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Abstract

C is a general-purpose programming language that has its origins in the early 1970s. Despite its age
and low-level nature, it still is one of the most widely used programming languages nowadays. Yet, the
language lacks a lot of helpful features that can be found in modern programming languages. We argue
that syntactic extensibility is a sensible solution to achieving a language based on C that both remains
intuitive to C programmers and, in addition, allows to introduce domain specific abstractions that help
to achieve higher productivity. For this purpose we present SugarC, an extensible language based on C,
which we implemented as an instantiation of the Sugar* framework. Specifically, we provide an approach
to integrate a linking stage into our language’s build process, which is required in the context of separate
compilation.

Inhaltsangabe

C ist eine Allzweck-Programmiersprache, welche ihren Ursprung in den frühen 1970er Jahren hat. Trotz
des Alters und niedrigen Abstraktionslevels ist C heute nach wie vor eine der weitest verbreiteten Pro-
grammiersprachen. Allerdings mangelt es der Sprache an einigen nützlichen Features, welche in mo-
dernen Sprachen vorhanden sind. Wir argumentieren, dass syntaktische Erweiterbarkeit eine geeignete
Lösung ist, um eine C-basierte Sprache zu erhalten welche sowohl intuitiv für C Programmierer ist und
zudem ermöglicht, Domänen-spezifische Abstraktionen einzuführen, welche helfen eine höhere Produk-
tivität zu erreichen. Für diesen Zweck präsentieren wir SugarC, eine erweiterbare Sprache basierend
auf C, welche wir als Instanziierung des Sugar* Frameworks implementiert haben. Im Speziellen liefern
wir einen Ansatz zur Integration einer Linking-Phase in den Build-Prozess unserer Sprache, welche im
Rahmen separater Kompilierung benötigt wird.
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1 Introduction

This section describes the motivation behind this thesis, states the contributions that we make and out-
lines the structure of the thesis.

1.1 Motivation

C [17] is a general-purpose programming language that has its origins in the early 1970s. Originally
designed as a systems programming language for Unix, it quickly found its way into everyday program-
ming practice. Despite its age and low-level nature, it still is one of the most widely used programming
languages nowadays 1. Yet, the language lacks a lot of helpful features that can be found in modern
programming languages. Missing language constructs in C are commonly emulated using lexical macros
provided by the C preprocessor. However, lexical macros must be handled with great care, as they fail to
reliably preserve the lexical structure of a program.

In this thesis we present SugarC, an extensible language based on C, which allows to define new syntactic
sugar within the language itself. The term syntactic sugar refers to syntax extensions that internally are
mapped back onto constructs of the base syntax. Consequently, neither expressiveness nor functionality
of the language are extended. Yet, syntactic sugar is essential for augmenting a language with domain ab-
stractions that can lead to a considerable increase in productivity. Unlike the text-based macro approach
implemented by the C preprocessor, SugarC ensures that its extensions always preserve the syntactical
correctness of a program.

We implemented SugarC as an instantiation of the Sugar* framework [5], which is a language exten-
sibility framework featuring syntax extensions based on library imports. Besides C, SugarC comprises
SDF [21], a language for syntax definition, and the term rewriting language Stratego [23]. Specific to
SugarC is that it inherits some characteristics from its base-language C which are not directly supported
by the framework. One specialty is the concept of header files as interfaces between different translation
units. The Sugar* framework is not designed to allow multiple base file extensions, such as both .c and
.h. We thus examine approaches of circumventing this issue.

A major feature specific to C is separate compilation. Every C source file represents a distinct translation
unit that is compiled independently of any other modules. Necessary forward declarations of functions
or variables defined in related modules are typically provided in header files and included via preproces-
sor directives. The resulting object files are then linked together to obatin an executable program or a
library. This is a notable difference to languages like Java, Scala or Haskell, where we do not have true
separate compilation as we have it in C, and consequently have no need for a separate linking stage.
Yet, the Sugar* framework originates from an extensible version of Java and hence is tailored towards
languages that possess a similar build process. Therefore, we examine ways of integrating the missing
linking stage into SugarC, without forgoing the concepts and benefits of the framework. The Sugar*
framework promotes a modular extension activation mechanism, which is the result of its incremental
way of processing source files. To conform to this concept, we also need to recompile and link files only
if a dependent module has changed.

1 http://www.langpop.com
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1.2 Contributions

The main contributions of this thesis are:

• We build on prior work to provide a modular grammar specification of C99 in the syntax definition
metalanguage SDF2 2.

• We provide a tree traversal strategy in the term rewriting language Stratego to resolve ambiguities
intrinsic to C’s grammar 3.

• We implement SugarC as Sugar* language plug-in, exploring the possibilities and boundaries of
the Sugar* framework with respect to separate compilation 4.

• We provide a case study to demonstrate the practicability of SugarC 5.

1.3 Structure

This thesis is structured as follows: In Section 2 we give an introduction to the main concepts behind
SugarC. As a base for SugarC, in Section 3 we describe the specification of the C grammar in a modular
way, such that it can be composed with grammar extensions, and show how we can resolve ambiguities
intrinsic to C’s grammar using a term rewriting language. In Section 4 we outline how we implemented
SugarC as instance of the Sugar* framework and present how we resolved encountered challenges, with
special focus on separate compilation. We demonstrate SugarC’s practicability by providing a case study
in Section 5, and examine related approaches to achieving syntactic extensibility for C in Section 6.
Finally, we conclude this thesis by resuming our work and outlining future work that may build upon it
in Section 7.

2 https://github.com/c-oberle/spoofax-c/blob/master/C/lib/C.def
3 https://github.com/c-oberle/spoofax-c/blob/master/C/trans/disamb.str
4 https://github.com/c-oberle/lang-c
5 https://github.com/c-oberle/fsm-casestudy
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2 Preliminaries

In this section, we introduce the main concepts which constitute the backbone of SugarC. This includes
the meta-languages SDF and Stratego, the Spoofax/IMP tool set, and notably the Sugar* language ex-
tensibility framework.

2.1 SDF

The Syntax Definition Formalism (SDF) [21] is a meta-language that enables a natural and precise de-
scription of a formal language. Notably, it promotes syntax specification in a modular fashion, which
distinguishes it from other formalisms such as common Backus-Naur Form (BNF). Besides its modular-
ity, other important features that contribute to SDF’s expressiveness are its integration of both lexical
and context-free syntax, regular expression shorthands, and declarative disambiguation constructs, as
sketched in Figure 2.1. Those features in summary allow for a more natural and concise description
of a language’s syntax, compared to more restrictive formalisms such as BNF, or Yacc as well. Yacc, for
instance, a widely used parser generator, is restricted to grammars that fall within the LALR (Look-Ahead
left-to-right) subclass and thus fails to handle grammars containing ambiguities [3]. With SDF, we do not
have such restrictions. SDF’s natural way of specifying syntax, however, gives rise to syntactic ambigui-
ties which require generalized parsing. This means we have to examine every possible interpretation of
a given input text, and hence obtain a parse forest in case of ambiguities, rather than a single parse tree.
Nonetheless, SDF is supported by a parser generator, which is another important point in which it sets
itself apart from BNF. Specifically, it is supported by scannerless generalized LR parsing (SGLR), which we
will describe in section 3.2.

lexical syntax
[A-Za-z][A-Za-z0-9]*

-> ID
context-free syntax
ID -> Id

(a) Integration of lexical and
context-free syntax.

Stm* -> Prog
Id "(" Args? ")"

-> Call
{E ","}+ -> Args
(Id | Lit) -> E

(b) Regular expression short-
hands.

E "+" E -> E {left}
E "*" E -> E {left}
priorities
{left: E "*" E -> E} >
{left: E "+" E -> E}

(c) Declarative disambiguation
mechanisms.

Figure 2.1.: Features contributing to SDF’s expressiveness.

2.2 Stratego

Stratego [23] is a program transformation language that provides programmable rewriting strategies.
It is especially well-suited for traversing and transforming tree structures, as it is tailored towards pro-
cessing programs in the form of syntax trees. Stratego programs operate on terms, which essentially are
trees representing program code. Such a term may look like Add(Int(5), Int(2)), which represents
the abstract syntax for the addition of two integer literals. Stratego allows to define transformations
on terms by means of conditional rewrite rules that make use of pattern matching and where/with
clauses to determine whether they can be applied to a given subterm. A basic rewriting rule is of the
form rule-name : term-pattern -> term and may be applied to a term t via <rule-name> t. For
instance, we may define a rule called eval that performs simple constant folding by transforming an
additive term with two integer literals as child nodes into an integer node containing the sum of both.
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eval : Add(Int(l), Int(r)) -> Int(n)
where
n := <add> (l, r)

Figure 2.2 visualizes the application of this rule to our example term mentioned before.

Figure 2.2.: Simple example of a program transformation.

For more complex tasks, we may compose rewriting rules to obtain rewriting strategies. Stratego allows
to compose rules sequentially as in s = s1 ; s2 , or via the deterministic choice operator <+. A use-
ful application of the latter is the strategy try(s) = s <+ id, which first tries to apply its argument
strategy s and, in case this fails, applies the built-in identity function id which leaves the original term
unchanged.

