.1 Static HTML documents

3.1.1 Syntax for static HTML

To extend SugarJ’s base language with HTML, a sugar library with the necessary grammar is re-
quired. In the spirit of modular languages, an existing sugar library for HTML will be used and
modified. Its source code can be found at https://github.com/sugar-lang/case-studies/blob/
master/java-server-pages/src/html/HtmlSyntax.sugj.

According to the W3C reference syntax for HTML [14], a HTML document requires the following
elements to be considered valid:

• A DOCTYPE element, with a URL reference to the WC3 Syntax for HTML

• The html element, which encloses the rest of the document

• The head element, which must enclose the title element.

• The body element

Modern browsers are designed in an accommodating way, since they will accept invalid HTML docu-
ments, as well. Further they will, to a certain degree, render them in the desired way.

It is therefore a tradeoff between correctness and practicality, when formulating the grammar. In the
HTML grammar used in this thesis, most invalid HTML documents are allowed. E.g.: the WC3 syntax
requires attributes to be correct, which means they have to be in a set of allowed attribute names. This
thesis’ grammar allows every kind of attribute, as long as it is followed by a syntactically correct value.

Listing 3.1: Excerpt from HTML Syntax
context-free syntax
Prologue Element Epilogue ! Document{cons("Document")}
DocTypeDeclaration? ! Prologue
HtmlComment* ! Epilogue

"<" ElemName Attribute* "/>" ! Element{cons("EmptyElement")}
"<" ElemName Attribute* ">" HtmlContent*
"</" ElemName ">" ! Element{cons("Element")}

AttributeName "=" AttributeValue
! Attribute{cons("Attribute")}

Element ! HtmlContent
HtmlComment ! HtmlContent{cons("Comment")}
CharData ! HtmlContent{cons("HtmlText")}

HTML documents are structured like trees, meaning that some kind of "root" is required. In this case, it
is the non-literal Document, for which the Stratego constructor with the label "Document" is called. While
a constructor call is not required to parse a SugarJ file, it makes reading the AST easier by inserting nodes
of the chosen label and allows for type matching during desugaring.

The non-literal Document is produced by the non-literals Prologue, Element and Epilogue. Prologue
merely contains the Doctype declaration and is optional. Epilogue is optional, as well. It only serves to
allow HTML comments at the bottom of the HTML document. Element is produced by either a regular
HTML element, with an opening and a closing tag, attributes and content, or an empty element, which

6

https://github.com/sugar-lang/case-studies/blob/master/java-server-pages/src/html/HtmlSyntax.sugj
https://github.com/sugar-lang/case-studies/blob/master/java-server-pages/src/html/HtmlSyntax.sugj

only has one tag with attributes. The (optional) content of regular elements can be either text, HTML
comments or nested elements.

One would expect elements to require an opening and a closing tag with the same name. SugarJ
possesses the capability to add customized error messages during its compilation. By adding a sugar
library, which contains a single Stratego error strategy, it is possible to match Element nodes and print
an error to the Eclipse UI, whenever the two names of two Element nodes differ from each other.

Listing 3.2: HTML Error checking
public check Checks {
errors
Element(leftName , attributes , content, rightName) =
(leftName, rightName , "HTML start and end tag need to coincide")
where <not(structurally-equal)> (leftName, rightName)

}

Before the SugarJ compiler can parse documents containing this HTML grammar, it needs to be able
to resolve it. In order to achieve this, the non-literals of the HTML grammar have to appear in the
production of the parsed language, which, unless grammar files have already been loaded, is the base
SugarJ language. JSP documents should be declared in a similar way as to how Java classes are declared.
Since classes are ToplevelDeclarations, a production was written into this thesis’ grammar, taking similar
literals and non-literals as the production of a class. The keyword class was swapped for jsp and the
non-literals of the class body were swapped for non-literals of the HTML grammar. As it can be seen in
Lst. 3.3, the bridging grammar has been written extension to both base SugarJ and HTML by importing
the grammar definitions, containing their respective non-literals.

Listing 3.3: JSP Base Grammar
import org.sugarj.languages.Java;
import html.HtmlSyntax;

public extension JspSyntax{
context-free syntax
AnnoOrExtensionMod* "jsp" JavaId JSPBody ! ToplevelDeclaration{cons("JSPDec")}
"{" JSPDoc "}" ! JspBody{cons("JSPBody")}
Content* ! JSPDoc{cons("JSPDoc")}

HtmlContent ! Content{cons("HtmlContent")}
}

That way, the SugarJ compiler will be able to deduce that the previously unknown code it could not
parse, is actually part of the HTML grammar. Lst. 3.4 shows a static HTML document and the resulting
AST. Content, which is any kind of content to be expected in JSP documents, is distinguished from
HtmlContentthat consists of HTML’s non-literals for elements, text, and so forth. That level of granularity
has been added to allow for a more typesafe desugaring of any extended languages, making use of the
HTML grammar. Also, the HTML syntax has been modified: originally, the non-literal HtmlContent was
also named Content. However, since SugarJ does not have proper namespacing. Invalid JSP documents
were allowed to be parsed (e.g. by allowing JSP’s Content to appear within HTML elements).

