A web-based code editor
using the Monto framework

Ein web-basierter Code Editor unter Verwendung des Monto Frameworks
Bachelor-Thesis von Wulf Pfeiffer

Tag der Einreichung: 9. Oktober 2015

1. Gutachten: Dr. rer. nat. Sebastian Erdweg

2. Gutachten: Prof. Dr.-Ing. Mira Mezini

TECHNISCHE
UNIVERSITAT
DARMSTADT

Department of Computer Science
Software Technology Group

A web-based code editor using the Monto framework
Ein web-basierter Code Editor unter Verwendung des Monto Frameworks

Vorgelegte Bachelor-Thesis von Wulf Pfeiffer

1. Gutachten: Dr. rer. nat. Sebastian Erdweg
2. Gutachten: Prof. Dr.-Ing. Mira Mezini

Tag der Einreichung: 9. Oktober 2015

Erklérung zur Bachelor-Thesis

Hiermit versichere ich, die vorliegende Bachelor-Thesis ohne Hilfe Dritter nur mit
den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die
aus Quellen entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit
hat in gleicher oder ahnlicher Form noch keiner Priifungsbehérde vorgelegen.

Darmstadt, den 9. Oktober 2015

(Wulf Pfeiffer)

Contents
1. Introduction 5
1.1. Scopeof Work e 6
1.2. Overviewofthe Thesis i 6
2. Background: Fundamentals of Monto 7
2.1. Architecture of MONTO i i i e e 7
2.2, MONtO SOUICES v i it e 8
2.3. The Monto Broker. e e 8
2.4. Services for MONITO o v v v it e e e e e e e e e e e e e e e e 9
2.5. Monto Sinks e e e e 10
3. Web-based Code Editor 11
3.1. Concept and Development v i m ittt 11
3.2. Websockets e e e e 11
3.3. Software Design i e e e e e e e e 12
3.4. Implementationof the Editor, 14
3.5. Graphical User Interface of the Editor. 14
4. Implementation of JavaScript Services 17
4.1. Existing Product Types ot it i e e 17
4.2. The Errors’ Product o i e e e 18
5. Discoverability in the Monto Framework 19
5.1. Registering ServiCes v v v v v i e i e e e e e e e e e e e e e 19
5.2, DiSCOVEIING SEIVICES v v v vttt et et e e e e e e e e e e e e e e 21
6. Configurability of the Monto Framework 23
6.1. Configuringthe Broker e 23
6.2. Configuring ServiCes o v i i it e e e e e 23
7. Evaluation and Validation 28
8. Related Work 30
9. Conclusion and Future Work 31
A. Abbreviations 32
B. JSON Schemas 33
B.1. Discoverability e 34
B.2. Configurability e 37

List of Figures

2.1.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.

5.1
5.2,

6.1.

Monto Architecture i e e 7
WebSocket-ZeroMQ-ProXy o o v i it e 11
Web-based Editor Design e 13
Responsive Behaviour of the GUI with Bootstrap 15
Editor Tab. e 15
Options Tab e 16
Messages Tab e e e 16
Registration Process e e 19
Discovery Process o e e e e e e e 21
Configuration Process vt it it i et e e e e 26

Abstract

Code editors and Integrated Development Environments (IDEs) are widely used tools for develop-
ers to improve coding productivity. They help visualizing code by highlighting specific keywords,
show warnings about erroneous code and increase working speed by providing suggestions or
completions, while writing. Often, such programs also have a Application Programming Inter-
face (API) to enable users the development of plug-ins for extension. However, those plug-ins
are not interchangeable through several different editors or IDEs, leading to several reimple-
mentations for the same purpose. This also results in plug-ins with different quality.

To overcome this problem, a framework, called Monto, was created by Sloane, et al. [36]. The
framework consists of a broker and services for several languages with different tasks. To use
the services, an IDE must implement a plug-in that enables it to communicate with the broker
and to process products received by the services. This leads to only one implementation for, for
example, a new programming language as a new service for Monto, instead of an implementa-
tion for each IDE. Every IDE that uses the Monto framework can then access the service. Keidel
introduced some standardized products and a broker [22] that keeps state of services to manage
dependencies between each other in his Master Thesis [35]. He also implemented several new
services for the programming language Java and developed a Monto plug-in for the IDE called
Eclipse [23].

In the present thesis, the framework is even further improved and extended by creating a web-
based code editor that uses Monto, implementing several services for JavaScript and designing a
new errors product type for services. Also the functionality of registering services to the broker,
discovering available services and configuring services and the broker through clients are added
to the framework.

1 Introduction

Developers nowadays often write code using an code editor or an IDE to improve their effec-
tiveness and to reduce syntactical and semantical mistakes.

A code editor typically achieves this by providing instruments like syntax highlighting or code
completion for several programming languages. An IDE though, does not only consist of a code
editor and several other tools, that support the developer, but also often contains toolchains
with compilers and debuggers to run and analyze a project within the IDE. This significantly
improves the process of development. As IDEs usually contain a code editor, in the following
the term IDE stands for both, a code editor and an IDE.

Most IDEs also provide an API to enable its community to create plug-ins for further im-
provements of the IDE. A reason to implement a new plug-in would be, for example, a new
programming language that should be supported. However, there exist a large amount of differ-
ent programming languages and not every IDE provides the same support for all of them. Also
it is rarely the case that a plug-in, that is written for one IDE, can also be used for another one.

Therefore the developers or people from the community of such programming tools have to
reimplement support for each language, which should be usable. This has to be done for every
IDE that should support the language. For m programming languages and n IDEs, this leads
to m x n implementations and yet each IDE would not have the same quality of support for a
programming language.

To address this problem, Sloane, et al. [36] came up with an approach to outsource tools into
services so that each service can be accessed by every IDE. This leads to m + n implementations
for m programming languages and n IDEs. This approach was realized by Sloane, et al. in a
project called Monto [20]. Monto is a framework that consists of services, which each provide a
tool for a programming language, and a broker that IDEs can communicate with to access the
services. Sloane, et al. call this a Disintegrated Development Environment (DDE).

There are services that only depend on the source code to work with, but also others that
additionally require output of other services. The initial Monto project focuses on a simple, easy
to implement and stateless broker that does not care about such dependencies and in essence
just forwards source code and resulting service output to other services and clients. On the other
hand, services have to be stateful if they require another service and have to wait to receive all
dependencies until they can complete their task. This might end in services that are blocked
forever if they do not receive every dependency. Also implementing a new service is a non-
trivial task as the developer has to implement state if the service has more dependencies than
the source itself.

For those reasons Keidel modified the Monto framework in his Master Thesis [35] to invert the
responsibility of dependencies. In his version of Monto the services are stateless and do not take
care of their dependencies because the broker is stateful and only sends a complete package of
all required dependencies to the service when everything is available.

Right now clients are not aware of which services are available through the broker and there-
fore don’t know which languages and what kind of services they can use. Hence, clients receive
output from every available service and have to sort out everything that they do not need. Also
some services would be able to provide more specialized output through configuration, but right

5

now there is no way to do so through the client, as no information about available services and
their possible configuration options is accessible.

1.1 Scope of Work

Within the scope of this bachelor thesis a web-based editor, that uses the Monto framework
components, has to be implemented by using an existing JavaScript code editor framework.
Also a new set of services for the programming language JavaScript is created for existing service
types that were designed and implemented earlier by Keidel for Java. To extend the repertoire,
also a new product type for services that detect errors is designed. Furthermore the issues
discussed in the introduction should be addressed by extending the broker and, if required, the
services to enable the client to discover and configure services, but also to configure the broker
by providing the possibility to select only required services.

1.2 Overview of the Thesis

In the next chapter, a more detailed introduction into the Monto framework is given to provide
a fundamental and solid knowledge of the architecture and implementation. The 3rd chapter
describes the process of designing and implementing the web-based editor. In chapter 4 the
implementation of JavaScript services and a new product type, including a new service, are
discussed. Chapter 5 discusses the discoverability of services and their registration to the broker,
whereas the 6th chapter contains information about the selection and configuration of services.
The evaluation of the previous chapters can be found in chapter 7. Information about related
work to the topic of this thesis can be read in chapter 8. In the last chapter a conclusion of the
work of this bachelor thesis is drawn and discussed.

2 Background: Fundamentals of Monto

This chapter gives a brief summary of the current state of the Monto framework modified by
Keidel. It describes the basic architecture and explains the tasks of its components and how they
behave to understand the further content of this bachelor thesis. More details can be found in
Keidels Master Thesis [35] and information about the original version of Sloane, et al. can be
found in the paper Monto: A Disintegrated Development Environment [36].