2.3 Spoofax/IMP

Spoofax/IMP [15] is a language workbench that facilitates the implementation of domain-specific lan-
guages (DSLs). The term language workbench was coined by Martin Fowler in 2005 [6] and describes
a set of programming tools combining language oriented programming with appropriate IDE tooling. A
language workbench like Spoofax allows to define a whole new programming language from scratch,
without the need to write a parser and with full support for seamless IDE integration. Spoofax is im-
plemented as Eclipse plug-in and makes use of the IMP Meta-tooling Platform to provide customized
editor services. It integrates several meta-programming tools, among which SDF and Stratego are of
most relevance for us. We use Spoofax mainly to specify the C programming language, which constitutes
the base of SugarC, and to generate a corresponding parse table. Figure 2.3 shows a small excerpt of our
Spoofax language project for C, presenting from left to right the syntax definition, a successfully parsed
test file and the corresponding abstract syntax tree (AST).

Figure 2.3.: Implementing the C programming language in Spoofax.

7



Figure 2.4.: Sugar* language plug-in architecture.

2.4 Sugar*

The Sugar* framework [5] aims at making programming languages extensible. It originated from Sug-
arJ [4], an extensible language based on Java, which introduces the concept of library-based language
extensibility. Library-based extensibility describes the possibility of activating language extensions via
library imports. Such sugar libraries may contain the definition of new syntactical constructs and their
mapping to the base language. In order to define syntactic sugar, the framework integrates the meta-
languages SDF and Stratego. Additionally, it builds upon Spoofax to provide optimal IDE support of
extensions. Whenever an import of a sugar library is encountered during parsing, Sugar* composes the
current grammar with the new syntax and adapts the parser correspondingly. Hence, Sugar* adapts its
parser “on the fly”, extending the parser itself during the process of parsing. This incremental way of
parsing source files refletcs throughout large parts of the framework.
Besides its intuitive appeal and seamless integration into the language, the library-based approach of
managing and activating language extensions ensures high modularity, reuse and composability of ex-
tensions. The framework is the result of abstracting away from the concrete language Java by intro-
ducing an abstract base-language component as additional level of indirection, and eliminating all other
dependencies from the SugarJ compiler to the concrete base language. This allows to parameterize the
compiler over different base languages by providing language plug-ins, as Figure 2.4 shows. Several
language plug-ins like SugarScala 1, SugarHaskell 2 or SugarJS 3 already witness the practicability of the
framework. We provide such a plug-in for the C programming language.

1 https://github.com/sugar-lang/lang-scala
2 https://github.com/sugar-lang/lang-haskell
3 https://github.com/sugar-lang/lang-javascript
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3 C Grammar in SDF

In order to specify an extensible language, we need to provide both a specification of its base syntax
and a specification of an extension syntax, which can be used to introduce new syntactical constructs.
Additionally, we need means to compose our syntax specifications to finally achieve a uniform language.
This imposes some requirements to the syntax specification:

• The specification should be modular.

• The specification should be uniform (i.e., base and extension syntax should be specified using the
same formalism).

• The specification formalism should be supported by a parser generator.

In Section 3.1 we outline the specification of SugarC’s base grammar in SDF, a metalanguage that meets
all of the listed requirements. In Section 3.2 we show how ambiguities in the grammar specification can
be resolved using SDF’s built-in disambiguation mechanisms and the term rewriting language Stratego.
Finally, we evaluate our specified grammar in Section 3.3.

3.1 Grammar Specification

As a starting point of our extensible version of C, we specify the grammar of the C standard C99 using
the Syntax Definition Formalism (SDF). More specifically, we use SDF2. SDF is a metalanguage that en-
ables the definition of context-free grammars in a modular way, which distinguishes this approach from
specifying syntax in common Backus-Naur Form (BNF). Modularity is a highly important aspect, as we
later want to compose this base grammar with grammar extensions to allow the introduction of new
syntactical constructs. With mere BNF, which is commonly used to specify the syntax of a programming
language, such composability is not given. In addition, unlike BNF, SDF is directly supported by a parser
generator.

The complete grammar specification consists of 342 production rules together with 47 rules specifying
lexical restrictions, and is subdivided into 57 grammar modules. It can be found online as part of our
Spoofax language project for C at https://github.com/c-oberle/spoofax-c.

Listing 3.1 exemplarily shows how we can specify the syntax for additive expressions in SDF. Note that,
specifically to SDF, the direction of the production rules is inverted compared to common syntax spec-
ification in BNF. In this example, the associativity and precedence of the production rules is implicitly
given by separating into additive and multiplicative expressions. Specifically, we have left-associative
rules, where multiplicative expressions have higher precedence than additive expressions. Likewise, this
could be modeled explicitly by using special SDF constructs. In addition to specifying plain production
rules, we decorate them with constructor attributes indicated by cons. This attribute has no effect on the
defined syntax, but specifies the name of the node in the abstract syntax tree that is constructed if the
given production rule is applied. For instance, a term like 5+ 7� 2 is implicitly handled as ((5+ 7)� 2)
due to left-associativity, and would result in a tree similar to the one shown in Figure 3.1.
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Figure 3.1.: Simplified AST for the term 5+ 7� 2.

context-free syntax
MultiplicativeExpr -> AdditiveExpr
AdditiveExpr "+" MultiplicativeExpr -> AdditiveExpr {cons("Plus")}
AdditiveExpr "-" MultiplicativeExpr -> AdditiveExpr {cons("Minus")}

Listing 3.1: Syntax for additive expressions in SDF.

Characteristic to C, the only way of imposing some kind of module structure to a program consists in
splitting it into separate files, which then are included by means of preprocessor directives. For this rea-
son, a language that only allows plain C syntax is highly impractical. The macro language implemented
by the C preprocessor, however, allows for conditional compilation and thus requires variability-aware
parsing [7, 13]. For instance, a code fragment surrounded by the directives #ifdef FLAG and #endif
is only processed in case the symbol FLAG has previously been defined. Yet, the enclosed code fragment
may affect the parse result. For this reason we decided to augment our C grammar only with a lim-
ited subset of existing preprocessor directives. Mainly, we support the syntax of #include directives,
as they are fundamental for achieving modularity and enable the use of standard libraries. In addition,
we support the non-standard but widely supported directive #pragma once as alternative to #include
guards.

3.2 Grammar Disambiguation

With SDF we have a single formalism to specify both the lexical and the phrase level grammar. Cor-
respondingly, SDF uses a scannerless generalized LR parser (SGLR) [20], which means that lexing and
parsing are no distinct steps in the process of parsing a source file, but are rather closely intertwined. As
a trade-off for SDF’s concise and natural way of specifying syntax, we need to handle resulting ambigui-
ties by using a generalized version of an LR parser.

A generalized LR (GLR) parser proceeds similar to a common LR parser. However, given a particular
grammar, it processes all possible interpretations of a given input text by applying breadth-first search.
The parse table generated by a GLR parser generator thus allows for multiple transitions, given a specific
state and input token. In case of conflicting transitions, the parse stack is forked into multiple parallel
parse stacks, resulting in so called parse forests that consequently have to be transformed into single parse
trees. In order to do so, we need to discard unwanted trees according to certain rules. The described
parse architecture of SDF is depicted in Figure 3.2.

1 cf. http://www.meta-environment.org/Meta-Environment/SDF
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Grammar

 Parse Table 

Generator

 SGLR Tree FilterSource Code
Source Code

Parse Table

Parse Forest Parse Tree

Figure 3.2.: SDF’s parse architecture. 1

3.2.1 SDF Disambiguation Filters

For the most common cases of ambiguities, SDF already provides built-in disambiguation filters. This
makes it easy to handle common ambiguous constructs like the dangling else. If we consider the following
C code fragment, we see that there are two possible ways of parsing it:

if (a) if (b) stm1; else stm2;

This could be parsed as if it were either one of the following:

if (a) {
if (b)
stm1;

else
stm2;

}

if (a) {
if (b)
stm1;

}
else
stm2;

Using simple preference attributes, we can easily eliminate such ambiguities by specifying which deriva-
tion we want to choose if there is more than one possibility.

"if" "(" Expr ")" Stm -> SelectionStm {cons("If"), prefer}
"if" "(" Expr ")" st1:Stm "else" st2:Stm -> SelectionStm {cons("If")}

As in C we want to associate an else with the nearest if, we give preference to the first of the listed
production rules by adding a prefer tag.

Besides preference attributes, SDF provides some more features to resolve grammar ambiguities. This
includes means to reject certain productions, assign associativity to productions, introduce precedence
rules and to introduce follow restrictions, i.e., prohibit sequences to be followed by certain symbols. In
summary those features enable disambiguation of most of the common critical constructs encountered
in practice.