Listing 3.4: Static HTML and AST
import jsp.JspSyntax;

public jsp StaticHTML{
<html>
<head></head>
<body>foobar</body>

</html>
}

CompilationUnit(
[TypeImportDec(TypeName(PackageOrTypeName(Id("jsp")), Id("Syntax"))),
JSPDec(

[Public()],

3.1 Static HTML documents 7

Id("StaticHtml"),
JSPBody(
JSPDoc(
[HtmlContent(
Element(
ElemName("html"), [],
[Element(ElemName("head"), [], [], ElemName("head")),
Element(ElemName("body"), [],
[Text([CharDataPart("foobar")])],
ElemName("body"))],

ElemName("html"))
)]

)
)

]
)

3.1.2 Desugaring for static HTML

To transform static HTML documents into Servlets, which generate exactly the same HTML document, a
desugaring library was introduced. The desired result is a Servlet, containing a list of import statements
and an annotated class with method declarations for a Servlet’s HTTP-methods that, in turn, should
contain a list of statements. In the scope of static HTML, those statements should exclusively be calls to
writer.println and print the string representation of the HTML code to the HttpServletResponse argument
of the method. The SugarJ compiler will create such a program, if the final transformed AST can be
pretty-printed to a Java program. The goal is to transform a heterogenous AST in such a manner that

• The final AST describes a valid Java program

• All properties of a Servlet are achieved

• The syntactical and semantical properties of the static HTML document are not lost

The first applied desugaring rule, start, sets up the different import statements, which are required to
compile a Servlet. It also delegates to desugar-JSPDec, which sets up the Servlet’s class (including the
method declaration for the unused doPost). desugar-JSPBodyContent will try to dispatch over a list of
HtmlContent by calling desugar-Html on each item.

Finally, desugar-Html creates a list of Java statements, depending on what kind of HtmlContent it is
applied on:

Listing 3.5: Desugaring rules for static HTML
desugar-Html:
Element(ElemName(startname), attributes , content, ElemName(endname))
!
<concat>[[|[writer.println("<" + ~startnameString + ">");]|],

desugaredContent ,
[|[writer.println("</" + ~endnameString + ">");]|]

]
where <map(desugar-Html)> content) desugaredContent
; <to-java-string> startname) startnameString
; <to-java-string> endname) endnameString

desugar-Html:
EmptyElement(ElementName(name), attributes)
!
[|[writer.println("<" + ~nameString + "/>");]|]
where <to-java-string> name) nameString

desugar-Html:
HtmlText(Text([CharDataPart(text)]))
!
[|[writer.println(~textString);]|]

3.1 Static HTML documents 8

where <to-java-string> text) textString

desugar-Html:
Comment(comment)
!
[]

desugar-Html is a recursive function, which applies itself on the content of an Element node. Desugar-
ing a Comment creates an empty list, equivalent to no operation. This makes sense, because comments
have no place in the compiled product. Since the AST only contains Stratego strings, they has to be
transformed into Java literals before using them in the concrete Java syntax. This is done through the
auxiliary rule to-java-string.

It is now possible to desugar the example from Lst. 3.4, which will compile to a valid Servlet that
fulfills the criteria for the desired result:

Listing 3.6: Desugared Static HTML
import java.io.Exception;
import java.io.PrintWriter;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

@WebServlet("/StaticHtml")
public class StaticHtml extends HttpServlet{
protected void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException , IOException{
PrintWriter writer = response.getWriter();
writer.println("<" + "html" + ">");
writer.println("<" + "head" + ">");
writer.println("</" + "head" + ">");
writer.println("<" + "body" + ">");
writer.println("foobar");
writer.println("</" + "body" + ">");
writer.println("</" + "html" + ">");

}

protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException , IOException{ }

}

While the desugared Servlet is now valid, the concatenation of strings is done via the unperformant
plus-operator. Instead, it would be possible to introduce a StringBuffer, which excels at concatenating
large numbers of strings at runtime. This would require small modifications to the implementation of the
rules start in order to import the class StringBuffer, as well as to desugar-JSPBody to create an instance of
StringBuffer in the method body. Another possible solution would be to concatenate the strings directly
during the desugaring phase. Stratego’s API offers a strategy for concatenating strings. This might lead
to easier-to-read compiled Servlets. An approach like this would require modifying the desugar-Html
rule, to apply an auxiliary strategy for concatenating HTML strings before printing them.

Furthermore, if compared to a classical JSP Servlet, the compiled document does not possess the
method _jspService() (see: Fig. 2.1), but instead classical implementations for a Servlet’s HTTP methods.

The current desugaring rules can transform most static HTML documents. The desugaring rules for
HTML attributes have yet to be added, finalizing the work on this sugar library. Attribute nodes appear
inside Element and EmptyElement nodes, which in turn are desugared by desugar-Html. Attributes
appear as a list and contain both a name and a value. Currently, the Stratego parameter attributes
is ignored during the transformation. Now, the desugaring rules for Element and EmptyElement are
modified, to print a Java string representation of their attributes.

Listing 3.7: Desugaring rules for HTML
desugar-Html:

3.1 Static HTML documents 9

Element(ElemName(startname), attributes , content, ElemName(endname))
!
<concat>[[|[writer.println("<" + ~startnameString + " " + ~attributesString + ">");]|],

desugaredContent ,
[|[writer.println("</" + ~endnameString + ">");]|]

]
where <map(desugar-Html)> content) desugaredContent
; <to-java-string> startname) startnameString
; <to-java-string> endname) endnameString
; <desugar-Attributes> attribtues) attributesString

desugar-Html:
EmptyElement(ElementName(name), attributes)
!
[|[writer.println("<" + ~nameString + " " + ~attributesString + "/>");]|]
where <to-java-string> name) nameString
; <desugar-Attributes> attributes) attributesString

desugar-Attributes:
[]
!
<to-java-string> ""

desugar-Attributes:
[Attributes(AttrName(name), DoubleQuoted([CharDataPart(value)])) | tail]
!
Plus(
Plus(
Plus(
Plus(
<to-java-string> name,
<to-java-string> "=\\\""

),
<to-java-string> value

),
<to-java-string> "\\\" "

),
<desugar-Attributes> tail

)

Java expressions can now be constructed, creating concatenated strings from Attribute nodes. Those
expressions are in turn inserted inside the concrete Java syntax of desugar-Html, when printing the
enclosing tags.