2.1 Architecture of Monto

Monto is a framework that consists of several different parts that together can be used by an IDE
that implements a Monto plug-in. There are four major parts: one broker, several sources, sinks
and services. Sources are client side and send source code in a so called Version Message to the
broker. The broker then sends the Version Message to services that have no other dependencies
and gathers the output of those services, called Product Message. Then the broker sends Version
and Product Messages to services with these dependencies and repeats this procedure until all
services were called. In parallel, the broker also sends each Product Message that it receives
to the sinks. The sinks are also client side and their task is to process and/or visualize the
received products. The architecture can be seen in figure 2.1. A more detailed description to
each component can be found in the following chapters.

DDE Version Version / Product
Message Messages

Sources
{ L.
version_id: 2, e N\ version_id: 2,
language: java, language: java,

. . source: file.java, source: file.java,
contents: "...", contepts: R
selections: [] selections: []
} } 2,
Services

é(Tokenizer) (Parser)
Broker | i

version_id: 2, version_id: 2,
PrOdUCt Product product_id:2, product_id:2,
language: java, language: java,
Messages Message | product: tokens, product: ast,
source: file.java, source: file.java,
_____ contents: [...] contents: [...]
version_id: 2,
product_id:2,
language: java, 1
product: tokens, 3, [
source: file.java,
contents: [...] a, _ J
}

Figure 2.1.: Monto Architecture

The complete communication is done by the middleware framework called ZeroMQ (ZMQ)
[32]. It provides an easy way for communication, several different message patterns and is
available for a vast amount of programming languages. All messages sent are in JavaScript
Object Notation (JSON) format [18]. JSON is a simple but effective format to send messages
between two parties in both, a human and machine readable manner.

2.2 Monto Sources

Sources are client side interfaces that communicate with the broker. The communication be-
tween them and the broker is done via the publish-subscribe pattern [34], where the sources are
the publishers and the broker is the subscriber. In publish-subscribe, publishers can publish mes-
sages to topics, which subscribers can subscribe to. A subscriber will only receive messages from
the topics it is subscribed to. In the original version of Monto, no topic is used for publishing
and subscribing. Sources send Version Messages to the broker when the source code changes.
Often, a source represents a source code file tab in an IDE.

1

2 "source": "test.js"

3 "version_id": 1

4 "language": "javascript"

5 "contents": "console.log(\"test\");"
6 "selections"

7

Listing 2.1: Example of a Version Message

The Version Message contains several information about the source code that should be processed
by the services. To keep track which Product Messages belongs to which Version Message, a
version id exists. This id is increased with every Version Message that is sent by a source. In the
contents attribute, the source code itself is transported, whereas in the attribute called selections
a position within the text is given that for example can be used by a code completion service
to determine which text should be completed. The Version Message also contains the name of
the source code file in the source attribute and the used programming language in the language
attribute. An example Version Message can be seen in listing 2.1 with all the discussed fields.

2.3 The Monto Broker

The broker is server side and as already mentioned, is a subscriber to Version Messages from the
sources. It implements a state machine that has the capability of modeling service dependencies.
It ensures that each service receives the Version and Product Messages that belong together and
which the service depends on. The state machine is built for the given set of services at startup.
When the broker receives Version Messages from the sources it determines through its state
machine which services have no dependency and sends the Version Message directly to those
services through a ZMQ pair connection, which allows communication in both directions. After
a short period of time the broker will receive the Product Messages from the services and publish
these to the sinks. As the broker is a subscriber to soures, it is a publisher to sinks. Then,
the broker will determine which services have one or more of those products as dependencies
and will send the Version Message along with the products to those services. This procedure is
repeated until all services, which have dependencies, have received the required messages.

1
2 "product": "outline"
3 "contents"

4

5 "identifier"

6 "offset": O

7 "length": 20

8

9 "description": "program"
10

11

12 "product_id": 1

13 "language": "javascript"
14 "version_id": 1

15 "source": "test.js"

16 "dependencies"

17

18 "product": "ast"
19 "product_id": 1

20 "language": "javascript"
21 "tag": "product"
22 "version_id": 1

23 "source": "nofile"
24

25

26

Listing 2.2: Example of a Product Message from an outline service

A Product Message contains information about the processed output of a service. The message
has several attributes like product which determines the product type, the product id field and
the actual contents of the product, which differs from type to type. Also some attributes that
contain information form the Version Message are included. Such fields are the language field, the
version id and the source field. There is also an attribute called dependencies in which dependency
Product Messages are listed, that were used by the services, but excluding the contents attribute.
Listing 2.2 shows an example Product Message.

2.4 Services for Monto

Services are server side and communicate with the broker over a ZMQ pair connection. They
specify a programming language they can handle, a product type they produce and several
dependencies that they require to function properly. A service receives Version Messages and, if
any dependencies are given, corresponding Product Messages from the broker. After receiving
those, the service processes them and computes the contents for a Product Message that, on
completion, is sent back to the broker. An example for a service could be a tokenizer, that
produces tokens out of the source code for the Java language. Currently, there are some product
types defined and also implemented for Java. These products are tokens which can be used for
syntax highlighting, ast that models an abstract syntax tree and is commonly used for others
services and outline as well as completions that both are self-explanatory.

2.5 Monto Sinks

A sink is, like a source, client side, however they have the opposite task as sources. The bro-
ker communicates with the services to get Product Messages and those Product Messages are
published without a topic so that each subscribed sink can receive those Product Messages. On
reception a sink has to determine if the product should be processed by for example checking
the version id, product type or language of the message. If the sink decides to process the prod-
uct further it will visualize its contents or also perform other tasks on the product. An example
could be a token product that is received by a sink. The sink then will colorize the source code
according to the contents of the product and therefore provide syntax highlighting. A source
and a sink can appear as a pair for a file tab in an IDE, so that the source sends changes of the
source code to the broker and the sink then processes the contents of the Product Messages to
visualize the impact of the changes made to the source code.

10

3 Web-based Code Editor

The web-based code editor was developed in scope of this bachelor thesis. It is presented in this
chapter, which contains information about the concept, design, implementation, visualization
and also about modifications to the Monto framework that had to be made. The code can be
found on GitHub [29].

3.1 Concept and Development

Before implementing software, the requirements and boundaries of the requested product have
to be identified. To do so, several meetings with the supervisor of this thesis, Dr. Erdweg, had
taken place where the author interviewed Dr. Erdweg. Within these interviews, some rough
requirements and possible boundaries were surveyed. As meetings were regular scheduled
on a weekly basis to inspect progress, a prototypical and agile development was suitable and
advisable and therefore chosen as the development method. In those meetings, Dr. Erdweg
was informed about the current state of the project, occuring problems, their possible solutions
and was shown the working parts. Also, possible deficits were discussed and new or changed
concrete requirements for the next steps were elaborated. Hence, the correct execution of
requirements was given and the quality of the overall result of the project was ensured.

3.2 Websockets

A web application, also called web app, is a server-client based application, whose client runs in
the browser and is built using Hypertext Markup Language (HTML), Cascading Style Sheets (CSS)
and JavaScript. The server can be just a simple webserver, but also a more advanced back-end
that can perform several, more complex tasks.

WebSocket-based Editor ZMQ-based Editor

Broker

—’(ZMQ Subscriber j
[ZMQ Publisher j—

>(WebSocket Client Sinks -

(WebSocket Client] Sources

WebSocket-ZMQ-Proxy

.
>

(T ()

Figure 3.1.: WebSocket-ZeroMQ-Proxy

1

The web-based code editor is also part of a web app and represents the client. The Monto
framework, in this case, is the back-end. The editors logic is implemented in JavaScript which
leads to one major problem: The W3C has not yet released a final standard for a TCP and UDP
sockets API [15], therefore no browser has yet implemented it. Some browsers like Google
Chrome or Mogzilla Firefox have an API for TCP sockets, but they are not standardized and hence
not suitable for this project as it would require a specific browser or some complex work to
provide support for different browsers. Monto uses ZMQ and to communicate, a TCP or UDP
connection is required. To overcome this problem, a standardized web technology by W3C
called WebSockets can be used. WebSockets use an underlying TCP connection to connect a
server and a client and can be used by all current major browsers [31]. ZMQ right now does not
support connections over WebSockets but there is a raw specification to make it possible [33].
However, this approach is not suitable as right now it is not part of the ZMQ standard and also
only a binding for C# is available. As the broker is implemented in Haskell, there is no binding
available and the WebSocket approach can’t be used.