3.2.2 The C Typedef Problem

The possibility of defining type aliases in C using the typedef construct induces ambiguities that are
more difficult to resolve and cannot simply be handled by SDF’s disambiguation filters. The typedef
parsing problem, usually referred to as “typedef-name: identifier” problem due to the critical production

11



amb(
     [ Dec(
         DecSpecifierSeq([TypeSpecifier(TypedefName(Id("x")))])
       , Some(
           InitDeclaratorList(
             [Declarator(Some(PointerSeq([Pointer(None())])), Id("p"))]
           )
         )
       )
     , ExprStm(
         Some(
           Expr(
             [Mul(PrimaryExpr(Id("x")), PrimaryExpr(Id("p")))]
           )
         )
       )
     ]
   )

Figure 3.3.: Ambiguity node in the ATerm representation for x * p;.

rule, is a well-known problem that occurrs when parsing C code [2]. It unveils the hidden context
sensitivity of C’s grammar that has to be handled in order to be able to parse C code correctly. The
problematic production rule in our specified SDF grammar is the following:

Identifier -> TypedefName

This production rule in a way “collides” with other productions such as:

Identifier -> PrimaryExpr

An Identifier can thus be derived either as TypedefName or as PrimaryExpr. As there is lexically no dis-
tinction between an identifier that represents a type alias and an identifier that, e.g., represents a simple
integer variable, we can encounter ambiguities that can only be resolved by providing contextual infor-
mation. In the following, we are going to examine this problem by taking a look at concrete examples.
Consider the following C statement:

int *p;

Obviously, this line of code declares a pointer variable p pointing to an integer. We know this because
int is a reserved keyword that indicates a type specifier and thus cannot be the name of a variable. In
our grammar this is explicitly modeled by the following rules:

"int" -> TypeSpecifier {cons("Int")}
"int" -> Identifier {reject}

Now we examine the following syntactically correct C code snippet:

typedef int x;
x *p;

This is the point where we encounter the first ambiguity caused by our critical production rule. Intu-
itively, it is clear that the second line should semantically be the same as the example declaration given
above. However, if we want to parse it we have no knowledge about the context. As we don’t know
whether x has been defined as a type alias or a variable, the statement could either be a multiplication
of two variables, where the result is discarded, or otherwise a declaration of a pointer variable pointing
to a value of the type represented by x. Hence, SGLR outputs a parse forest which is represented in
the ATerm (Annotated Term) format by a tree-like structure containing ambiguity nodes, as depicted in
Figure 3.3.
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An ambiguity node in the ATerm format contains a list of all possible ways of parsing a specific part of
code. Thus, to resolve ambiguities we first need some context-sensitive rules to determine the correct
parsing option for a given ambiguity node. Secondly, we need means to substitute the ambiguity node in
our abstract syntax tree by the correct derivation. For this we chose the term rewriting language Strat-
ego, which is directly integrated into the Spoofax language workbench together with SDF and therefore
allows seamless interoperability.

Stratego is especially well-suited for traversing and transforming tree structures, as it is tailored towards
processing programs in the form of syntax trees. Thus, we can use it to perform transformations directly
on the abstract syntax trees produced by the SGLR parser. Basic transformation steps in Stratego can be
specified using conditional rewrite rules, which make use of pattern matching and where/with clauses to
determine whether they can be applied to a given subterm. For example, we can define a simple rule
called Eval which rewrites an Add tree with two integer constants as subtrees to an Int node containing
the sum of both subtrees 2.

Eval: Add(l, r) -> Int(n) where n := <add> (l, r)

However, conditional rewrite rules alone are not sufficient to resolve our typedef-related ambiguities, as
they do not provide the necessary contextual information. A single rule only has knowledge of the term
to which it is applied and possibly of its subterms. What we have to do is traverse the complete syntax
tree in a top-down manner and collect all typedef-names we pass on our way down. As typedefs have
the same scoping rules as common variable declarations, we also need to consider this. Then, whenever
we encounter an ambiguity node, we can either prune branches containing non-existing typedef-names,
or otherwise branches containing common identifiers that in fact are type aliases.

To do so, we make use of two more features of Stratego:

• Rewriting Strategies allow to define precisely when and how certain rewrite rules shall be applied,
which allows us to define a tree traversal strategy that meets our requirements.

• Dynamic Rules bring in the context-sensitivity we need in order to resolve typedef-related am-
biguities. Dynamic rules in fact are normal rewrite rules, but are generated at run-time and can
access information from their generation context. Importantly, the live range of dynamic rules can
be limited by rule scopes [22].

Now we can define a disambiguation strategy disamb, which we want to apply to the root node of our
abstract syntax tree:

disamb =
rules(td-names := [])
; traverse(try(disamb-typedef))

First, we dynamically create a rule td-names that does not consume any input and simply produces an
empty list. This rule allows us to maintain a list of all typedef-names in our current scope. Subsequently,
we apply a strategy traverse that traverses the complete AST and, where possible, applies the rule
disamb-typedef. We define the traversal strategy as follows:

traverse(s) =
s; all(enter-scope(s) <+ traverse(s))

This strategy first applies its argument strategy s and then on every child node tries to apply
enter-scope, or otherwise again traverse.

The strategy enter-scope makes use of dynamic rule scopes and succeeds only on nodes introducing a
new C scope, i.e., function definitions, blocks and for-loops with local variable declarations.
2 Example from https://strategoxt.org/Stratego/StrategoLanguage
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enter-scope(s) =
(?FunDef(_, _, _, _) <+ ?Block(_) <+ ?ForDec(_, _, _, _))
; {| td-names : traverse(s) |}

Whenever we enter a new C scope, we traverse the current sub-AST with the rule scope for td-names
limited to this traversal. This guarantees that local changes to td-names are reverted after leaving the
local scope and our list of typedef-names thus stays in sync with the valid type aliases of the current scope.

The strategy disamb-typedef resolves ambiguities when applied to an ambiguity node, or otherwise
collects new type aliases or variable names and updates td-names correspondingly. We need to examine
variable names as well, as they can locally shadow type aliases defined in an outer scope. In this case, the
name is locally removed from our list of typedef-names. Ambiguities are finally resolved by discarding a
branch in case it contains

a) a typedef-name that is not in td-names.

b) a variable name that is in td-names.

The complete disambiguation module is provided in Appendix A.

3.3 Evaluation

The general problem whether a given grammar is ambiguous or not is undecidable, as it can be shown
that it is equivalent to the undecidable Post correspondence problem [11]. This means we can detect am-
biguities and resolve them, yet we do not have any guarantee that after doing so, our grammar is free of
any further ambiguities. Therefore, the best practice of evaluating the correctness of a grammar consists
in parsing large program files, preferably of real projects. Unfortunately, parsing code of real projects
turns out to be no adequate solution for our C grammar. As we only provide a limited subset of existing
preprocessor directives, we may only parse arbitrary C files after preprocessing them. Not only for large
software projects written in C, like the version control system Git 3 or the GNU compiler collection (GCC)
4, but also for the most minimalistic program which only prints “Hello World” on the command line, we
see that the preprocessed source code still contains constructs which our grammar does not support.
Those are mainly optimized inline assembler constructs and may look like the following:
__asm("_""fopen").

Inline assembly is an extension to standard C supported by most C compilers, but no actual part of C. To
circumvent inline assembly code and preprocessor directives, we use the command line tool Csmith [25]
to randomly generate C programs conforming to the C99 standard. Csmith is mainly used for stress-
testing compilers and has successfully exposed numerous bugs in C compilers like GCC 5 and LLVM 6. We
generated an initial test set of 10 random C programs that sum up to 13779 lines of code. The result is
promising, as all of the test files could be parsed successfully and were free of ambiguities after passing
our typedef disambiguation filter.

Yet, in order to show that our disambiguation module behaves as desired, it is not sufficient to show that
we can parse code unambiguously. In particular, we want to see that the parse result actually is correct.
We thus implemented additional unit tests in the Spoofax Testing Language (SPT) [14] to cover a variety
of different test scenarios. The main purpose of those tests is to examine correctness of our typedef

3 https://github.com/git/git
4 https://www.gnu.org/software/gcc/releases.html
5 https://embed.cs.utah.edu/csmith/gcc-bugs.html
6 https://embed.cs.utah.edu/csmith/llvm-bugs.html
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disambiguation module, but we also cover some general language tests. Besides the actual unit tests,
a test module in the SPT testing language allows to specify a start symbol for parsing and a test setup.
Without loss of generality, we use nonterminal ExternalDeclarationSeq as start symbol. Furthermore,
we specify a minimal test setup as follows:

setup [[
typedef int a;

]]

We implemented pairs of test cases, where each pair contains identical code snippets in different contexts.
For instance, to cover an ambiguous code snippet like a * b; we first implement one test case where we
put the snippet inside the body of a function with no arguments. As in our initial test setup we defined
a as a type alias, the desired parse result contains a pointer declaration. The SPT language allows us
to specify the expected parse result in terms of an AST pattern via parse to <pattern> and matches
it with the actual parse result. To check whether the disambiguation strategy chose the right parsing
option, it suffices to check for a declaration node (Dec) inside the function’s body. Irrelevant details are
abstracted away by means of the wildcard pattern ‘_’ which matches any term.

test Pointer Declaration [[
void f(void){
a* b;

}
]] parse to ExtDecSeq([_,FunDef(_,_,_,Block(Some(BlockItems([Dec(_,_)]))))])

In the second test case we put our ambiguous code fragment inside a function with integer arguments,
shadowing the typedef declaration of our test setup. As a consequence, we now expect a multiplicative
expression statement (ExprStm) instead of a pointer declaration.

test Multiplication [[
void f(int a, int b) {
a* b;

}
]] parse to ExtDecSeq([_,FunDef(_,_,_,Block(Some(BlockItems([ExprStm(_)]))))])

The test results suggest that our grammar specification, in combination with our typedef disambiguation
strategy, constitutes an adequate base for parsing C code. Still, we are facing the problem that we may
only resolve typedef-related ambiguities in full generality in case we apply it to a program’s entire AST.
That is, not only to the AST of the main source file, which possibly contains #include directives, but
to the AST that we obtain after preprocessing it. This is a restriction which is unpleasant, albeit quite
characteristic to C. We consequently also need to handle this issue in SugarC, which we will discuss
further in Section 4.4.
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4 SugarC as Instantiation of the Sugar* Framework

We implemented SugarC as an instantiation of the Sugar* language extensibility framework. The Sugar*
framework originated from SugarJ [4], which is an extensible language based on Java introducing the
concept of library-based language extensibility. Library-based extensibility describes the possibility of
activating language extensions via library imports. Such sugar libraries contain the definition of new
syntactical constructs and their mapping to the base language. A core feature of Sugar* is incremental
parsing, which reflects throughout large parts of the framework. Whenever an import of a sugar library
is encountered during parsing, the current grammar is composed with the new syntax and the parser is
adapted correspondingly.