3.2 Dynamic Web Pages with Skriptlets

3.3 Syntax for JSP elements

Similar to the HTML syntax, this thesis’ JSP sugar library built upon a preexisting sugar library for
JSP Skriptlets(https://github.com/sugar-lang/case-studies/blob/master/java-server-pages/
src/jsp/JspSyntax.sugj.

This sugar library has the basic grammar for JSP’s additional elements already mapped out, with its
desugaring yet to fill in. As it has already been mentioned, JSP is the extension of regular HTML with
four new elements and their respective content.

The simplest of the elements is the expression element. It contains an expression of the JSP expres-
sion language and, when compiled to a Servlet, is replaced by the Servlet equivalent to the expression
element. The latter is always a Java expression statement. So the grammar should allow expression
elements to stand in every place, where the HTML non-literal HtmlContent is expected, and on its left-
handed side it must require the literals for the tag as well as the non-literal for JSP expressions - which,
in standard JSP, is the non-literal for a Java expression.

The directive element, which contains compiler directives for the JSP compiler, is similar in terms of
its depth in complexity, but it allows a broader width of non-literals as its content in regular JSP. Each

3.2 Dynamic Web Pages with Skriptlets 10

https://github.com/sugar-lang/case-studies/blob/master/java-server-pages/src/jsp/JspSyntax.sugj
https://github.com/sugar-lang/case-studies/blob/master/java-server-pages/src/jsp/JspSyntax.sugj

directive attribute not only requires its own parsing, but also its own desugaring strategy. It may stand
wherever any kind of JSP Content is expected. On its left side it requires the literals for a directive
element, as well as an attribute. However, the current implementation only allows the attribute import
and its value.

With the declaration element, it is possible to declare new class members inside the compiled Servlet.
Those class members are equally as expressive as common Java class members and can be accessed in
the same way.

The most interesting element is the Skriptlet element. Like the expression element, it may stand wher-
ever HtmlContent is expected. Its content consists of plain Java statements. This makes sense, because a
JSP compiler would copy those statements into the body of a method declaration. Those statements may
also contain sequences of escaped HtmlContents. Those HtmlContents should be desugared just like any
other kind of HtmlContent, but syntactically, they appear in a new place. This basically means, that the
Skriptlet contains a list of Java statements, which in turn, are allowed to contain or be escaped HTML
code.

To deal with ambiguities, restrictions on this particular part of the grammar must be placed:

• Since the literals for escaping HTML code are the same literals used for opening and closing Skript-
let elements, matching has to be restricted to the longest-match in case of an ambiguity. Otherwise,
it is not easily decidable, whether the document contains either two Skriptlet elements, or one
Skriptlet element with escaped HTML code inside.

• Also, since Skriptlet elements inside the escaped HTML of another Skriptlet element are not al-
lowed, they are rejected.

The grammar for those four elements is contained in the same sugar library as the bridging grammar
between base SugarJ and HTML, see Lst. 3.3.

Listing 3.8: JSP Base Grammar

//Expression element
"<%=" JSPExpression "%>" ! HtmlContent{cons("JSPExpression")}
JavaExpr ! JSPExpression

//Directive element
"<%@" "page" ImportDecl "%>" ! Content{cons("JSPImport")}
"import=\"" ImportInformation "\"" ! ImportDecl
JavaTypeName ! ImportInformation{cons("ImportString")}

//Declaration element
"<%!" Declaration* "%>" ! Content{cons("JSPDeclaration")}
JavaMethodDec ! Declaration
JavaClassDec ! Declaration
JavaFieldDec ! Declaration

//Skriptlet element
"<%" JSPSkriptletNotEscaped "%>" ! HtmlContent{cons("JSPSkriptlet"), longest-match}
JavaStm* ! JSPSkriptletNotEscaped{cons("JavaSkriptlet")}
"%>" HtmlContent* "<%" ! JavaStm{cons("EscapedJSP"), longest-match}
"%>" Content* "<%" ! JSPSkriptletNotEscaped{reject}

With this grammar in place, it is now possible to parse SugarJ files with the new JSP elements. As it
was mentioned above, parsing a SugarJ file creates an abstract syntax tree, which can be transformed
via Stratego rules. Those ASTs now can be even more heterogeneous, since they may contain nodes from
SugarJ, HTML and the new JSP elements. An extension of the the desugaring rules for static HTML is
needed, to cover those new nodes. Lst. 3.9 shows the source code of a JSP document with a Skriptlet
element, as well as its AST, containing nodes from SugarJ’s Java grammar, as intended to.

3.3 Syntax for JSP elements 11

Listing 3.9: JSP Document with Skriptlet, Source and AST
import jsp.JspSyntax;

public jsp DynamicHtml{
<html>
<head></head>
<body>
<% for(int i = 0; i < 3; i++){
%> foobar <%

} %>
</body>

</html>
}

TypeImportDec(TypeName(PackageOrTypeName(Id("jsp")), Id("Syntax"))),
JSPDec(

[Public()],
Id("DynamicHtml"),
JSPBody(
JSPDoc(
[HtmlContent(
Element(
ElemName("html"), [],
[Element(ElemName("head"), [], [], ElemName("head")),
Element(ElemName("body"), [],
[Skriptlet(
JavaSkriptlet(
[For(
LocalVarDec(
[], Int(), [VarDec(Id("i"), Lit(Deci("0")))]

),
Some(Lt(ExprName(Id("i")), Lit(Deci("3")))),
[PostIncr(ExprName(Id("i")))],
Block(
[EscapedJSP([HtmlText(Text([CharDataPart("foobar")]))])]

)
)]

)
)],

ElemName("body"))],
ElemName("html"))

)]
)

)
)

As expected, the AST now contains heterogeneous nodes from four different grammars (base SugarJ,
HTML, JSP, the bridging grammar between HTML and JSP), which can also be intertwined. The For
node, which is produced by the Java grammar, is inside the Skriptlet node, which comes from the JSP
grammar, and contains the EscapedJSP node from the bridging grammar, which in turn contains the Text
node from the HTML grammar.