To make WebSockets available to the broker, so that web apps can communicate with it, two
possibilities are available. The first option is to implement a WebSocket server into the broker,
the second to develop a program that has a WebSocket and a ZMQ part. The second option
can be seen in figure 3.1 and is called the WebSocket-ZeroMQ-Proxy (WS-ZMQ-Proxy). This
program just forwards messages from the WebSocket server to the ZMQ publisher and from the
ZMQ subscribes to the WebSocket server. Both approaches were implemented prototypically
and tested by the author, which lead to the conclusion that the first approach is more complex
and didn’t work out well in the implementation due to different behaviour of the WebSocket and
ZMQ connections in Haskell. Especially reconnection or multiple connections over WebSockets
were significantly different from the way ZMQ works. Also the second option abstracts the
connection over a different protocol away from the broker, keeping the broker more simple
and lightweight and the Monto project more modular. In addition, no noticeable performance
impact was detected due to the intermediate proxy for WebSocket and ZMQ. Hence, the second
approach with the WS-ZMQ-Proxy was used for the addition of WebSockets to the Monto project.

3.3 Software Design

Implementing a new code editor is a non-trivial task that is not feasible to do in the scope
of this bachelor thesis. Hence, an existing JavaScript editor framework was used to design
and implement a web-based editor for the Monto framework. For this purpose two different
frameworks were considered: Ace [1] and CodeMirror [8]. Both frameworks are quite similar in
the manner how they work and both are used by some large, well known projects. The decision
was made to use CodeMirror as the API seemed to be easier and to provide more possibilities
and also CodeMirror seemed better documented than Ace.

To use CodeMirror in the browser, one must only create a text area in HTML and give it an ID.
With JavaScript the ID can be used to call a function that creates a new CodeMirror instance in
the text area. CodeMirror defines so called modes to extend support for different programming
languages. Those modes are used to define rules for syntax highlighting for a language and are
called every time the content of the editor area is changed.

To enable the editor to process Product Messages, a new Monto mode was implemented. The
Monto mode is responsible for creating syntax highlighting and outlining. The outlines are
represented by a unordered list in HTML that is contained in another panel. CodeMirror provides

12

the possibility to implement helpers that perform a specific action when they are called. There
are several types that can be used to define when a helper is called. Such a type is called
hint. This type is used for code completion and a new hinter was implemented called monto-
hinter. When writing source code, one might also write erroneous code that can be detected
and visualized by an editor. CodeMirror also provides a helper type for this called lint. Again, a
new lint helper called monto-lint is created.

Editor

Broker

Subscriber

Publisher

A

v
a
<

Figure 3.2.: Web-based Editor Design

These modes and helpers only provide functionality to process Product Messages that are re-
ceived from the broker. But to receive products from the broker a connection has to be estab-
lished, and since a web-based editor is build, the connection will be made over WebSockets
and the WS-ZMQ-Proxy. Those connections are established by a source and a sink object, one
to send Version and one to receive Product Messages. They are equivalent to the sources and
sinks that were defined in chapter 2. When the text in the editor is changed, the source sends
a Version Message to the broker and the sink then receives the Product Messages and invokes the
corresponding actions to the product type. The design can be seen in figure 3.2.

CodeMirror is not the only framework or library that was used to create the web-based editor.
For visual purposes and easier handling of different screen sizes the Bootstrap framework [6]
was used. Not only it provides a polished look by the usage of CSS, but also some useful
functionalities like tabs that are enabled via JavaScript. Also Bootstrap can be used to write
websites that are usable as both, desktop and mobile applications.

Bootstrap depends on another JavaScript library called jQuery [17]. The jQuery library pro-
vides easier access to Document Object Model (DOM) elements in the browser and some other
useful functions. It is widely used and even if it would not be a dependency of Bootstrap it
would have been used in this project.

For saving modified editor contents to the local storage, another small library was used called
FileSaver.js [11]. It provides an easy way of downloading the editors content. In fact there is no
real download as the editor runs local in the browser, but for saving purposes this library calls
the download dialog so that you can chose the destination where the new file should be saved.

13

Bootstrap does not provide CSS classes for checkboxes and radio buttons for beautification,
hence an add-on called Awesome Bootstrap Checkbox [5] was used to have a more consistent
look. This add-on however also requires the framework Font Awesome [13] that provides icons.

3.4 Implementation of the Editor

The source and sink are in fact JSON objects that are created through a function, which is
called once the JavaScript file is executed. One could say that this is similar to the singleton
pattern [37] and creates only one instance of this object. The function that creates these objects
is a closure function. With the help of closures it is possible to use private variables, that are only
visible within the object. The closure returns a JSON object that defines functions and variables
in its attributes. The source object provides public functions to change content and send Version
Messages, whereas the sink objects offers functions to access the Product Messages and also to
register a new function to the sink, that is called each time it receives a new Product Message
from the broker. Both objects operate on a WebSocket client connection to the WebSocket proxy.

CodeMirror modes typically have a function that is called when the editor field changes and
processes a line of the source code. This function then has to tokenize this line and highlight
each token according to its type. This function is triggered immediately when the editor field
changes, but at this point the Version Message is just sent by the source, hence the current Product
Messages are not back at the sink at this time. The Monto mode therefore works differently. It
registers a function to the sink that reads the new tokens Product Message and highlights the
given tokens through the usage of the CodeMirror API. The function for tokenization just skips
the line it is provided and does nothing. The registered function also contains handling for
outline products and just rebuilds the unordered list and inserts it into the outline panel.

The monto-hint and monto-lint helpers are, like the Monto mode, triggered too early when the
recent products are not available to them. CodeMirror helpers have a function that is executed
when the helper is triggered, this function processes the products that are received. The helpers
also register a function to the sink that just retriggers themselves, so they can operate on new
products whenever they are available.

Each function that is registered to the sink has to defined, which kind of product type it wants
top operate on. If no type is given, all Product Messages are available.

3.5 Graphical User Interface of the Editor

Since the web-based editor is a web app and is written using HTML, CSS and JavaScript, it
can be viewed in the browser. The Graphical User Interface (GUI) itself is created by a HTML
document. As plain HTML is unaesthetic, CSS is used to beautify and polish the graphical
interface. As mentioned earlier, Bootstrap plays a major role in improving it. Bootstrap also adds
responsive behaviour to the web app which can be seen in figure 3.3. When the browser size
is decreased, the tabs in the tab row are wrapped into new lines and panels that are next to
each other get rearranged to fit the window size as good as possible. Although this feature of
Bootstrap aims to allow an easy creation of both, Desktop and Mobile apps, the web-based editor
is not available as an app for Android or any other mobile device. The functionality behind the
surface is done via JavaScript, which processes input from the user or from the Monto broker.

14

CodeMirror Monto - Chromium -+ x|
w[CodRMirorMomo %\ |a) |/ & CodeMirorMono x __| 8]
<« » O A indexhtml = | * ® 9 Aindexhtml =
Monto Web Editor H Monto Web Editor
Editor Options Messages Editor Options Messages
Discovery ~ Configuration Discovery Configuration Version Products

version Products oseoter RequeSI
Discover Request C [
{

"discover_services": []
3 "service_id": "aspellSpellChecker",
0 "language": "javascript",

"discover_services": " = "
options": [

{
"default_value": true,
"option_id": "comments",

}
"type": "boolean",
Janel Teheck coments!
3
[
{

{
"members": [
{
"service_id": "aspellSpe ::defaulﬁfvalue": "de",
11Checker", viluﬁs 5[
"language": "javascript" de”,
"de-neu",

(a) small GUI (b) Large GUI

Figure 3.3.: Responsive Behaviour of the GUI with Bootstrap

The GUI consists of a tab bar with three elements. The first tab is the Editor tab, which can be
seen in figure 3.4. As the name says, in this tab the text field can be found and some buttons for
functionality, like loading or saving files, enlarging the text field to screen size and selecting the
currently used programming language. The available languages are determined by discovery,
which will be discussed in chapter 5. The editor tab also features an outline panel in which
outline products are visualized. Through the responsive design, the outline tab can be at the
right side of the text field for bigger devices or beneath it for smaller devices. Whenever the
content of the text field changes, a Version Message is sent to the Monto broker.