In section 4.1 we show how we implemented SugarC as an instantiation of the Sugar* framework. We lay
focus on the implementation of header files in SugarC in section 4.2 and present our solution to separate
compilation in section 4.3. Finally, we outline possibilities and limitations regarding the integration of
our typedef disambiguation module into our language in section 4.4.

4.1 Implementation

To implement a Sugar* language plug-in, we basically need to provide an implementation of two
language-specific interfaces (IBaseLanguage and IBaseProcessor). In addition, we require the follow-
ing resources:

• a specification of the base language’s grammar (C.def)

• a specification of the extension syntax (SugarC.def)

• a pretty-printing table for unparsing ASTs (C.pp)

• modules specifying initial editor services, the initial grammar and initial transformations

The resulting project structure of SugarC is shown in Figure 4.1. In the previous section we already
described how we specified the base grammar for SugarC. In the following sections we illustrate our
implementation of SugarC’s extension syntax, show how we may unparse transformed syntax trees back
into readable code, and sketch our implementation of the interfaces IBaseLanguage and IBaseProcessor.
The remaining initialization modules are implemented straight-forward and will not be discussed in
further detail. The modules specifying the initial grammar and initial transformations simply compose
the SugarC grammar or parse signature, respectively, with modules of the Sugar* standard library. The
initial editor services, on the other hand, mainly specify specific colorings and code foldings.

4.1.1 Extension Syntax

In order to be able to add new syntactic sugar in SugarC, we need to define another grammar module
which specifies the syntax of extensions. The Sugar* framework performs incremental parsing, which
means that it processes only one top-level declaration at a time. This is necessary for activating ex-
tensions encountered during parsing, as in such case the parser needs to be adapted correspondingly.
Hence, we first need to specify what a top-level declaration is. Top-level declarations are represented by
the nonterminal ToplevelDeclaration, which Sugar* uses as start symbol for parsing. For SugarC, a
top-level declaration is either an external C declaration (CExternalDeclaration, cf. Listing 4.1, Line
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Figure 4.1.: SugarC project structure.

10), an extension definition (CExtension, Line 11), an extension import (CExtensionImport, Line 12)
or a declaration of a module dependency (CDependency, Line 13). We will explain the latter in section
4.3.

The syntax for external C declarations is already defined in our base grammar (org/sugarj/languages
/C). What remains to specify is how new syntactic sugar can be declared, and how it can be imported.
We specify a SugarC extension to be composed of an extension head and an extension body (cf. Listing
4.1, Line 17). Conforming to most existing Sugar* language plug-ins, we indicate the beginning of a
sugar declaration with the keyword sugar. It is followed by a C identifer, which is the name of the new
extension and hence the name of the grammar module that is created therefor. An extension body con-
sists of a possibly empty sequence of extension elements (ExtensionElem) framed by curly braces (Line
19). The syntax for such extension elements is specified in the module org/sugarj/languages/Sugar

and fully comprises SDF and Stratego, which makes it possible to even write extensions employing other
imported extensions.

We define the syntax for importing sugar modules analogous to preprocessor includes, but with keyword
import to point out its different semantics (cf. Listing 4.1, Line 23). Unlike common preprocessor
includes such as #include <stdio.h>, an import statement of the form #import "Sugar" first imports
extensions contained in the SugarC module Sugar and then, during pretty-printing, resolves to a #
include directive which includes the desugared file. In addition to sugar imports, we introduce a second
language construct indicated by keyword #needs (Line 27), which allows us to establish dependencies
between otherwise unrelated modules. We describe the purpose of this feature in detail in section 4.3.
1 definition
2
3 module org/sugarj/languages/SugarC
4 imports org/sugarj/languages/C
5 org/sugarj/languages/Sugar
6
7 exports
8 %% top-level declaration
9 context-free syntax

10 CExternalDeclaration -> ToplevelDeclaration
11 CExtension -> ToplevelDeclaration
12 CExtensionImport -> ToplevelDeclaration
13 CDependency -> ToplevelDeclaration
14
15 %% sugar declaration
16 context-free syntax
17 CExtensionHead CExtensionBody -> CExtension {"CExtension", prefer}
18 "sugar" CIdentifier -> CExtensionHead {"CExtensionHead"}
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19 "{" ExtensionElem* "}" -> CExtensionBody {"CExtensionBody"}
20
21 %% sugar import
22 context-free syntax
23 "#" "import" "\"" CIncludeFile "\"" -> CExtensionImport {"CExtensionImport"}

24
25 %% (indirect) module dependency
26 context-free syntax
27 "#" "needs" "\"" CIncludeFile "\"" -> CDependency {"CDependency"}
28
29 lexical restrictions
30 "sugar" -/- [a-zA-Z0-9\’\-\_]

Listing 4.1: Syntax for SugarC extensions.

4.1.2 Pretty Printing

Every syntactical construct we introduce in SugarC is mapped back to its corresponding C counterpart.
This transformation process takes place at the level of abstract syntax trees produced by the SGLR parser.
To be able to use existing C compilers to compile the result into an executable file, we need to unparse
the AST, i.e., transform it back into concrete C syntax. Pretty printing, in addition to mere unparsing,
attempts to make the code human readable by giving it a structured and clear visual appearance. We
make use of the Spoofax language workbench to generate a plain unparsing table for our C grammar,
which consists of 218 table entries. For SugarC, we add one more entry by hand, which in addition
allows to unparse sugar import statements. This additional rule allows us to resolve an import statement
like #import "Sugar" to a common #include directive that includes the desugared file corresponding
to module Sugar. The entries of the unparsing table are structured like the ones presented in Listing 4.2,
which exemplarily shows how we can unparse subtrees representing an if statement.

If -- KW["if"] KW["("] _1 KW[")"] _2
If -- KW["if"] KW["("] _1 KW[")"] _2 KW["else"] _3

Listing 4.2: Table entries for unparsing an If statement.

An If node in the abstract syntax tree may have either two or three child nodes, depending on whether
an else case has been specified. Thus, we have two corresponding table entries. Using the Box markup
language [19], we can augment entries of the generated table with appropriate markup to describe the
desired layout of program text. We augmented 102 entries with Box markup, resulting in consider-
able improvement of readability of the resulting program text. The remaining entries did not require
additional formatting and were left unchanged. Listing 4.3 shows the table entries from Listing 4.2
augmented with formatting information, which allows us to pretty-print an If subtree.

If -- V vs=0 is=2 [H hs=0 [KW["if"] KW["("] _1 KW[")"]] _2]
If -- V vs=0 [V vs=0 is=2 [H hs=0 [KW["if"] KW["("] _1 KW[")"]] _2] V vs=0 is=2

[KW["else"] _3]]

Listing 4.3: Table entries augmented with Box markup.

The basic idea of Box markup consists in composing sub-boxes. Every child node, as well as every
keyword or relevant symbol, represents a sub-box that can be arranged. We use the Box-operators V
and H with additional spacing information to specify the relative ordering of these boxes in a vertical or
horizontal way. For our If subtree, this yields the ordering depicted in Figure 4.2. The plain unparsing
rules generated by Spoofax, on the contrary, would result in single-line programs, where contents are
simply strung together in a vast sequence of characters.

18



Figure 4.2.: Pretty printing an If statement using Box markup.

AbstractBaseLanguage CLanguage<<IBaseLanguage>>

Figure 4.3.: Class hierarchy of CLanguage.

4.1.3 Language Interface

The interface IBaseLanguage abstracts away from the concrete base-language. It is stateless and provides
methods to reveal general information on the language, such as the name of the language or its base file
extension. It is implemented by the abstract class AbstractBaseLanguage which contains some additional
helper methods. This class is referenced by the interface IBaseProcessor and thus needs to be extended
in order to create a new Sugar* instance. Our base-language CLanguage therefore extends AbstractBase-
Language, which gives the class hierarchy presented in Figure 4.3. While being independent of the actual
processing of source files, the language interface allows to obtain a fresh base-language processor via
the factory method createNewProcessor. The Sugar* compiler calls this method once for every source
file it compiles. Hence, every source file has its own processor. Besides two methods to get the language
name and version respectively (getVersion and getLanguageName), the remaining methods can be
separated into three categories, which we will explain in the following.