3.3.1 Desugaring of JSP elements

Import statements are ToplevelDeclarations in Java, and because import statements in JSP are written
as directive elements, it is necessary to lift those elements to proper ToplevelDeclarations. In this case,
directive elements are enforced to appear only at the top of a JSP document by only giving a desugaring
for that scenario, which usually is an unenforced convention. JSPDec nodes are matched on whether
their JSPBody contains directive elements as the head of their body list. If so, an extraction strategy must
be used upon the directive element, transforming it into an import statement and places it at the toplevel
of the result tree. The tail of the body list is processed recursively, until no more directive elements are

3.3 Syntax for JSP elements 12

contained. Since JSP documents are not written in the classical sense, however, import statements can
be written just like in Java sourcefiles.

Listing 3.10: Desugaring rules for JSP Imports
desugar-JSPDec:
JSPDec(mods, Id(name), JSPBody(JSPDoc([JSPImport(importType) | tail])))
!
[TypeImportDec(desugared-importType),
<desugar-JSPDec>JSPDec(mods, Id(name), JSPBody(JSPDoc(tail)))]
where <desugar-JSPImport> importType) desugared-importType

desugar-JSPImport:
ImportString(import)
!
import

With this, the type of the rule desugar-JSPDec gets the additional type JSPDec -> List[ToplevelDeclaration].
Desugared import statements are inserted below the sourcefiles own import statements and treated as
such. This means that importing the same Java Type more than once will lead to a compiler error from
the Java compiler, after the SugarJ file has been desugared.

In order to desugar declaration elements, the desugaring’s result must be inserted inside the body of
the Servlet’s class. The class body is also created via the rule desugar-JSPDec, as soon as no more import
statements have to be processed.

Listing 3.11: Desugaring rules for JSP Declarations
desugar-JSPDec:
JSPDec(mods, Id(name), JSPBody(body))
!
ClassDec(
ClassDecHead([SingleElemAnno(TypeName(Id("WebServlet")), Lit(String([Chars(<concat-strings>["/",name])])))

, Public()],
Id(name),
None(),
Some(SuperDec(ClassType(TypeName(Id("HttpServlet")), None()))),
None()

),
ClassBody(
<concat>[[desugar-JSPBody>JSPBody(bodyWithoutDeclarations)

, MethodDec(
// Omitted: Method declaration for "doPost"

)], desugaredDeclarations]
)

)
where <filter(?JSPDeclaration(_))> body) declarations
; <filter(not(?JSPDeclaration(_)))> body) bodyWithoutDeclarations
; <map(desugar-JSPDeclaration)> declarations) desugaredDeclarations

desugar-JSPDeclaration:
JSPDeclaration(javaDeclaration)
!
javaDeclaration

For the body list, which contains only non-directive elements, the necessary method declaration for a
Servlet’s doGet method is constructed. The body content is desugared into a list of Java statements and
inserted into the method body.

To do so, the remaining body list is processed recursively and the results are concatenated. That way,
instead of creating a list of lists of Java statements, only a single, flat list is created. This is necessary,
because EscapedJSP will always desugar into a list of Java statements.

To transform Skriptlet and Expression nodes into Java, it is necessary to write a strategy for each
kind of possibly expected node. Those can be Elements, Comments, EmptyElements, as well as the JSP
elements Skriptlet and Expression. There are already strategies for Elements, Comments and EmptyEle-
ments (Lst. 3.7).

• Previous HtmlContent should be desugared as before.

3.3 Syntax for JSP elements 13

• Expression elements contain a single Java Expression, which should be evaluated by the Servlet at
runtime and then printed to the outgoing HttpServletResponse.

• Skriptlet elements contain a list of both JavaStm and EscapedJSP nodes. A strategy, which can
match to either, is mapped on the list and the result is concatenated, so its type is List[JavaStm].
EscapedJSP contains a list of HtmlContent, for which the strategy for desugaring HTML is used.
Since each Java statement, which may contain nested Java statements, can also contain escaped
code, they cannot be left untransformed. Instead, each of them requires an individual desugaring
strategy of the type JavaStm -> List[JavaStm]. The transformation strategy for turning single
Skriptlet JavaStm nodes into desugared Java statements can be used recursively on their nested
statements.

The desugaring has been extended for static JSP documents by adding desugaring rules, compliant to
above restrictions.

Listing 3.12: Desugaring rules for JSP Expressions and Skriptlets
desugar-Html:
Expression(expr)
!
[|[writer.println(~expr);]|]

desugar-Html:
Skriptlet(JavaSkriptlet(skriptletCode))
!
<concat>desugared-skriptletCode
where <map(desugar-Skriptlet)> skriptletCode) desugared-skriptletCode

desugar-Skriptlet:
If(condition , Block(ifBlock), Block(elseBlock))
!
[If(condition , Block(<concat>desugared-ifBlock), Block(<concat>desugared-elseBlock))]
where <map(desugar-Skriptlet)> ifBlock) desugared-ifBlock
; <map(desugar-Skriptlet)> elseBlock) desugared-elseBlock

// Omitted: desugar-Skriptlet for If(condition , Block(ifBlock)), DoWhile, While, For, Try/Catch ...

desugar-Skriptlet:
EscapedJSP(html)
!
<concat> desugaredHtml
where <map(desugar-Html)> html) desugaredHtml

Since JSP Expressions are Java Expressions, they can be passed as an argument to writer.println().
Whenever a Skriptlet is encountered, the rule desugar-Skriptlet is called to recursively turn all occurrences
of EscapedJSP into Java statements. It is now possible to desugar all four JSP elements into pure Java.