CodeMirror Monto - Chromium SR

/ # CodeMirror Monto x_\
<« » O A indexhtml

m e x

Monto Web Editor
Editor Options Messages

Load File Savefile Fullscreen (F11) javascript

— m
1 var aNumber = 2;

4 2 //falsez « var : aNumber
%, 3 /*fals correct flse « var: aString
4 some more strings . var:
S &Y) . X multiplication
% 6 var aString = "korrekt falch flsch richtig"; « function :
© 7 var multiplication = aNumber * aString; multFunc
8 function multFunc (x, y) { o function :
9 function innerFunc (x, y) { innerFunc
10 var nestedVar; = var:
11 return x * y; nestedVar
12} . var:a
13 return innerFunc(x, y);
14 }

@ 15 aNumber.split('-');
16 aString.split(' ');
© 17 multFunc(aNumber, asString):
© 18 noFunc(1,42);
® 19 va
20 var a;
21 =

Figure 3.4.: Editor Tab

15

The Options tab contains the possibility to configure the editor. Figure 3.5 shows it for several
JavaScript services. In this tab, the discovery of available services can be executed by pressing
the corresponding button. The editor will send a Discover Request to the broker, which will be
further explained in chapter 5. After a Discover Response is received by the editor, in the Services
panel, all available services are listed with their id, label, description, language and product
type. Configuration options for each service are listed below in the Options panel. The user can
select and deselect services that should be used and configure them as wanted in the Options
panel. After the configuration is finished, the Configure button can be pressed to inform the
services about the new configuration. More about the topic of configuration can be found in
chapter 6.

CodeMirror Monto - Chromium SRt
M CodeMirror Monto x \

<« » O A indexhtml

m [x

»

Editor Options Messages

Discover ~ Configure all ~

Services

Service ID Label Description Language Product
. Can check type errors using FlowType and . .
ecmascriptErrorChecker Error Checker for JavaScript . »typ 9 p javascript errors
spelling using aspell
. ANTLR Tokenizer for A tokenizer for JavaScript that uses ANTLR for . .
ecmascriptTokenizer X . javascript tokens
JavasScript tokenizing

Check comments

Check strings

Ll men -

Figure 3.5.: Options Tab

The last tab, called Messages, contains visualization for all outgoing and incoming messages of
the editor. The last message for each message type and service is displayed and can be navigated
in another tab bar. An image of the Messages tab is located in figure 3.6.

! CodeMirror Monto T\

<« » O qindexhtml O a B

e

Monto Web Editor

Editor Options Messages

Discovery Configuration Version Products

ecmascriptTokenizer ecmascriptFlowTypeChecker ecmascriptParser aspellSpellChecker ecmascriptOutliner

{
"product": "tokens",
"contents": [
{
"offset": 0,
"length": 3,
"category": "keyword"

"offset": 3,
"length": 1,
"category": "whitespace"

Figure 3.6.: Messages Tab

16

4 Implementation of JavaScript Services

Keidel designed several types of product conventions for the Monto framework [35]. These prod-
uct conventions are tokens, ast, outline and completions. For each of them, the implementation
of services for JavaScript is discussed in this chapter and also a new errors product and a service
for it is introduced. The code for the JavaScript service can be found on GitHub [28].

4.1 Existing Product Types

Keidel implemented services for Java with the above listed product types, in the scope of his
master thesis [35]. Those services were implemented using the programming language Java
and were integrated into a Eclipse IDE plug-in for Monto [23]. To make the services accessible
without the Eclipse plug- in, they were outsourced and modified to run on their own [27]. Also,
to simplify the process of implementing new services using Java, a base Java library was created,
which provides an abstract class for Monto services, called MontoService and also several classes
for JSON messages, including de- and encoding. The library can be found on GitHub [26].

The MontoService class implements the Runnable interface and can be used to create a new
thread. For communication between the broker and the service itself, a library called jeromq [16]
is used. This library is a ZMQ binding and enables the use of ZMQ in Java. To model JSON mes-
sages in Java, the library json-simple [19] is used. It provides an easy way to encode and decode
Java objects and JSON objects. The MontoService class implements a method called run in which
at first the service registers itself to the broker with information given on construction and if the
registration was successful, it connects on a new port to start the main loop in which Version Mes-
sages and product dependencies are received from the broker, processed and a resulting Product
Message is sent back. In this loop, an abstract method called onVersionMessage is invoked to
process the request from the broker. Another abstract method called onConfigurationMessage is
executed for processing Configuration Messages from the broker and to configure the service
properly. Both methods have to be overridden by a class that extends the MontoService class.
Information about the registration and configuration processes can be found in chapter 5 and 6.
The modified Java services use the base library.

To extend Monto further, JavaScript services for the existing product types were created, using
Java and the base library. The services were implemented similar to the ones from Keidel and
therefore also use the same technologies.

The tokens service uses Another Tool for Language Recognition (ANTLR) [2] for tokenization.
ANTLR is a tool that can generate a parser and a lexer by using an ANTLR grammar for a pro-
gramming language. JavaScript is an implementation of the ECMAScript language standard [14]
which is developed at ECMAScript International [10]. For ANTLR 4, a ECMAScript grammar is
available at GitHub [9]. With this grammar, a parser and a lexer for ECMAScript were generated
by the ANTLR tool and is now used by the JavaScript services to process received source code.
The ANTLR lexer provides a list of tokens, whose elements are converted to the appropriate
Monto tokens, since Monto defines its own standardized token types. This list then is wrapped
in a tokens Product Message. The ast service uses the ANTLR parser to build an Abstract Syntax
Tree (AST) and converts it into the correct JSON format. Both, the outline and the completions

17

services, do not only require the source code but also the AST. They receive both from the bro-
ker and analyze the AST to find required nodes. If a node is found which has a type of interest,
the correct text is taken form the source code, like for example identifiers of class names for
outlining or identifiers of variables that can be used for code completions.

4.2 The 'Errors’ Product

As most IDEs inform the user about erroneous code or give warnings and hints about code
that could be improved or is problematic, this feature also should be included in the Monto
project. To enable such services, a new product type is introduced, called errors. This products’
contents attribute contains a list of objects that contain information about errors and warnings,
including a description, a category, an error level and the position in form of an offset and the
length. The level describes the severity of the object. Possible values are warning or error. The
description should contain some short information about the reason why this particular position
is detected as an error. With the category field, the kind of found error should be described
further. For example, for a type error the value is type. In listing 4.1 an example of an errors
product contents can be seen. Listing B.1 in the appendix shows the JSON schema.

2

3 "offset": 69

4 "length": 7

5 "level": "error"

6 "description": "string is incompatible with number"
7 "category": "type"

8

9

10 "offset": 209

11 "length": 8

12 "level": "error"

13 "description" "identifier multFunc Could not resolve name"
14 "category": "type"

15

16

17

Listing 4.1: Errors Product Example

JavaScript is an untyped programming language and therefore highly susceptible for writing
erroneous code. However, there are tools like FlowType [12] that can check JavaScript code for
type errors and provide detailed information about them to the user. As an example and proof-
of-concept an errors service for JavaScript was implemented. This service is capable of analyzing
JavaScript code for type errors, using FlowType but it can also check the spelling of comments
and strings by using the tokens product and a program called aspell [3]. Aspell can check texts in
different languages by the use of dictionaries and if it cannot find a word it can suggest similar
words from the dictionary. To provide a service that also makes use of configurations, which
will be introduced in chapter 6, the errors service can be configured to check strings and/or
comments, which languages should be used for them, if suggestions should be given and if so,
how many should be provided.

18

5 Discoverability in the Monto Framework

To enable dynamic addition and removal of services to or from the broker, a possibility of noti-
fying the broker about service changes is required. Also sources and sinks need to know, which
services are available to the broker and therefore require the possibility to retrieve such infor-
mation. This chapter discusses these two problems and points out a solution. All new message
specifications can be found on GitHub [24] as well as modifications to the broker [21].

5.1 Registering Services

The broker in its current state, requires defining services through a command line parameter.
This is a static procedure and requires the restart of the broker every time a new service should
be added or an existing removed. To make handling of services more dynamic some form of
registration is required.

Registration of services brings several problems with it that have to be solved to provide fully
working and consistent addition and removal of services. The services and the broker have to
be able to communicate with each other. Therefore a ZMQ pair connection could be a good
solution, but actually there are some problems.

service_id: "an ID",
/ \ label: "...", . / \
"description:" "...", Register Request
product: "tokens",
language: "java",
dependencies: [],
options: []

¥

Y

{
response: "ok",
bind_on_port: 5013 —

A

Register Response ’

Service Broker

{deregisteriservice De reg |Ster Message

_id: "an ID"
}

Y

Figure 5.1.: Registration Process

The first problem is that the service does not know on which port it can reach the broker, because
each service requires its own port, so it is not sufficient to open some ports on the broker. To
overcome this problem a port for registration only is opened by the broker. This port is bound
by a ZMQ response connection, which is part of the request-response pattern. Multiple services

19

can simultaneously connect on this port with a ZMQ request connection and can register and
ask the broker on which port they can continue their communication. The broker has to ensure
that it does not assign multiple services to the same port, so that each port is only used by one
service at the same time.