File extensions. Every Sugar* instantiation has three kinds of file extensions. The method
getSugarFileExtension returns the extension of source files that may contain syntactic sugar.
In the case of SugarC this is "sugc". The extension of files containing desugared, plain base-
language code (getBaseFileExtension) and the extension of compiled base-language source files
(getBinaryFileExtension) in our case are "c" and "o", respectively. Additionally, in C we have a
file extension for header files ("h") which is returned by getHeaderFileExtension.

Initialization. For initialization, every base-language implementation needs to provide information
on where required resources are located. This includes the location of an SDF module defining
the initial grammar (getInitGrammar), which typically depends on other packaged SDF modules
(getPackagedGrammars). Our initial grammar for SugarC simply composes its base grammar (org
/sugarj/languages/SugarC) with a module of the Sugar* standard library (org/sugarj/stdlib/
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Common). We furthermore provide a Spoofax editor-service module (getInitEditor) which specifies
initial editor services such as code folding, code completion or the coloring of keywords. Finally, we
locate a Stratego module specifying the initial transformation (getInitTrans), which includes initial
analyses and desugarings. The language user later can extend all of the listed specifications with custom
rules.

AST predicates. At last, every base-language must implement language-specific predicates over ab-
stract syntax trees. The Sugar* framework distinguishes three kinds of top-level declarations: exten-
sion declarations, import declarations and base-language declarations. Those are language-specific and
captured by corresponding predicates which need to be implemented. For any given Stratego term,
the predicate isExtensionDecl in CLanguage determines whether the term is an application of con-
structor CExtension. Likewise, isImportDecl decides whether a given term is an application of
CExtensionImport. Our dependency construct #needs, which we will describe in detail in Section
4.3, technically is neither import nor base declaration. Yet, we have to opt for one of them, as the
Sugar* framework currently provides no other means to establish additional dependencies. We chose to
handle it as a base declaration, since we do not actually want the framework to import syntactic sugar
at this point. A term hence is a base declaration (isBaseDecl) in case it is an external C declaration
(ExtDec), a function definition (FunDef), a preprocessor include (Include or StdInclude), or a depen-
dency (CDependency). Optional predicates introduced in AbstractBaseLanguage by default return false
and thus need only be implemented in case the language requires it. For SugarC, none of them are of
relevance.

4.1.4 Processor Interface

The interface IBaseProcessor provides language-specific methods necessary for the processing of a source
file. Like the language interface, it is implemented by an abstract class (AbstractBaseProcessor) which
contains additional language-independent helper functions and must be extended in order to implement
a Sugar* language plug-in. Hence, CProcessor extends AbstractBaseProcessor, resulting in the class hi-
erarchy presented in Figure 4.4. Unlike the base-language representation, a base-language processor is
stateful. For every source file, the Sugar* compiler uses exactly one base-language processor. The com-
piler initializes this processor (init) by providing the path to the Sugar* source file and the compiler’s
environment, which contains common information like the source path or the include path.

A base-language processor is responsible for processing base-language declarations (processBaseDecl)
and module imports (processModuleImport). Both mainly consist in pretty-printing the abstract dec-
laration term and appending it to a list that maintains all encountered base-declarations or imports,
respectively. This way, a base-processor accumulates all desugared source file fragments during compi-
lation of a Sugar* source file. For pretty-printing (prettyPrint), we use commands provided by the
Sugar* framework to read our pretty-print table (org/sugarj/languages/C.pp) and use it for unpars-
ing abstract terms. The processing of extension declarations and extension imports is independent of the
concrete language and is taken care of by the framework.

When the source file is completely processed, Sugar* calls getGeneratedSource on the processor to as-
semble the desugared source file from the collected imports and body declarations. The Sugar* compiler
then requires the processor to compile the resulting source file (compile), which only contains plain
base-language code. For that purpose, CProcessor calls the static method gcc provided by utility class
CCommands, which invokes the C compiler GCC [18] with appropriate options.
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AbstractBaseProcessor CProcessor<<IBaseProcessor>>

Figure 4.4.: Class hierarchy of CProcessor.

4.2 Header Files in SugarC

The only way of achieving some kind of module structure in C consists in splitting a program into several
files. Related program code is bundled in a distinct file to make it easier to maintain and reuse it. To
be able to compile each file separately, we require forward declarations of used functions or variables in
order to prevent compile errors. Header files are used to provide such forward declarations and thus act
as an interface between different translation units. They are distinguished from common C files by their
file extension (.h) and typically have the same name as the corresponding C file which implements its
functions. The concept of header files is quite specific to C-like languages and not directly supported by
the Sugar* framework. Sugar* expects a language to have exactly one sugar file extension, as well as to
desugar source files into exactly one base file extension. In the following, we examine two possible ways
of circumventing this problem.

Header flags. One option consists in introducing the syntax for a header flag (#header), which inter-
nally marks a SugarC module as header file. This header flag is handled as if it were a base declaration
by adapting the predicate isBaseDecl in CLanguage. However, we treat a header flag specially when
processing it in processBaseDecl. Unlike actual base-language declarations, we do not want to pretty-
print header flags, as they in fact are no base-language constructs. In addition, we set an internal flag
in our current instance of CProcessor, indicating that the source file we are currently processing con-
tains a header flag. Consequently, we update the name of the target file, such that SugarC modules
containing a header flag are desugared into header files instead of C files. This approach, however,
does not comply with the typical header file format, in which we can directly recognize header files as
such by only taking a look at their file name. Even if we assume that, by convention, a header flag is al-
ways on top of a source file, we first need to open it to see whether it is a header or a common source file.

Naming conventions. The second approach, which is more conforming to C’s header file format, is to
impose naming conventions. As we cannot have two different file extensions like "sugc" and "sugh",
we declare files with suffix "_h.sugc" to be header files, and other files to be common source files. For
instance, a file test.sugc can have its forward declarations in a file test_h.sugc. Like with the header
flag approach, we adapt the name of the target file in CProcessor, to desugar files with header suffix into
header files instead of C files. In principle, this approach allows us to desugar a file test.sugc into
test.c, and equally test_h.sugc into test.h. Unfortunately, this conflicts with how Sugar* checks
whether a module is named correctly. A sugar module, i.e., an extension defined in a SugarC file, must
have the same name as the desugared source file. This means if we desugar test_h.sugc into test.h,
an extension defined in test_h.sugc must have the name test. If we now want to import this module
in test.sugc, we run into a circular dependency, as the module corresponding to test.sugc is named
test as well. Therefore, we desugar a header file test_h.sugc into test_h.h to avoid this problem.

In favor of conformity with C’s header file format, we chose the second approach to implement header
files in SugarC. Yet, SugarC header files are mainly provided for cosmetical reasons and are no compul-
sory feature of our language. This is because we may as well implement forward declarations in common
C files and include them in another file via #include "file.c". If we put aside programming conven-
tions, the only notable difference between header files and common C files is the fact that we usually do
not need to compile header files. The Sugar* framework, however, requires us to compile header files as
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well. For instance, if we process an import of a SugarC header like #import "test_h", the framework
expects that there exists a corresponding binary file test_h.o. If this is not the case, Sugar* does not
trigger further processing of the module import.

As a result, we treat header files basically the same way as we do with common SugarC files. The only
difference lies in the file extension of desugared files. Hence, the reason for providing declared header
files in SugarC mainly consists in conformity to C and its programming conventions.

4.3 Separate Compilation

In C, programs typically consist of several source files that each contain related program code. C source
files may contain preprocessor directives, such as #include <stdio.h>, which are resolved before the
actual compilation. Such preprocessed C source files are commonly referred to as translation units, as
they each are compiled independently of any other modules. This is called separate compilation and is
possible by providing forward declarations of functions or variables defined in other files, in order to
inform the compiler about their existence. For instance, if we want to use a function helloWorld which
is defined in another source file, we need to provide a forward declaration like the following to prevent
compile errors.

void helloWorld(void);

This function prototype informs the compiler about the function’s name and type signature, i.e., its arity,
parameter types and return type. It may be seen as guarantee to the compiler that somewhere in the
program there exists a corresponding definition, which legitimates the use of the function in our code.
We may directly place this forward declaration in our current file. It is, however, more convenient to
bundle it in a header file together with related code and simply include the header file.

What distinguishes separate compilation in C to how most other languages are compiled, is the fact that
C files are processed by merely relying on the interfaces of required modules. In Java, for instance, every
source file forms a compilation unit that is compiled on its own, as well. Yet, if we want to compile class
C , which depends on classes C1, . . . , Cn, those dependent classes C1, . . . , Cn must at least be available
in binary form, as Java has no separate interface files [1]. In addition, in case of circular imports it is
necessary to pass all involved source files to the compiler at once. Java files are compiled into class files
which are directly loaded and executed by the Java Virtual Machine (JVM), hence omitting a separate
linking stage. The Java build process and execution concept is presented in Figure 4.5. We will see that
also in SugarC we may not achieve true separate compilation as we have it in C. This is by no means a
drawback and simply follows from the general design of the Sugar* framework.