3.4 Dynamic Web Pages with JavaScript

3.4.1 Syntax for JavaScript

The JavaScript grammar built upon is taken from https://github.com/sugar-lang/case-studies/
blob/master/java-server-pages/src/javascript/JavaScriptSyntax.sugj. The most complex part
of the JavaScript syntax is the program syntax. Yet, the hooks to the HTML syntax are relatively sim-
ple. Whenever HtmlContent is expected, a script element with the attribute language="javascript" and a
JavaScript program as its content may instead be expected. A JavaScript program may also be expected
as the value of a HtmlEventAttr, the built-in attribute event handlers of JavaScript.

To bridge the grammars of HTML and JavaScript, a new sugar library has been implemented, intro-
ducing the JavaScript constructor to HtmlContet. It also eliminates the ambiguity occurring if one of

3.4 Dynamic Web Pages with JavaScript 14

https://github.com/sugar-lang/case-studies/blob/master/java-server-pages/src/javascript/JavaScriptSyntax.sugj
https://github.com/sugar-lang/case-studies/blob/master/java-server-pages/src/javascript/JavaScriptSyntax.sugj

the keywords for event handlers had been used as an HTMLAttribute, by restricting HTMLAttributes to
never be the keywords of event handlers. Otherwise, the parser would not know whether it found an
HTMLAtribute or an event handler. This production can be seen in Lst. 3.13.

Listing 3.13: JavaScript Bridging Syntax
import javascript.JSSyntax;
import html.HtmlSyntax;

public extension HtmlWithJavascript {
context-free syntax
JavaScriptBlock ! HtmlContent{cons("JavaScript")}
"<" "script" "language" "=" "\"" "javascript" "\"" ">" JavaScriptProgram? "</" "script" ">" ! JavaScriptBlock

lexical syntax
"script" ! ElementName {reject}
EventHandlerName ! AttributeName {reject}

}

3.4.2 Desugaring for JavaScript

Like HTML, a Servlet will print JavaScript code to its outgoing HttpServletResponse, so desugaring of
the AST for JavaScript programs into a list of calls to write.println is needed. As JavaScript is interpreted
not as loosely as HTML, its grammar is more complex, but the desugaring follows a similar pattern:

• Construct string representations of all statements, declarations and expressions

• Retain both the syntax and semantics of the JavaScript code

• Print the string representations to the outgoing HTML document, while still fulfilling the criteria
for JSP documents

Listing 3.14: JavaScript Desugaring
desugar-Html:
JavaScript(None)
!
[|[writer.println("<script language=\"javascript\"></script>");]|]

desugar-Html:
JavaScript(Some(Program(javascriptProgram)))
!
<concat><map(desugar-JavaScript)> javascriptProgram

desugar-JavaScript:
If(condition , statement)
!
<concat> [[|[writer.println("if(");]|],

desugaredCondition ,
[|[writer.println(")");]|],
desugaredStatement

]
where <desugar-JSExpression> condition) desugaredCondition
; <desugar-JavaScript> statement) desugaredStatement

// Omitted: Desugaring of complete JavaScript , which covers all possible statements , declarations , expressions ...

The JavaScript syntax had to be modified, to include new Stratego constructors, because otherwise the
desugaring for JavaScript expressions would have been non-deterministic. All in all, desugaring rules for
the 200 productions of the JavaScript syntax have been implemented.

The desugaring rules for event handlers were omitted for now, but they are implemented as well.
Those rules should be applied whenever a JavaScript node or HtmlEvent node is found in the AST, which
in turn may appear everywhere, where this grammar allows HTMLContent or Attributes. Thus, new

3.4 Dynamic Web Pages with JavaScript 15

declarations for the rules desugar-Html and desugar-Attributes from Lst. 3.7 were introduced. However,
a problem for desugaring HTML Attributes arises. The values of JavaScript event handlers are full-
fledged JavaScript programs, for which the desugaring rule desugar-JavaScript (see Lst. 3.14) has the
type Program -> List[JavaStm]. Yet, the rule desugar-Attributes tries to desugar to JavaStringLiteral. As
Stratego is able to double-dispatch, this behavior is allowed. The resulting type-mismatch has to be
handled, otherwise the desugaring will fail.

At this point, two options on how to handle this type conflict exist:

1. Write a new rule transform-Program-to-AttributeValue, which allows to use desugar-HtmlAttribute
as before.

2. Rewrite the rule desugar-HtmlAttribute, so its outgoing type is List[JavaStm] - the same type as
desugar-Program.

Option 2. is the more sensible one. Not only is the implementation of the complex rule transform-
Program-to-AttributeValueunnecessary, which otherwise would require rewriting the set of desugaring
rules for JavaScript for a different type, but the desugaring rules for static HTML are sanitized. This
makes extension easier for all possible language extensions, which extend upon the Attribute non-literal.