Although the lack of communication channels is solved, the question, what to send over those
channels, is still open. When a server registers with the broker over the registration connection,
the broker requires some specific information about the service to handle the request. To enable
communication, a format has to be defined. Since the Monto framework uses JSON objects for
messaging, the registration will also use them. There are three messages that are required:

1. Register Request
2. Register Response
3. Deregister

When a new service wants to register with the broker, at first it sends a Register Request. It
contains several information about the service that the broker requires to handle it properly.
The information are a unique id for the service, a label, a description, the specification which
language and which product the service can handle, possible options which will be discussed in
chapter 6 and the dependencies that the service has. Listing 5.1 gives an example message and
listing B.2 provides the full JSON schema.

1

2 "service id": "ecmascriptTokenizer"

3 "label": "ANTLR Tokenizer for JavaScript"

4 "description": "A tokenizer for JavaScript that uses ANTLR for tokenizing"
5 "language": "javascript"

6 "product": "tokens"

7 "options"

8 "dependencies"

9

Listing 5.1: Register Request Example

The second message is sent after receiving a registration request. This message has the purpose
to tell the service whether the registration is successful or not and if it was successful, on which
port the service can bind, so that the broker can start sending Version Messages and receive
Product Messages from the service. A registration request could look like the example in listing
5.2. For the JSON schema see listing B.3.

"resposne": "ok"
"bind_on_port": 5013

N WN =

Listing 5.2: Register Response Example

The last message is sent by a service when it is about to terminate and aims to deregister
itself from the broker, so that the broker can then reassign the port to other, new services.
It only contains the service id of the deregistering service. Listing 5.3 provides an example
Deregister message, whereas the JSON schema can be found in listing B.4. The complete process
of registration can be seen in figure 5.1.

20

"deregister service id": "ecmascriptTokenizer"

W N =

-

Listing 5.3: Deregister Example

5.2 Discovering Services

Sources and sinks, or more general clients, do not know what services are available to the
broker. There is no intended way to retrieve information about active services, so sinks cannot
rely on a specific product to receive.

As the services now register with the broker, the broker always knows what services he can
offer. Hence, a simple and clean way to get the information for the client would be to ask the
broker. In fact, as the sinks are designed to receive messages and sources to send messages,
the source should send a request for a list of available services to the broker which then should
publish a message with the service list to the sinks.

Again, new messages are required to model the request and response and as in the registration
messages we use JSON objects for discovery. In this case, only two messages are required: the
Discover Request and the Discover Response.

4 p

{
"discover_services":[

{ .
anguage: ave" Discover Request
{product: "tokens",
1

}

Broker

[
{
service_id: "an ID",

Discover Response Tanguage: “javar’

product: "tokens",

o
-

- J

Figure 5.2.: Discovery Process

To enable the client to discover only specific services, for example only JavaScript services, the
Discover Response can contain a list of filter criteria. Each filter criteria is a JSON object that can
set three different attributes: a service id, a language and a product type. The service id can be
used to see if a specific service is still active and available. The other criteria can be used to
identify a group of services. All criteria can be mixed together in an object, but also only one
criterion can be used. The message has a list of criteria because the client for example could be
searching for all Java and all JavaScript services. An example Discover Request message can be
seen in listing 5.4. The JSON schema of the Discover Request is explained in listing B.5.

21

1 1

2 "discover services": [

3 {

4 "service_id": "ecmascriptParser"
S ’,

6 {

7 "product": "tokens"

8 by

9]

10 }

Listing 5.4: Discover Request Example

The Discover Response is an array of JSON objects that each contain information for one service.
Information includes the service id, a label and a description, the language, the product type and
the options, which are explained in chapter 6, of a service. The array only contains services
that match one or more criteria from the Discover Request. If the Discover Request is empty, all
services are listed.

In its current state, the broker will also send a complete Discover Request without filters when-
ever a new service registers or a known service deregisters. This enables a more dynamic visu-
alization on the client side, however does not contain any filters. Listing 5.5 shows an example
Discover Response and the corresponding JSON schema can be found in listing B.6. The complete
process of discovering services is visualized in figure 5.2.

11

2 {

3 "service id": "javaTokenizer",

4 "language": "java",

5 "options": null,

6 "product": "tokens",

7 "description": "A tokenizer for Java that uses ANTLR for tokenizing",
8 "label": "ANTLR Tokenizer for Java"

9 by

10 {

11 "service id": "ecmascriptParser",

12 "language": "javascript",

13 "options": null,

14 "product": "ast",

15 "description": "A parser that produces an AST for JavaScript using ANTLR",
16 "label": "ANTLR JavaScript Parser"

17 b

18 {

19 "service id": "ecmascriptTokenizer",

20 "language": "javascript",

21 "options": null,

22 "product": "tokens",

23 "description": "A tokenizer for JavaScript that uses ANTLR for tokenizing".
24 "label": "ANTLR Tokenizer for JavaScript"

25 }

26 |

Listing 5.5: Discover Response Example

22

6 Configurability of the Monto Framework

There are two types of possible configurations within the Monto project. The first one is to
configure which services are used by a sink and the other one is to configure services themselves,
if they provide options that can be configured. In this chapter, both kinds of configurations are
discussed in this chapter. Modifications to the broker [21] and new message specifications can
be found on GitHub [24].

6.1 Configuring the Broker

Clients now are able to know which services are available through the discoverability that was
discussed in chapter 5, but they might also want to receive only products from specific services,
which also helps to reduce the overhead of unused messages. There are at least two ways to
achieve this. The first possible solution is to create a unique ZMQ pair connection for each
sink. To determine which products should be sent to a sink, it must inform the broker about its
preferences. However, this would lead to a much more complex broker because it would need
to keep state of sinks and also be able to receive messages from the sinks. The second approach
is to make use of the publish-subscribe pattern and to publish each product under a topic named
after the service id origin of the product. This approach is much easier to implement and makes
use of the existing technologies. Hence, the second approach was chosen and implemented.
Product Messages are now published over service topics. Each service has its own topic and the
product of a service is published over its topic. If a sink only wants to receive products from
specific services, the sink can just subscribe to their topics and only receive those messages.

However, for the WebSocket Proxy this actually does not work this way because publish-
subscribe pattern is not available. The ZMQ connections do publish and subscribe with an empty
topic, which in fact means subscribing to all topics. Though, as a subscriber always two messages
are received. At first it receives the topic and second it receives the message, so by forwarding all
messages to the WebSocket connection, the sinks also receive the topic under which a product
was published and therefore sinks can choose to only process products from services that they
want to.

To improve performance and lower working overhead, a desirable goal would be that the
broker only sends Version Messages to services that are currently used by one ore more sinks.
Yet, to do so, the implementation of the broker would require much more complexity and each
sink would require an ID and also a registration to the broker so that it is aware of them and
can act if a sink changes its required services. In other words, the broker needs to keep state of
the sinks. Each sink then would have to tell the broker which services it requires and the broker
then has to see what services are needed, including their dependencies. Though, the broker
then would require to rebuild its state machine, so that only required services are included. All
this is not part of this bachelor thesis and is not taken into account.

6.2 Configuring Services

There are services that have to produce a product that can not be modified, for a example
a tokenizer. The tokens product should always look the same from all tokenizer services that

23

support the same programming language. Though, there are other services that could produce a
product that depends on several options, for example a spell checker for strings that can handle
different languages like German or English.

Services that potentially can have options require a way to express this, but first it is important
to define what kind of options are possible. Therefore multiple JSON objects have been defined,
where each describe a possible option. All of these objects, except one, have in common that
they provide several attributes like an option id, a label, a type and a default value. The option
id is unique over the complete collection of options for a service, the label is a short, human
readable name, the type describes what kind of option it is and the default value provides the
standard active option if nothing else is set.

The first type of options is the Number Option, which can be set to an integer. It has two
more attributes to its JSON object, called from and to. Those two fields describe the range in
which the number can be chosen. If one of them is not set, there is no defined limit in the
appropriate direction of integers. One must be aware that some programming languages or
operating systems can have different integer sizes and therefore the maximum is not uniform.
Furthermore, if the value in a configuration is set to an integer out of bounds, the default value
should be used. An example for a Number Option can be found in listing 6.1. The appropriate
schema can be seen in listing B.7.