4.3.1 C Build Process

The build process, i.e., the process of turning source files into an executable program, in C consists of
two major phases: compiling and linking. At first, C source files are separately compiled into object files
(.o). Using GCC, this is done via a command like the following, where the -c option requires GCC to
only execute the compilation stage and perform no linking.

$ gcc -c file_1.c file_2.c .. file_n.c

This command results in the generation of files file_1.o, file_2.o, . . . , file_n.o. Those object files
contain relocatable machine code that is not directly executable. Several object files refer to each other by
means of symbols, which can be viewed as placeholders for program code contained in other modules. In
order to fill in the gaps and hence to connect the unrelated object files, we execute an additional linking
stage. In this stage, the linker combines object files to an executable program or library by resolving
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Figure 4.5.: Java classes are directly loaded and executed by the JVM.

Figure 4.6.: Separate compilation in C requires a separate linking stage.

symbols and relocating program code, i.e., assigning run time addresses. This may be done by simply
passing the object files to GCC. In addition, if we want to specify the name of the resulting binary, we
may use GCC’s output flag -o and prepend the desired file name.

$ gcc file_1.o file_2.o .. file_n.o -o HelloWorld

In case one of the listed files contains a main function, the given command results in the generation of
an executable program HelloWorld. An overview of the general build process is given in Figure 4.6.

4.3.2 Linking in SugarC

The separate linking stage is quite specific to C-like languages and constitutes one of the major chal-
lenges of our implementation of SugarC. As the Sugar* framework originates from an extensible version
of Java, it is tailored to languages like Java, Scala or Haskell that do not require such a linking stage.
By this time, the Sugar* framework does not provide support for a separate linking stage. Moreover,
performing global linking in some kind of post-processing phase would even contradict the framework’s
modular way of activating extensions. We thus initiate linking only when processing special modules,
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(a) Main.sugc

#import "Hello_h"

int main()
{
helloWorld();
return 0;

}

(b) Hello_h.sugc
void helloWorld();

(c) Hello.sugc
#include <stdio.h>

void helloWorld()
{

printf("Hello!\n");
}

Figure 4.7.: Example program in SugarC.

which we want to refer to as linker modules.

We identify a linker module by simply examining whether it contains a main function, which represents
the entry point of any C program. For this purpose we make use of utility class TermFinder (org/sugarj
/util/TermFinder.java), to check for every base declaration term we process (processBaseDecl)
whether it contains a function definition with identifier main. In such case, we set an internal flag in our
current instance of CProcessor to mark the current module as linker module. Whenever the framework
invokes compilation on a linker module, we execute an additional linking stage. In this stage, we collect
all modules on which the linker module depends and link the corresponding binaries. Obviously, to do
so we need to ensure that the dependent modules are already available in binary form at the time we
want to perform linking. For this we make use of the dependency management system provided by the
Sugar* framework.

4.3.3 Dependency Management

Especially when a program gets more complex, it can be time-consuming to recompile the whole project
every time we modify a single file. Yet, if we make adjustments in a specific module, we ideally want to
recompile every module which depends on it. The Sugar* framework thus takes care of collecting depen-
dencies between modules in order to trigger recompilation only if necessary. The framework identifies
dependencies of a given Sugar* module by examining which modules it imports, as well as the resulting
transitive imports. However, this approach is tailored towards languages that do not employ separate
compilation, i.e., languages that do not make use of separate interface files.

We demonstrate this by the following scenario: An example SugarC program consists of three modules,
as Figure 4.7 shows. The module Main contains the main function and imports the interface file Hello_h,
which is implemented by module Hello. When Sugar* processes Main, it identifies Hello_h as only mod-
ule dependency, as Main imports it. Consequently, if necessary, the framework triggers compilation of
the imported header module to make sure it is available in binary form 1. However, it cannot establish
a connection to the corresponding implementation file. This is adequate for separate compilation, but
prevents us from linking files appropriately, as we cannot be sure whether Hello has already been com-
piled at the time we want to compile and link Main. We may only perform linking if we know that every
involved module is actually available in binary form. Thus, we need to inform the Sugar* framework
about the additional dependencies, in order to make use of its recompilation concept.

For this purpose, we introduce an additional language construct that may be used to declare further
module dependencies. The syntax for this construct is similar to the syntax of sugar imports, but headed
1 As we already mentioned earlier, there is no actual need to compile header files. Still, the framework does not know

about the concept of header files and thus treats them like common source files.
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(a) Before. (b) After.

Figure 4.8.: Establishing dependencies between header and implementation files.

by the keyword #needs. As a result, we may declare a module dependency via a statement of the form
#needs "module". In order to implement the semantics for this construct, the Sugar* framework allows
for two different options. The first option consists in providing it with the same semantics as common
sugar imports, but leaving out the pretty-printing step that we have for #import statements. As desired,
the framework consequently registers a dependency when processing such a statement. At the same
time, however, it imports extensions from the declared module. This is both an unexpected side-effect
and unnecessary processing overhead. For this reason, we chose an alternative option that Sugar* pro-
vides to establish module dependencies.

Sugar* permits base-language constructs to establish further module dependencies as well, as for in-
stance Java classes may contain qualified names that reference external classes (e.g. Java.util.String).
Hence, we handle our #needs construct as if it were a base-language declaration by adapting the pred-
icate isBaseDecl in CLanguage correspondingly. In addition, we adapt the method processBaseDecl

in CProcessor, in order to implement the specific handling for dependency declarations, as shown in
Listing 4.4. In case a base-declaration term is a dependency declaration (CDependency), we extract
the module name and return a list which contains it. The framework consequently registers the addi-
tional dependency and takes care of triggering compilation of the corresponding source files, whenever
necessary.

1 @Override
2 public List<String> processBaseDecl(IStrategoTerm toplevelDecl)
3 throws IOException {
4
5 if (isApplication(toplevelDecl, "CDependency")) {
6 List<String> dependencies = new ArrayList<String>();
7 String module = getModulePath(toplevelDecl);
8 dependencies.add(module);
9

10 return dependencies;
11 }
12
13 /* Otherwise, pretty-print term
14 * and return empty list. */
15 return Collections.emptyList();
16 }

Listing 4.4: Handling of dependency declarations.

This way, we may ensure that all modules required for linking are already available in binary form
after processing the main module. Referring to our example, we may resolve the linking problem by
establishing a connection between Hello_h and Hello, as illustrated in Figure 4.8. For this we simply
insert the following line into Hello_h.

#needs "Hello"

Still, to perform linking we need to know exactly which files to pass to the linker. In order to be able to
collect those object files that are relevant for linking, we create auxiliary import files for SugarC modules.
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To write those files, we call the method writeDepdendencyFile provided by helper class CCommands,
directly before invoking compilation of the desugared source file. The resulting file contains information
on both imports and plain dependencies, which may look like the following.

Import:Hello_h.h
Dep:Hello.c

This information allows to trace back all dependencies of a given module. Beginning with the main
module, we recursively follow the links to dependent modules, while collecting direct or transitive de-
pendencies. The concrete implementation of the responsible method getDependencies is presented in
Listing 4.5. Notably, we do not collect direct or transitive imports, as those files will be textually included
by the C preprocessor and consequently would result in duplicate symbols.
1 private static Set<AbsolutePath> getDependencies(Path outFile,
2 List<Path> includePaths) {
3 HashMap<String, Set<AbsolutePath>> refMap = readDependencyFile(outFile,
4 includePaths);
5 Set<AbsolutePath> deps = new HashSet<AbsolutePath>();
6 /* collect direct dependencies */
7 deps.addAll(refMap.get(DEP_PREFIX));
8
9 Set<AbsolutePath> refs = new HashSet<AbsolutePath>();

10 refs.addAll(refMap.get(IMPORT_PREFIX));
11 refs.addAll(deps);
12
13 /* recursively collect dependencies for all
14 * direct dependencies and imports */
15 for (AbsolutePath ref : refs) {
16 deps.addAll(getDependencies(ref, includePaths));
17 }
18
19 return deps;
20 }

Listing 4.5: Collecting dependent modules that are relevant for linking.

Via calling getDependencies, we may obtain all relevant base files. The last step consists in replacing
the file extensions to obtain the corresponding object files, which can finally be handed over to the linker.

4.4 Integrating the Disambiguation Module

The presence of the C preprocessor and its close ties into the C programming language poses a serious
problem when it comes to processing C code. Common tasks like static analyses, automated refactorings,
or even general parsing are obstructed by textual includes and compile-time variability. In order to by-
pass the latter, we only provided our language with a minimal subset of existing preprocessor directives,
omitting features like #define or #ifdef. Textual includes, however, constitute a major issue regarding
the integration of our typedef-disambiguation strategy, as presented in Section 3.2. To reliably resolve
typedef-related ambiguities like a * b; we need to apply our disambiguation filter to the entire pro-
gram’s AST. In return, this means we first need to resolve #include directives by passing the source
files to the C preprocessor. Otherwise, it is not possible for our disambiguator to know whether a given
identifier is a type alias or not, as there might be typedef declarations contained in included header files.