Listing 3.15: Modified desugaring rules
desugar-Html:
Element(ElemName(startname), attributes , content, ElemName(endname))
!
<concat> [[|[writer.println("<" + ~startnameString + " ");]|],

desugaredAttributes ,
[|[writer.println(">");]|],
desugaredContent ,
[|[writer.println("</" + ~endnameString + ">");]|]

]
where <concat><map(desugar-Html)> content) desugaredContent
; <to-java-string> startname) startnameString
; <to-java-string> endname) endnameString
; <map(desugar-Attribute)> attributes) desugaredAttributes

desugar-Html:
EmptyElement(ElemName(name), attributes)
!
<concat> [[|[writer.println("<" + ~nameString + " ");]|],

desugaredAttributes ,
[|[writer.println("/>");]|]

]
where <to-java-string> name) nameString
; <map(desugar-Attribute)> attributes) desugaredAttributes

desugar-Attribute:
Attribute(AttrName(name), DoubleQuoted([CharDataPart(value)]))
!
[|[writer.println(~nameString + "=\"" + ~valueString + "\"" + " ");]|]
where <to-java-string> name) nameString
; <to-java-string> value) valueString

This allows an easy implementation of desugaring rules for event handlers:

Listing 3.16: Desugaring rules for JavaScript event handlers
desugar-Attribute:
JSAttribute(HtmlEventAttr(name), javascriptProgram)
!
<concat> [[|[writer.println(~nameString + "=\"");]|],

<desugar-JavaScript> javascriptProgram ,
[|[writer.println("\"");]|

]
where <to-java-string> name) nameString

Theoretically, error checking for JavaScript could be implemented in order to ensure that no unde-
clared functions or variables are called. Nevertheless, in JavaScript, those declarations may be found in

3.4 Dynamic Web Pages with JavaScript 16

an external source. This is beyond the capabilities of the system right now, but could be an interesting
avenue for future work.

3.5 Improved JavaScript

To show how powerful SugarJ is, the JavaScript grammar was improved by introducing a new kind
of expression: JavaScript may be used to generate HTML content and sometimes requires unparsed
embedded strings, containing HTML code for its function calls. A new production for HtmlExpressionswas
introduced, containing the non-literal Element from the HTML grammar. HtmlExpressions are parsed by
the SugarJ compiler and thus, are automatically error-checked for syntactical soundness.

Listing 3.17: Improved JavaScript Syntax and Desugaring
context-free syntax
Element ! PrimaryExpr{cons("HtmlExpr")}

rules

desugar-JSPrimaryExpression:
HtmlExpr(element)
!
<concat> [[|[writer.println("\"");]|],

<desugar-Html>element,
[|[writer.println("\"");]|]

]

Since HtmlExpression is formed by pure HTML code, no new desugarings had to be added. The
desugaring strategies, devised earlier for static HTML documents, can simply be used again. Only the
additional transformation strategy between JavaScript and HTML had to be added, just as it was done
for regular JavaScript. The desugared HTML code has to be placed in quotes, so the JavaScript program
may be run by a browser. The following example shows the application of this improved language.
import jsp.JspSyntax;
import jsp.JspDesugaring;
import javascript.ImprovedSyntaxAndDesugaring;

<html>
<head>
<script language="javascript">
var htmlElement = foobar ;

</script>
</head>
<body></body>

</html>

3.6 Possible Extension: CSS

A possible extension to the language would be Cascading Style Sheets (CSS), an embedded DSL in
HTML[14]. Since CSS is interpreted by the client, the goal would be to pass the desugared CSS to the
HttpServletResponse of the Servlet’s doGet method. To achieve this, two steps are required:

• Defining a syntax for CSS

• Implementing a desugaring for CSS, which fulfills the set goal

A possible challenge for defining the syntax, is to create the correct bridging productions to the other
syntaxes. For example, a CSS declaration could contain JSP expressions in place of a property or value.
Usually, the CSS syntax does not include JSP expressions in its productions, so this improvement would
be similar to the previous improvement to the JavaScript syntax.

Implementing CSS as an extension would allow the resulting language to cover the domain of web
applications:

3.5 Improved JavaScript 17

• HTML for document structure and displaying content

• JavaScript for client-side dynamic applications

• JSP for server-side dynamic applications

• CSS as a DSL for describing the layout of the document

3.6 Possible Extension: CSS 18

4 Editor Services

Editor services for the sugar libraries can be implemented either subsequently or simultaneously to the
sugar libraries. Simultaneous production offers the advantage of early access to editor services during
the development of the sugar libraries. A subsequent approach allows to use non-literals and AST nodes
freely, which should not change their names at this stage anymore. Sugarclipse[5] offers support for a
multitude of editor services, of which editor libraries for syntax coloring, code folding and outlining will
be introduced.

• Syntax coloring highlights, as the name suggests, syntactical fragments with different colors and
fonts.

• Code folding allows collapsing code fragments. Eclipse, for example, offers this service for Java
class declarations.

• Outlining shows the structure of a sourcefile as a tree-like structure with (meaningful) named nodes
and allows fast navigation.

4.1 Services for static HTML

In order to introduce an editor library, first, all sugar libraries with the productions for all relevant AST
nodes/non-literals have to be imported. For static HTML pages, those nodes are:

• Element and EmptyElement

• Comment

• Prologue and Epilogue

• Attribute and AttributeName

• DoubleQuotedAttributeValue

To implement code folding, it has to be decided on what to fold. HTML elements are a natural choice
in this matter. To define code-folding for elements, a section of rules is declared, by using the Sugarclipse
keyword folding, followed by a list of matching rules for non-literals and AST nodes . The rules are given
in the form non-literal.node-label and may contain the wildcard symbol _ . The production of elements
is defined as
"<" ElementName Attribute* ">" HtmlContent* "</" ElementName ">" ! Element{cons("Element")}

, so to match them, the following rule is implemented:
folding

Element.Element

This will let Sugarclipse know that whenever the undesugared AST of a sourcefile contains a node
produced by above grammar, it can collapse the code by hiding all child nodes within and displaying
only the uppermost line of code of the node.