1

2 "option_id": "suggestionNumber"

3 "default _value": 5

4 "from": O

5 "label": "Maximum number of suggestions"
6 "to": 10

7 "type": "number"

8

Listing 6.1: Number Option Example

The next option type is the boolean type. This type is pretty simple and defines no additional
attributes to its JSON object, as it can have only two different values set, true or false. It can be
visualized by for example a checkbox or a switch. Listing 6.2 shows an example for a Boolean
Option and the associated schema is described in listing B.8.

1

2 "option_id": "suggestions"
3 "default_value": false

4 "label": "Show suggestions"
5 "type": "boolean"

6

Listing 6.2: Boolean Option Example

The Text Option type is a type that requires a string as configuration. It defines an attribute
called regular expression that can be used to define rules for the set string. The extended POSIX
standard for regular expressions should be used [30]. If this field is empty, no rules are set and all
strings can be used for configuration. A Text Option example is depicted in listing 6.3, whereas
the schema is shown in listing B.9.

24

nn

"regular expression":

1 {

2 "option_id": "textOpt",

3 "default _value": "some test",
4 "label": "A text option",

5 "type": "text",

6

7

[

Listing 6.3: Text Option Example

Another type of options is the Xor option. As the name says, it is an exclusive-or option and
defines multiple possible string options in the attribute called options and only one of those can
be selected for configuration. The Xor Option can be represented by a dropdown menu or a
collection of radio buttons that are connected through an xor link. The corresponding JSON
schema is available in listing B.10. An example for the Xor Option is given in listing 6.4.

14

2 "values": |

3 Hde”,

4 "en",

5 HeSlV,

6 Hfr”

7 1,

8 "option_id": "stringlLanguage",
9 "default _value": "de",

10 "label": "Language for strings",
11 "type": "xor"

12

Listing 6.4: Xor Option Example

The last option object, is a JSON object that does not share the same fields with other op-
tions. Also it does not define something that can be selected for configuration but helps to
group options and to en- or disable some when some options have requirements regarding the
configuration.

This object is called Group Option and contains a string in the required option attribute as
well as an array of member option objects in the field called members. The string contains the
option id of a Boolean Option that must be enabled so that the options in the members field
can be configured. For the requirements, only a Boolean Option can be used, whereas for the
members all option objects are allowed, including other groups. For multiple Boolean Options as
a requirement, several Group Options can be nested. Listing 6.5 shows a Group Option. Listing
B.11 holds the JSON schema.

{
"members": [
{
"option_id": "suggestionNumber",
"default value": 5,
"from": O,
"label": "Maximum number of suggestions",
"to": 10,
"type": "number"

O OO U~ WN -

25

10 ¥

11 1,

12 "required option": "suggestions"
13}

Listing 6.5: Group Option Example

Each service can define its options using the objects presented above and list them in the Register
Request in an array field called options. The broker itself does not process these options but
stores it along several other information for the service. When a client asks for a list of available
services, the broker then sends these options in the Discover Response in an array attribute with
the name options. The sink then has to visualize these options to the user, so that he can set
some of the given options. When the user has configured the options to his liking, the services
need to be informed. Therefore, another new JSON message is introduced, called Configuration
Message.

4)

}

service_id: "Tokenizer",

configurations: [.
[option_id: "option1", TO ke n |Ze l"
value: true

]

{ "configure_services": [}

service_id: "Tokenizer",

configurations: [
option_id: "option1",
value: true

. Broker
{ >
service_id: "Parser",

configurations: [
option_id: "option2",
value:10 | ey,

1
}
1} {

service_id: "Parser",

configurations: [
option_id: "option2",
— i e > Pparser)
1

K /

Figure 6.1.: Configuration Process

The Configuration Message is an array of configuration objects that each contain the service id of
the service that is configured in the configurations field. The configurations field is also an array
that contains an option id and a value that was chosen by the user. This Configuration Message
is sent by the source to the broker, which then splits the array and sends each part to the
corresponding service with the given service id. The service then can process the configuration
and set its options accordingly. The next Version Message then can be processed with the given
configuration. The process of configuration can be seen in figure 6.1. An example Configuration
Message can be found in listing 6.6 and the corresponding JSON schema in listing B.12.

This approach right now does only work with a single configuration per service. So if multiple
clients, or sinks want to have multiple, different configurations this will not work, because
the last Configuration Message will override the existing one. To overcome this problem, a
possible solution would be to create a new instance of a service for each sink so that they can be
configured in isolation. This would require each sink to have an ID so that the service instance
can be mapped to them. However, this is not in the scope of this bachelor thesis and would, as
mentioned earlier, lead to a much more complex broker that needs to keep state of the sinks.

26

1 1

2 "configure services": [

3 {

4 "service_id": "ecmascriptErrorChecker",
5 "configurations": [

6 {

7 "option_id": "comments",

8 "value": true

9 b
10 {
11 "option_id": "commentLanguage",
12 "value": "de"
13 s
14 {
15 "option_id": "strings",
16 "value": true
17 s

18 {

19 "option_id": "stringlLanguage",
20 "value": "en"
21 ’,
22 {
23 "option_id": "suggestions",
24 "value": true
25 ’,
26 {
27 "option_id": "suggestionNumber",
28 "value": 2
29 b
30 1
31 }
32 1
33

Listing 6.6: Configuration Message Example

27

7 Evaluation and Validation

Software development is prone to errors and bugs and hence the software quality has to be
ensured through several techniques. The more complex a software becomes, the more likely
it is to contain errors. As the software developed in scope of this thesis is split into several
self-contained parts, each of those programs has a small extend.

In chapter 3.1 it was already mentioned, that the development process was prototypical. A
prototype was developed, extended and inspected weekly by the supervisor. Hence, functional-
ity and correct behaviour of the software was ensured. To detect bugs, extensive manual testing
of the software was done by the author. Third-party libraries were used where possible, which
on the one hand reduced the amount of work to be done and on the other hand also reduced
sources of errors.

1 aNumber = 2;

2 //falsez

3 /*fals correct flse

4 some more strings

5 %/

6 aString = "korrekt falch flsch richtig";
7 multiplication = aNumber » aString;
8 multFunc (x, y)

9 innerFunc (x, y)

10 nestedVar;

11 X % V;

12

13 innerFunc(x, vy);

14

15 aNumber. split(’-");

16 aString.split(’ ’);

17 multFunc (aNumber, aString);
18 mnoFunc(1,42);

19 va

20 a;

Listing 7.1: Test Code Snippet

For manual testing, a JavaScript code snippet was written that was used every time to test
implemented changes. The snippet within the browser can be seen in figure 3.4 and the snippet
itself in listing 7.1. The code snippet contains tokens of different types for syntax highlighting,
comments and strings for spell checking, nested functions for outlining, some type errors for
error checking and some variables that start with the same sequence of characters which can
be used for code completion. For each of the contained elements, several different correct
and incorrect values are available in the snippet to achieve a broad coverage. The testing was
done via starting the broker, the services and the web-based editor and then inserting the code
snippet into the editor field. The editor then, should send a Version Message and visualize the
received Product Messages. If incorrect visualization can be seen, an error must exist in the
implementation. With this procedure both can be detected, an error in a service or an error

28

within the web-based editor. This way, bugs can be found but the complete absence of such
can not be proven. However to achieve this, a huge amount of work has to be invested, if even
possible. As the scope and size of this project is small and manageable, the used method of
testing is sufficient.

The configurations were tested by using dummy configuration options in a service. These
options could be seen in the editor, set to several configuration and then a result could be
logged in the service. This way, the correct handling of options in the web-based editor could
be ensured.

Not only the implementation, but also the communication between Monto components has to
be correct. Communication can be split into four groups. Registration, Deregistration, Discovery
and Configuration. Each of them consists of at maximum two message types and therefore
are almost trivial. To ensure correct implementation and sequence of messages, they were
implemented step by step. Sent and received messages were logged to the command line.
Behaviour and sequence of messages were checked with the help of a debugger. As no message
contains programming language specific information or fields, except the name of the language
itself, each of them will work with every programming language.

29

8 Related Work

Web apps have become very popular due to their advantages like availability to every computer
with a browser installed or the absence of manual updates as the web app is updated server
side. Hence, also web based editors already have been developed.

An example for a web based editor is Atom, developed by the GitHub team [4]. This editor,
though, runs not directly in a browser but acts like a typical desktop application. Applications
like this can be built using the build platform Electron. Atom is built with HTML, CSS and
JavaScript. However, features like syntax highlighting are all processed within the application
itself, unlike in Monto, where such features are outsourced into services, accessible by the broker.
This separates it considerably from the web-based editor developed within this thesis. Atom
provides a package system to install and remove extensions to the editor, making it possible to
extend language support. Those packages are Atom specific and lead to the problem, that Monto
tries to handle.