In the context of the Sugar* framework, it constitutes no sensible solution to preprocess files for the pur-
pose of resolving ambiguities. A solution to this problem might be accomplished by either using unsound
heuristics, or by making use of some kind of reversible preprocessor. The latter might allow to preprocess
files in order to resolve ambiguities, and include AST annotations that make it possible to transform it
back into unpreprocessed code [9]. Yet, this approach is coupled with possibly vast processing overhead.
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Even small programs quickly result in hundreds of lines of code after preprocessing them, in case they
include a standard library.

Notwithstanding this problem, we may integrate our disambiguation strategy into our language and use
it with certain limitations. This requires to add a disambiguation phase to Sugar*’s processing pipeline,
and to make a few adaptions in CProcessor that allow Sugar* to locate the disambiguation module. The
resulting limitations are the following:

• We may only resolve ambiguities reliably if we restrict the use of type aliases to those declared in
the current source file.

• Due to the incremental nature of the Sugar* framework, we may only disambiguate one top-level
declaration at a time. Yet, if we always place sugar imports on top of a source file, the remaining
part may be disambiguated at once.
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5 Case Study: A DSL for Finite-State Machines

In this section, we present a case study to demonstrate the benefits and functionality of SugarC. Partic-
ularly, we show how we implemented a small domain-specific language in SugarC, which allows us to
implement finite-state machines in a concise, declarative way. The full source code of this case study can
be found online at https://github.com/c-oberle/fsm-casestudy.

A domain-specific language (DSL), as opposed to general-purpose languages like C or Java, is a program-
ming language specialized to a particular application domain. This means, a DSL raises the abstraction
level to allow a natural, high-level description of problems related to its domain. As a consequence, a
DSL is able to increase productivity, reduce boilerplate code, and even may reduce required program-
ming expertise [16]. Extensible languages like SugarC provide a perfect base for embedding DSLs, as we
can directly extend our base language with the domain-specific syntax. In the following, we show how
we can implement a small DSL in SugarC, which facilitates the implementation of finite-state machines.

A finite-state machine (FSM) is an abstract model of computation which can be used to model simple se-
quential logic circuits, as well as whole computer programs. It constitutes a quite fundamental concept
which may be observed in many areas of everyday life. Simple examples include devices like vending
machines, ATMs, elevators or traffic lights. But also more sophisticated concepts like communication
protocols, compiler front ends or neurological systems are frequently modeled by means of finite state
machines. As the name suggests, a finite-state machine consists of a finite number of states, with de-
clared start and end states. Transitions between two states are commonly formalized as tuples of the
form (S, E, S0), which expresses that event E in state S causes a transition to state S0.

As an example, we construct a state machine modeling a simple vending machine. Our vending machine
only sells a single product which may be purchased by inserting a coin and pushing a button to confirm.
After confirming the purchase, the machine gives out the product and spare coins. It then waits until the
product has been removed until it is ready again to process the next purchase. While the product is still
in the output area, the machine does not accept inserted coins. The machine is illustrated in Figure 5.1
and consists of three states:

• S0: Idle, waiting for input.

• S1: Coin inserted, wait for confirmation.

• S2: Purchase confirmed, give out product.

S0start S1 S2
InsertCoin

Abort

Confirm

InsertCoin InsertCoin

TakeProduct

Figure 5.1.: FSM representing a simple vending machine.

If we want to implement our vending machine in C, we may model both states and events as enum, as
shown in Figure 5.2. In order to implement the actual state machine logic, we may read incoming events
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typedef enum {
Idle,
CoinInserted,
GiveProduct

} State;

(a) States

typedef enum {
InsertCoin,
Abort,
Confirm,
TakeProduct

} Event;

(b) Events

Figure 5.2.: Modelling states and events as enumeration.

in an infinite loop and switch over the current state and event in order to execute the correct transition
action. However, even for very basic state machines this quickly results in expansive switch-case blocks,
as Listing 5.1 shows.
1 int main(void)
2 {
3 State state = Idle;
4
5 while(1)
6 {
7 Event event = readEvent();
8
9 switch(state)

10 {
11 case Idle:
12 switch(event)
13 {
14 case InsertCoin:
15 state = CoinInserted;
16 break;
17 default:
18 break;
19 }
20 break;
21
22 case CoinInserted:
23 switch(event)
24 {
25 case Abort:
26 state = Idle;
27 break;
28 case Confirm:
29 state = GiveProduct;
30 break;
31 case InsertCoin:
32 state = CoinInserted;
33 default:
34 break;
35 }
36 break;
37 case GiveProduct:
38 switch(event)
39 {
40 case takeProduct:
41 state = Idle;
42 break;
43 case InsertCoin:
44 state = GiveProduct;
45 break;
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46 default:
47 break;
48 }
49 break;
50 }
51 }
52 }

Listing 5.1: Basic state machine logic in C.

This way of specifying the behavior of our state machine is unpleasant, as it involves repetitive code
patterns and prevents us from focusing on the actual behavior instead of implementation details. We
thus add high-level syntax for state machines, which allows us to specify our vending machine in a
natural, precise and less error-prone way, as Listing 5.2 demonstrates.
1 statemachine {
2 initial state Init
3
4 input { ... }
5
6 events InsertCoin, Abort, Confirm, TakeProduct
7
8 state Idle {
9 InsertCoin => CoinInserted

10 Abort => Idle
11 }
12 state CoinInserted {
13 Confirm => GiveProduct
14 InsertCoin => CoinInserted
15 Abort => Idle
16 }
17 state GiveProduct {
18 TakeProduct => Idle
19 }
20 }

Listing 5.2: FSM in SugarC. 1

Our state machine specification, indicated by the keyword statemachine, consists of four compulsory
parts:

• A declaration of the initial state (initial state).

• A specification of how we get the next event (input).

• A declaration of possible events (events).

• A declaration of available states and corresponding transitions (state).

In addition, we also provide language constructs for specifying data on which the state machine may
operate, as well as entry and exit actions for states. For instance, we may add a counter to our state ma-
chine which counts the number of sold products. This only requires minor additions to our specification
in Listing 5.2. First, we add a data block to specify and initialize our counter.

data { int productsSold = 0; }

Then we specify an entry action for state GiveProduct to increment the counter whenever the vending
machine gives out a product.

state GiveProduct {
enter { productsSold++; }
TakeProduct => Idle

}
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Syntax Desugaring Editor services

Rules 19 36 6
SLOC 26 235 9

Table 5.1.: Implementation e�ort for our SugarC state machine extension.

Internally, we create entry and exit functions for every state and surround statements referring to a
state transition with corresponding function calls. For example, if we are in state Idle, we surround a
transition to state CoinInserted as follows:

exit_Idle();
state = CoinInserted; // state transition
enter_CoinInserted();

This may seem like a trivial task, and in fact can be achieved with relatively low efforts in SugarC. In C,
on the contrary, this task is highly error-prone as it is easy to misplace or completely miss function calls,
resulting in inconsistencies that are hard to trace back in a larger setting.

We now want to lay focus on how we implemented the transformations that take on the writing of the
desired C program. Basically, our main desugaring rule rewrites a state machine construct into a list of
top-level declarations. This list contains all necessary declarations, such as the data declarations, entry
and exit functions for states, and of course the main function which contains the actual state machine
logic. It is important that those declarations are ordered properly, as C requires declaration before use.
In order to obtain the desired list of top-level declarations, we apply several minor desugarings to specific
parts of the state machine. We exemplarily describe a desugaring that allows us to get the entry function
for a given state, as shown in Listing 5.3. This rule transforms a State subtree into a void function,
which has a name depending on the state’s name and a function body corresponding to the state’s entry
action. If we apply this transformation rule to state GiveProduct, we get the result as presented in
Figure 5.3.
1 state-to-entry-fun :
2 State(name, StateBody(entry, _, _))
3 -> VoidFun(fun-name, block)
4
5 with
6 fun-name := <get-entry-fun-id> name;
7 block := <state-entry-to-block> entry

Listing 5.3: Transforming a state into a corresponding entry function.

(a) Before transformation.

state GiveProduct {
enter { productsSold++; }
TakeProduct => Idle

}

(b) After transformation.

void enter_GiveProduct() {
productsSold++;

}

Figure 5.3.: Transforming state GiveProduct into a corresponding entry function.

Table 5.1 shows the overall implementation efforts for our state machine extension in SugarC. A side-by-
side comparison of a concrete state machine implementation in SugarC and its corresponding C coun-
terpart illustrates the benefits of this extension. Our full vending machine example 2, which simulates
2 https://github.com/c-oberle/fsm-casestudy/blob/master/test/VendingMachine.sugc
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a FSM on the command line, consists of 64 source lines of code (SLOC). The plain C implementation,
on the contrary, sums up to 142 SLOC. In addition, SugarC’s support for editor extensions allows us to
make the implementation of state machines even more convenient. Code folding, as shown in Figure
5.4, allows to hide implementation details, which makes it easier to focus on relevant aspects.

Figure 5.4.: Code folding for state machines.