For syntax coloring, a similar approach is applied. Until a declaration of a syntax coloring matches a
syntactical fragment, the IDE’s default color and font are used. To introduce syntax coloring for HTML, a
section of rules with the keyword colorer, is declared, containing coloring rules. Coloring rules require a
matching rule as in code folding, as well as a color definition. It is important to note that for the matched
nodes, only the literals on the left side of their production are colored, as there is currently no (working)
support for recursive color rules in Sugarclipse.

19

import editor.Colors;

colorer

Elementname : blue
Element : blue

Attribute : darkblue
AttributeName : darkblue
AttributeValue : darkorange
AttributeValueText : darkorange

HtmlText : 0 0 0 italic

The above code shows, how coloring for elements and attributes is achieved. Only declaring Element :
blue will color an Element’s brackets blue, because they are the non-literals of the production. The name
of the Element, however, is given as a non-literal. It has to be declared separately. For HtmlText, a black,
italic font has been chosen, which is declared on-the-spot. To achieve a unifying look among different
syntactical fragments, it is easier to define colors as strategies beforehand, e.g. blue = 0 0 255, which
can be found in the imported editor.Colors.

Outlining requires the implementation of Sugarclipse’s outline strategy, which is expected to be of the
type Tree[Node] -> Tree[Label]. Using Spoofax’s auxiliary strategy simple-label-outline, a higher-order
strategy of the required type, the AST is traversed and a given strategy of the type Node -> Lable is
applied, which creates the labels, shown in the outline view. The outline data is then written to the AST
as annotations.

Hence, the strategy outline has to be declared as followed:
html-to-outline-label:
Element(ElemName(name), _, _, _) ! <concat-strings>["<", name, ">"]

html-to-outline-label:
EmptyElement(ElemName(name), _) ! <concat-strings>["<", name, "/>"]

jsp-to-outline-label = html-to-outline-label

The actual implementation of outline is contained in the editor library, which contains the outlining
strategies for the uppermost nodes of parsed JSP documents, and not in the editor library for static
HTML elements. A more elaborate label could be constructed at this point by modifying the rule html-
to-outline-label, but for now the name of an Element is shown as its label in the outline view.

To use the editor services for static HTML, the library must be imported into the files.

Figure 4.1: Editor Services for static HTML

4.1 Services for static HTML 20

4.2 Services for dynamic Web pages

Although the editor services are only defined for one language, they still work as expected for the ex-
tended language with JSP elements. Java code within JSP elements is already correctly colored and
folded, because Sugarclipse delivers those services as a default for Java. Currently, Sugarclipse does not
have a default outlining strategy for Java, though.

Similarly to the work done with HTML, code folding for JSP elements is achieved as followed:

1. Identify the syntactical fragments, ought to be folded

2. Look up the non-literals and nodes for those fragments in the grammar

3. Declare code folding for those non-literals and nodes

Listing 4.1: Editor Library for JSP elements
folding

HtmlContent.JSPSkriptlet
HtmlContent.JSPExpression
Content.JSPImport
Content.JSPDeclaration

colorer

ToplevelDeclaration.JSPDec : darkgreen
JSPBody : black
Content.JSPImport : keyword
ImportString : 0 0 0 italic
HtmlContent.Skriptlet : blue
JavaStm.EscapedJSP : blue

strategies

outline = simple-label-outline(jsp-to-outline-label)

jsp-to-outline-label:
JSPDec(_, Id(name), _) ! name

Now, two editor libraries are established, which can be imported alongside. It must be remembered,
however that the strategy outline is only implemented in the library for JSP elements. It would theoret-
ically be possibleto implement the strategy outline in the editor library for HTML documents, as well,
but the closest-match heuristic for editor services would make the behavior for an equally close match
non-deterministic.

A document with both libraries imported, is colored/folded/outlined as expected:
Defining editor services for JavaScript first appears to be a tedious task, since the grammar is huge

in comparison. However, JavaScript borrows multiple non-literals from the Java syntax, which in turn
are colored correctly. Therefore, only syntax coloring for the bridging grammar between HTML and
JavaScript has to be provided, as well as the usual folding and outlining declarations.

Listing 4.2: Editor Services for JavaScript
colorer

HtmlContent.JavaScript : red
HtmlEventAttr : grey
Attribute.JSAttribute : grey
HtmlEventAttr.HtmlEventAttr : grey
HtmlEvent : grey

folding

FunctionDec
HtmlContent.JavaScript

strategies

js-to-outline-label:
FunctionDec(name, _, _) ! name

js-to-outline-label:

4.2 Services for dynamic Web pages 21

Figure 4.2: Editor Services for JSP

JavaScript(_) ! "JavaScript"

jsp-to-outline-label = js-to-outline-label

Should Java outlining ever be implemented in Sugarclipse, this would result in a working outlining
strategy for JavaScript, as well. With the three editor libraries in place, even editor services for the
improved JavaScript syntax can be offered, since no noteworthy non-literals have been introduced.

4.2 Services for dynamic Web pages 22

Figure 4.3: Editor Services for combined language

4.2 Services for dynamic Web pages 23

5 Related Work

The capability of extending editor libraries has been proven, alongside their respective language libraries.
Now, this work has to be compared to other implementations of editor services.