A web based IDE would be the Cloud9 IDE that uses the Ace editor as a base [7]. As mentioned
earlier in chapter 3, Ace is a editor framework based on JavaScript and provides similar func-
tionalities as CodeMirror. Cloud9 however, sets its focus on cloud computing. Therefore, Cloud9
also provides the possibility to write code with other programmers collaboratively in real time
and also to save projects into workspaces, stored in the cloud. Cloud9 consists of a server-side
JavaScript back-end and the browser front-end. IDE features like syntax highlighting and code
completion are done locally in the browser front-end using JavaScript and the Ace editor, which
again significantly differs it from the idea of Monto to disintegrate such features from the IDE or
front-end itself.

Van Deursen, et al. came up with an approach for a browser-based IDE called Adinda [38].
Adinda consists of a server and several browser clients, that communicate with each other using
Ajax. In this approach, the goal is to enable a more team based and collaborative developing
on a project by collecting information at the server, while developers are working on the source
code. This leads to the possibility to see which developers wrote the code and how it changed
over time, similar to a version control system. But Adinda also outsources IDE features like
compilation of source code. This project tries to reduce message overhead over Ajax by using
the DOM to model the AST of the source code and only sending AST fragments that really
have changed. The server compiles the new source code on changes and sends the compilation
output to the client. Adinda follows a similar approach as Monto by outsourcing IDE features to
a server, however it still is different in the core. Adinda does not aim to decouple services and
make them exchangeable, like for example Monto does with the broker and service architecture.

30

9 Conclusion and Future Work

Monto is a rather new project and needs to be extended in both, new features and available
programs like editors with Monto support, but also with new services for several languages
and product types. In this thesis each of those improvements were done. A new editor with
Monto support was built by using web technologies and existing frameworks. New features like
WebSocket support, dynamic service management for the broker, discovering and configuring
of services for clients have been introduced and implemented. Each of those simplify the use of
Monto by decoupling the components in the Monto framework. For example when the broker
is started now, it is not required to know which services will be available in the future and
therefore no configuration at startup has to be provided. The user can start the broker and
connect, as well as disconnect all services whenever he wants to. Also the client does not
have to know about what services are available by itself, but can discover the services that are
available to the broker. A service base library for Java has been developed to even further ease
implementation of services. The library was used to create new services for the programming
language JavaScript. To increase the pool of available product types, a new product type called
errors was introduced. This product type was used to implement a service for JavaScript that
identifies type errors in JavaScript with the usage of FlowType and is also capable of producing
warnings about spelling for several languages in comments and also strings by using aspell.
Hence, an extension and improvement of the Monto project in the context of this thesis was
accomplished. The current state of the Monto framework and all modifications, additions and
programs developed in scope of this thesis can be found on GitHub [25].

For future projects, Monto can be extended even further by fixing the existing problems men-
tioned in chapters 5 and 6. One could solve the problem of service instances for each sink, so
that each sink can separately configure a service. This would lead to the possibility to again
use multiple sources and sinks in the Monto project, without having only one configuration at
a time. Also the configuration itself could be extended to allow different and more complex
configurations. As the broker right now is not capable of having two different services with the
same product/language combination but different dependencies, the underlying dependency
graph and the automaton could be extended.

Monto is meant to be run locally on one computer. In the future, an evaluation could be made
to see if Monto is capable of running over a local area network or also over the internet and
what could be changed in Monto to improve performance. This would lead to the requirement
of encrypted communication between the parts and associated source and sink groups to ensure
privacy and trust for each participant that wants to use Monto. The web-based editor then would
be a good foundation to run Monto as a web app on the internet.

31

A Abbreviations

ANTLR Another Tool for Language Recognition
API Application Programming Interface

AST Abstract Syntax Tree

CSS Cascading Style Sheets

DDE Disintegrated Development Environment
DOM Document Object Model

GUI Graphical User Interface

HTML Hypertext Markup Language

IDE Integrated Development Environment
JSON JavaScript Object Notation

WS-ZMQ-Proxy WebSocket-ZeroMQ-Proxy
ZMQ ZeroMQ

32

B JSON Schemas

1 1

2 "title": "Errors",

3 "type": "array",

4 "items": {

5 "type": "object",

6 "properties": {

7 "offset": {

8 "type": "integer",
9 "minimum": 0

10 b,

11 "length": {

12 "type": "integer",
13 "minimum": 1

14 },

15 "category": {

16 "type": "string",
17 "enum": [

18 "syntax", "type", "spelling"
19]

20 b,

21 "level": {

22 "type": "string",
23 "enum": |

24 "warning", "error"
25]

26 ’,

27 "description": {

28 "type": "string"

29 by

30 ,

31 "required": |

32 "offset", "length", "category",
33 "level", "description"]
34 b

35 "minltems": O,

36 "uniqueltems": true

37

Listing B.1: Errors Product Schema

33

B.1 Discoverability

11
2 "title": "Register Request",
3 "type": "object",
4 "properties": {
5 "service id": {
6 "type": "string"
7 b,
8 "label": {
9 "type": "string"
10 b,
11 "description": {
12 "type": "string"
13 b
14 "language": {
15 "type": "string"
16 },
17 "product": {
18 "type": "string"
19 b
20 "options" : {
21 "type": "array",
22 "items": {
23 "oneOf": |
24 { "S$ref": "#/definitions/boolean—option" },
25 { "$ref": "#/definitions/number—option" },
26 { "$ref": "#/definitions/text—option" },
27 { "$ref": "#/definitions/xor—option" },
28 { "S$ref": "#/definitions/group—option" }
29]
30 }
31 s
32 "dependencies": {
33 "type": "array",
34 "items": {
35 "type": "string"
36 }
37 by
38 b,
39 "required": |
40 "service id", "label", "description",
41 "language", "product"]
42
Listing B.2: Register Request Schema
1 1
2 "title": "Register Response",
3 "type": "object",

34

4 "properties": {
5 "response": {
6 "type": "string",
7 "enum": |
8 "ok", "id taken", "no free port"
9]
10 b,
11 "bind _on_ port": {
12 "type": "integer",
13 "minimum": 1024,
14 "maximum": 65535
15 }
16 ,
17 "required": |
18 "response”
19]
20

Listing B.3: Register Response Schema
1 1
2 "title": "Deregister",
3 "type": "object",
4 "properties": {
5 "deregister_service_id": {
6 "type": "string"
7 b
8 b,
9 "required": ["deregister_service_id"]
10

Listing B.4: Deregister Schema

1 1
2 "title": "Discover Request",
3 "type": "object",
4 "properties": {
5 "discover services": {
6 "type": "array",
7 "items": {
8 "type": "object",
9 "properties": {
10 "service id": {
11 "type": "string"
12 ¥,
13 "language": {
14 "type": "string"
15 },
16 "product": {
17 "type": "string"
18 }

35

19
20
21
22
23
24
25

OOV~ WDN -

’,
"required":
¥
}
,

[]

"required": ["discover_services"]

Listing B.5: Discover Request Schema

"title": "Discover Response",

thpeﬂ: Harrayﬂ’

"items" : {
"type": "object"
"properties": {

5

"service id": {
"type": "string"

b,
"label": {

"type": "string"

¥,

"description":

{

"type": "string"

’,

"language": {

"type": "string"

b,
"product": {

"type": "string"

’,

"options" : {

thpevl: Harrayﬂ’

"items": {

"oneOf": |

{ ”$ref":

P N

]
¥
¥
¥,

”$ref”:
"$ref":
"$ref":
”$ref":

"#/definitions/boolean—option" },
"#/definitions/number—option" },
"#/definitions/text—option" },
"#/definitions/xor—option" },
"#/definitions/group—option" }

"required": ["service id", "label", "description",
"language", "product"]

¥

"required": |[]

Listing B.6: Discover Response Schema

36

B.2 Configurability

1 1
2 "title": "Number Option",
3 "type": "object",
4 "properties": {
5 "option_id": {
6 "type": "string"
7 b,
8 "label": {
9 "type": "string"
10 b
11 "type": {
12 "type": "string",
13 "enum": |
14 "number"
15 1
16 b
17 "default value": {
18 "type": "integer"
19 b
20 "from": {
21 "type": "integer"
22 b
23 "to": {
24 "type": "integer"
25 }
26 b
27 "required": [
28 "option_id", "label", "type",
29 "default _value", "from", "to"]
30
Listing B.7: Number Option Schema
1 1
2 "title": "Boolean Option",
3 "type": "object",
4 "properties": {
5 "option_id": {
6 "type": "string"
7 b,
8 "label": {
9 "type": "string"
10 b
11 "type": {
12 "type": "string",
13 "enum": |
14 "boolean"
15 1