To conclude our case study, we briefly want to refer to an existing C framework 3 that is meant to
facilitate the implementation of event-driven state machines. This framework promotes the reduction of
implementation overhead by enabling the definition of state transitions in terms of look-up tables. Yet, it
makes heavy use of unsafe macros which give rise to unpleasant errors. In general, any such framework
implemented in plain C falls short of achieving support for domain abstractions the way SugarC does.

3 http://www.block-net.de/Programmierung/cpp/fsm/fsm.html
3 Syntax based on https://github.com/seba–/sugarj/blob/master/case-studies/statemachine/
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6 Related Work

There exist quite a few approaches that aim at providing C with high-level features, which reflects the
wish of programmers for C makeovers like SugarC. Most approaches, however, do not provide language
extensibility as integral language feature like SugarC does, but rather build on extensibility of compilers.
The most prominent example of an extended version of C probably is Objective-C [12], which is a
strict superset of C and extends it with object orientation. In the following, we present some notable
approaches to achieve extensibility for C and put them face-to-face with SugarC. Table 6.1 provides a
direct comparison of the presented approaches.

Cello
Cello [10] is a common C library that is meant to introduce higher level programming to C. Hence, it
allows to include syntactic sugar with the same ease as SugarC, via a simple library import. Among its
features are interfaces, exceptions, constructors and destructors for aided memory management, duck
typing, which allows for generic functions, and some more syntactic sugar to increase readability of
code. As all of those features are implemented in plain C, with the help of lexical macros provided by
the C preprocessor, they come with several major drawbacks. For instance, to achieve generic functions
Cello uses void pointers, which makes functions work for all pointer types. Consequently, we forgo the
compiler’s type checking, which is an unsatisfactory result. Yet, Cello’s macro-based approach to emulate
high-level language features constitutes common practice among C programmers. If programmers wish
to have a foreach construct to loop over data sets, they define a macro that emulates the corresponding
functionality, accepting the loss of basic guarantees on syntactical correctness. SugarC, on the contrary,
always provides such guarantees, as it operates on abstract syntax trees rather than lexical tokens. In
general, Cello’s slogan of “hacking C to its limits” seems like an adequate description, as it tries to make
the most of what C and its preprocessor allow for. Still, it definitely falls short when comparing it to
more sophisticated approaches to achieve higher level programming in C.

xtc
A more sophisticated approach to extending C is represented by xtc [8] (originally extensible C , later
extensible Compiler), which is an extensible compiler framework for C and Java. xtc shares SugarC’s
concept of transforming extended program code in the form of syntax trees into semantically equivalent
C programs. Extensions may be implemented in terms of hygienic macros, which specify grammar
modifications, AST transformations or type constraints. xtc makes use of so-called parsing expression
grammars (PEGs) and employs a packrat parser generator. A packrat parser is a recursive descent parser
that may perform backtracking and ensures linear-time performance by memoizing intermediate results.
Notably, PEGs are closed under composition, which implies modularity and composability of extensions
as we have it in SugarC. Unlike context-free grammars specified in SDF, PEGs cannot be ambiguous, since
they employ a choice operator that always selects the first match. The typedef problem is addressed
by adding stateful transaction attributes to production rules that allow to store context information in
global hash tables. Still, like SugarC, it falls short as soon as preprocessor includes are involved.

mbeddr
The modular C-variant mbeddr [24] is based on the JetBrains Meta Programming System (MPS) and
focusses on embedded software engineering. It features language extensions with regard to likewise
syntax, type system, semantics and IDE and thus represents one of the richest approaches to make C
extensible that we are aware of. mbeddr avoids processing problems related to the C preprocessor by
completely omitting preprocessor directives. Instead, mbeddr features special exports of symbol dec-
larations which obviates the need for header files. The underlying language workbench MPS uses a
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Approach Extensible
Syntax

Extensible
static

Analyses

Extensible
Editor

Services

Modular
Reasoning

Self-
Extensibility

Extensible
Debugger

SugarC      #
mbeddr       
xtc  # #  # #
Cello # # # # # #

Table 6.1.: Comparison of the presented approaches ( supported, # not supported)

projectional editor that allows to directly operate on an abstract model that is projected to human-
friendly views. As a result, non-textual notations like tables or mathematical symbols may increase
programming comfort considerably. Like SugarC, mbeddr translates extended source code to standard C
and uses GCC for compilation. On top of that, it integrates the debugger GDB to even provide support
for extensible debugging.
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7 Conclusion and Future Work

We presented the extensible C-based language SugarC as solution to leverage C programming to a higher
abstraction level, while retaining the full range of its low-level capabilities. As instance of the Sugar* ex-
tensibility framework and with the help of the Spoofax language workbench, the implementation efforts
could be kept within reasonable bounds. Table 7.1 shows a comparison of the implementation efforts
for realizing SugarC and SugarJ, respectively. Besides the grammar definition, the overhead for SugarC
mainly lies in the processing part, for which we employ several helper classes. The main challenges for
SugarC were constituted by C-specific peculiarities, most notably by its interface-based program design
to enable separate compilation. We compensated Sugar*’s missing support for separate compilation by
integrating a separate linking stage into our language. To conform to the incremental nature of the
Sugar* framework, we only execute this linking stage when processing a program’s main module, which
we identify by examining whether it contains a main function. In order to be able to link programs prop-
erly, we ensure that required modules are available in binary form by establishing additional module
dependencies between header and implementation files.

Base Grammar Initial Grammar IBaseLanguage IBaseProcessor Helper Classes

SugarC 1359 28 96 187 277
SugarJ 1165 58 177 203 150 1

Table 7.1.: SLOC for realizing SugarC in comparison to SugarJ.

We gave an insight into the possibilities of SugarC by providing a language extension for finite state
machines. An example SugarC program which simulates a basic vending machine on the command line
demonstrates the practicability and benefits of this extension. Likewise, other extensions like foreach
loops or aided memory management may be implemented to increase programming comfort. Yet, SugarC
inherits some C-specific properties which pose drawbacks that are hard to resolve. The hidden context-
sensitivity of C’s grammar gives rise to syntactic ambiguities that may only be resolved by providing
context information. Our proposed disambiguation strategy is capable of resolving such ambiguities,
yet applies a closed-world assumption. This means we may only expect it to always choose the right
parsing option in case we apply it to the whole program’s AST. In the presence of textual #include
directives, this requires to first pass the program to the C preprocessor, which is no sensible solution
in the context of the Sugar* framework. This problem could possibly be resolved by means of some
kind of reversible preprocessor, as proposed in [9]. Still, we may perfectly use our disambiguator on un-
preprocessed source files, as long as we restrict our use of type aliases to those declared in the current file.

For future work, our investigations regarding the support for separately compiled base-languages pave
the way for extensibility of related languages like C++ or Objective-C. As Objective-C is a strict superset
of C, our modular C grammar even provides a perfect base for an extensible version of it. Furthermore,
one could think of integrating support for separately compiled languages directly into the Sugar* frame-
work, in order to simplify and unify their implementation. Specifically, this includes the integration of
concepts like our proposed #needs construct to establish additional module dependencies, with the mere
purpose of influencing the recompilation process. But also the support for header and implementation
files and their corresponding extensions might be integrated into the framework.

1 SugarJ’s language-specific helper classes are directly integrated into the Sugar* framework.
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A Full Typedef Disambiguation

module disamb

imports

libstratego-lib
libstratego-aterm
libstratego-sglr

include/C

strategies

disamb =
rules(td-names := [])
; traverse(try(disamb-typedef))

traverse(s) =
s; all(enter-scope(s) <+ traverse(s))

disamb-typedef =
resolve-amb ; try(collect-name)
<+ collect-name

collect-name =
collect-td-name
<+ collect-id

enter-scope(s) =
(?FunDef(_, _, _, _) <+ ?Block(_) <+ ?ForDec(_, _, _, _))
; {| td-names : traverse(s) |}

collect-td-name =
?Dec(DecSpecifierSeq([StorageClassSpecifier(Typedef()), _]), Some(inits))
; update-td-names(union | <collect-decl-ids> inits)

collect-id =
?Dec(_, Some(inits))
; update-td-names(diff | <collect-decl-ids> inits)

<+ ?ParamDec(_, decl)
; update-td-names(diff | [<extract-decl-id> decl])

update-td-names(s | ids) =
rules(td-names := <s> (<td-names>, ids))

collect-decl-ids =
?InitDeclaratorList(decls)
; <foldl(\(decl, ids) ->

<union> (ids, [<extract-decl-id> decl]) \)> (decls, [])

extract-decl-id =
(?Declarator(_, dd) <+ ?InitDeclarator(Declarator(_, dd), _))
; <collect-one(?Id(_))> dd
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contains-invalid-name =
collect-all(?TypedefName(n); not(<elem> (n, <td-names>)))

; not(?[])
<+ collect-all(not(?TypedefName(_)); one(<elem> (<id>, <td-names>)))

; not(?[])

rules

resolve-amb :
a@amb([x, y]) -> res

with
amb([x’, y’]) := <rec x(all(resolve-amb <+ x))> a;
res := <if(<contains-invalid-name> x’, !y’, !x’)>
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