5.1 Editor Services

Early adaptions of extensible editor services can be found with the editor vim. Its capability for syntax
coloring is enhanced by plugins, written in script languages like vim script, and can contain language
definitions and coloring schemes. Nevertheless, their capability for language extension is limited. It is
possible to write scripts, which add the syntax of a host language to the syntax definition for an EDSL or
vice versa, but composability is hard accomplish, since ultimately, those scripts do not abstract over the
additional language syntaxes; instead they are designed to compose a specific set of languages. Plugins
for convenient editor services, like code folding and outlining, are rare for those editors. Consequently,
vim is unfit to navigate through large quantities of code.

In contrast, common IDEs, like Eclipse, IntelliJ, Netbeans or Visual Studio, provide the same extendibil-
ity via plugins, and usually support more editor services than vim and emacs. Compared to writing an
editor library, developing a plugin is an immensely complex work.

A major drawback of a plugin-based approach, is its need to be designed for composition, whereas
editor libraries inherently compose. Unlike editor libraries, plugins cannot easily be shipped alongside
the product they were designed for. It would be imaginable, for example, to write an editor library with
code completion, especially tailored for the usage with an accompanying API.

Currently, editor libraries are only working in Sugarclipse. Yet, in principal, they are agnostic about
their IDE. As long as the IDE has a generic editor service, it should be possible to extend that editor
service based on any editor library. This means, that language designers are capable of defining editor
services for their language independently of any IDE.

5.2 Modular languages

Editor libraries are not the classical way of embedding DSLs. Instead, DSLs are often implemented either
as string-based embeddings or as constructs of the host language.

In such a case, the DSL is part of the host langauge’s syntax, which means that it adopts its editor
services, as well. SugarJ parses the language on a finer level, than the standard Java compiler, as long
as an appropriate language library is present. That allows for the use of editor libraries for the subset of
the host language, which is the EDSL.

An example application would be Java’s SQL API, JDBC, where SQL is embedded as pure strings.
This work focuses on SugarJ, whose host language is Java. However, a more refined Sugar-language

called Sugar*[1] would allow extensions of any host language. Sugar* is based on SugarJ and offers the
same capability for editor libraries.

24

Bibliography

[1] Sebastian Erdweg an Felix Rieger. A framework for extensible languages. Proceedings of the 12th
international conference on Generative programming: concepts & experiences, pages 3–12, 2013.

[2] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser. Stratego/XT 0.17. A
language and toolset for program transformation. Science of Computer Programming, 72, 2005.

[3] M. Chapman. Extending JDT to support java-like languages. Invited Talk at EclipseCon ’06, 2006.

[4] Sebastian Erdweg. Sugarj case study: Mathematical pairs, April 2014. URL https://github.com/
sugar-lang/case-studies/tree/master/pairs.

[5] Sebastian Erdweg, Lennart C. L. Kats, Tillmann Rendel, Christian Kästner, Klaus Ostermann, and
Eelco Visser. Growing a Language Environment with Editor Libraries. Proceedings of Conference on
Generative Programming and Component Engineering (GPCE), pages 167–176, 2011.

[6] Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus Ostermann. Sugarj: Library-
based syntactic language extensibility. Proceedings of Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages 391–406, 2011.

[7] Jayson Falkner and Kevin Jones. JavaServer pages. In Servlets and JavaServer Pages. Addison-
Wesley, 2003.

[8] J. Heering, P.R.H. Hendriks, P. Klint, and J. Rekers. The syntax definition formalism sdf reference
manual. ACM SIGPLAN Notices, 24:43–75.

[9] P. Hudak. Modular domain specific languages and tools. Proceedings of International Conference on
Software Reuse (ICSR), pages 134–142, 1998.

[10] Karl Trygve Kalleberg and Eelco Visser. Spoofax: An Extensible, Interactive Development Envi-
ronment for Program Transformation with Stratego/XT. TUD-SERG Technical Report Series, (TUD-
SERG-2007-018), 2007.

[11] C. Kästner, G. Saake, J. Feigenspann, T. Leich, F. Wielgorz, and S. Apel. FeatureIDE: Tool framework
for feature-oriented software development. Proceedings of International Conference on Software
Engineering (ICSE), pages 611–614, 2009.

[12] S. McDirmid and M. Odersky. The scala plugin for eclipse. Proceedings of Technology of Object-
oriented Languages and Systems (TOOLS), pages 297–315, 2008.

[13] M. Odersky. The scala language specification, version 2.8, 2010. URL http://www.scala-lang.
org/docu/files/ScalaReference.pdf.

[14] World Wide Web Consortium (W3C). Html 4.01 specification, April 2014. URL http://www.w3.
org/TR/1999/REC-html401-19991224/.

25

https://github.com/sugar-lang/case-studies/tree/master/pairs
https://github.com/sugar-lang/case-studies/tree/master/pairs
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.w3.org/TR/1999/REC-html401-19991224/
http://www.w3.org/TR/1999/REC-html401-19991224/

	1 Introduction
	2 Background
	2.1 Java Server Pages
	2.2 SugarJ
	2.3 Editor Services

	3 Embedding JSP
	3.1 Static HTML documents
	3.1.1 Syntax for static HTML
	3.1.2 Desugaring for static HTML

	3.2 Dynamic Web Pages with Skriptlets
	3.3 Syntax for JSP elements
	3.3.1 Desugaring of JSP elements

	3.4 Dynamic Web Pages with JavaScript
	3.4.1 Syntax for JavaScript
	3.4.2 Desugaring for JavaScript

	3.5 Improved JavaScript
	3.6 Possible Extension: CSS

	4 Editor Services
	4.1 Services for static HTML
	4.2 Services for dynamic Web pages

	5 Related Work
	5.1 Editor Services
	5.2 Modular languages

	Bibliography