37

16
17
18
19
20
21
22
23
24

OO UT R~ WDN -

O OO U~ WN -

b
"default value": {
"type": "boolean"
by
"required": |

"option_id", "label", "type",
"default value"]

Listing B.8: Boolean Option Schema

"title": "Text Option",
thpeﬂ: "ObjeCt”,
"properties": {

"option_id": {
"type": "string"
¥,
"label": {
"type": "string"
¥,
"type": {
"type": "string",
"enum": [
"text"
]
,
"default value": {
"type": "string"
,
"regular expression": {
"type": "string"
}

"required": |

"option_id", "label", "type",
"default_value", "regular expression"]

Listing B.9: Text Option Schema

"title": "Xor Option",
"type": "object",
"properties": {

"option_id": {
"type": "string"
},
"label": {
"type": "string"

38

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

OO UT A~ WN -

y,
"type": {
"type": "string",
"enum" : [
"xor"
]
b
"default value": {
"type": "string"
b
"options" : {
"type": "array",
"items": {
"type": "string"
y,
"minltems": 1,
"uniqueltems": true
¥
¥,
"required": [
"option_id", "label", "type",
"default _value", "options"]
Listing B.10: Xor Option Schema
"title": "Group Option",
"type": "object",
"properties": {
"required option": {
"type": "string"
b
"members" : {
"type": "array",
"items": {
"type": "object",
"oneOf": [
{ "$ref": "#/definitions/boolean—option" },
{ "$ref": "#/definitions/number—option" },
{ "S$ref": "#/definitions/text—option" },
{ "$ref": "#/definitions/xor—option" },
{ "S$ref": "#/definitions/group—option" }
]
b
h
Y,
"required": |

"requires", "members" |

Listing B.11: Group Option Schema

39

OOV~ WN -

36

A

¥

"title": "Configurations",
"type": "object",
"properties": {
"configure services": {
"type": "array",
"items": {
"type": "object",
"properties": {
"service id": {
"type": "string"
¥
"configurations": {
"type": "array",
"items": {
"type": "object",
"properties": {
"option_id": {
"type": "string"
b
"value": {
"type": "string"
}
b
"required": |
"option_id", "value"]
b
}
F,
"required": |
"service id", "configurations"]
¥
¥
b

"required": ["configure services"]

Listing B.12: Configuration Message Schema

40

Bibliography

[1] Ace editor. http://ace.c9.1i0/. Accessed: 2015-09-07.
[2] Antlr. http://www.antlr.org/. Accessed: 2015-09-02.
[3] aspell. http://aspell.net/. Accessed: 2015-09-24.

[4] Atom editor. https://atom.io/. Accessed: 2015-09-28.

[5] Awesome-bootstrap-checkbox. https://github.com/flatlogic/awesome-bootstrap-
checkbox. Accessed: 2015-09-02.

[6] Bootstrap. http://getbootstrap.com/. Accessed: 2015-09-02.
[7] Cloud9 ide. https://c9.io/. Accessed: 2015-09-28.
[8] Codemirror editor. http://codemirror.net/. Accessed: 2015-09-02.

[9] Ecmascript grammar for antlr 4. https://github.com/antlr/grammars-v4/tree/
master/ecmascript. Accessed: 2015-09-23.

[10] Ecmascript international. http://www.ecma-international.org/. Accessed: 2015-09-
23.

[11] Filesaver.js. https://github.com/eligrey/FileSaver. js. Accessed: 2015-09-02.
[12] Flowtype. http://flowtype.org/. Accessed: 2015-09-24.

[13] Font awesome. https://fortawesome.github.io/Font-Awesome/. Accessed: 2015-09-
02.

[14] Javascript as ecmascript implementation. https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Guide/Introduction#JavaScript_and_the_ECMAScript_
Specification. Accessed: 2015-09-23.

[15] Javascript tcp and udp socket api by w3c. http://www.w3.0org/TR/2015/NOTE-tcp-udp-
sockets-20150723/. Accessed: 2015-09-06.

[16] jeromgq, zeromq binding for java. https://github.com/zeromq/jeromq. Accessed: 2015-
09-23.

[17] Jquery. https://jquery.com/. Accessed: 2015-09-02.

[18] Json. http://json.org/. Accessed: 2015-09-05.

[19] Json-simple. https://github.com/fangyidong/json-simple. Accessed: 2015-09-23.
[20] Monto. https://bitbucket.org/inkytonik/monto. Accessed: 2015-09-03.

[21] Monto broker. https://github.com/monto-editor/broker. Accessed: 2015-10-05.

41

http://ace.c9.io/
http://www.antlr.org/
http://aspell.net/
https://atom.io/
https://github.com/flatlogic/awesome-bootstrap-checkbox
https://github.com/flatlogic/awesome-bootstrap-checkbox
http://getbootstrap.com/
https://c9.io/
http://codemirror.net/
https://github.com/antlr/grammars-v4/tree/master/ecmascript
https://github.com/antlr/grammars-v4/tree/master/ecmascript
http://www.ecma-international.org/
https://github.com/eligrey/FileSaver.js
http://flowtype.org/
https://fortawesome.github.io/Font-Awesome/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Introduction#JavaScript_and_the_ECMAScript_Specification
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Introduction#JavaScript_and_the_ECMAScript_Specification
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Introduction#JavaScript_and_the_ECMAScript_Specification
http://www.w3.org/TR/2015/NOTE-tcp-udp-sockets-20150723/
http://www.w3.org/TR/2015/NOTE-tcp-udp-sockets-20150723/
https://github.com/zeromq/jeromq
https://jquery.com/
http://json.org/
https://github.com/fangyidong/json-simple
https://bitbucket.org/inkytonik/monto
https://github.com/monto-editor/broker

[22] Monto broker by sven keidel. https://github.com/svenkeidel/monto-broker. Ac-
cessed: 2015-10-05.

[23] Monto eclipse plug-in by sven keidel. https://github.com/svenkeidel/eclipse-monto.
Accessed: 2015-10-05.

[24] Monto message conventions. https://github.com/monto-editor/message-
conventions. Accessed: 2015-10-05.

[25] Monto organization at github. https://github.com/monto-editor. Accessed: 2015-10-
05.

[26] Monto service base library for java. https://github.com/monto-editor/services-
base-java. Accessed: 2015-10-05.

[27] Monto services for java. https://github.com/monto-editor/java. Accessed: 2015-10-
05.

[28] Monto services for javascript. https://github.com/monto-editor/services-
javascript. Accessed: 2015-10-05.

[29] Monto web-based dde. https://github.com/monto-editor/editor-browser. Accessed:
2015-10-05.

[30] Posix regular expression standards. http://pubs.opengroup.org/onlinepubs/
009695399/basedefs/xbd_chap09.html#tag_09_03_05. Accessed: 2015-10-06.

[31] Websockets availability in browsers. http://caniuse.com/#feat=websockets. Accessed:
2015-09-06.

[32] Zeromgq. http://zeromq.org/. Accessed: 2015-09-05.
[33] Zeromq websocket draft. http://rfc.zeromq.org/spec:39. Accessed: 2015-09-06.

[34] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. The
many faces of publish/subscribe. ACM Computing Surveys (CSUR), Volume 35(Issue
2):114-131, June 2003.

[35] Sven Keidel. A disintegrated development environment. Master’s thesis, Technische Uni-
versitat Darmstadt, April 2015.

[36] Anthony M. Sloane, Matthew Roberts, Scott Buckley, and Shaun Muscat. Monto: A dis-
integrated development environment. In Software Language Engineering, volume 7, pages
211-220. Springer, November 2014.

[37] Krzysztof Stencel and Patrycja Wegrzynowicz. Implementation variants of the singleton
design pattern. In OTM ’08 Proceedings of the OTM Confederated International Workshops,
pages 396 — 406. Springer, November 2008.

[38] Arie van Deursen, Ali Mesbah, Bas Cornelissen, Andy Zaidman, Martin Pinzger, and Anja
Guzzi. Adinda: a knowledgeable, browser-based ide. In ICSE ’10 Proceedings of the 32nd
ACMY/IEEE International Conference on Software Engineering, volume 2, pages 203-206.
ACM New York, May 2010.

42

https://github.com/svenkeidel/monto-broker
https://github.com/svenkeidel/eclipse-monto
https://github.com/monto-editor/message-conventions
https://github.com/monto-editor/message-conventions
https://github.com/monto-editor
https://github.com/monto-editor/services-base-java
https://github.com/monto-editor/services-base-java
https://github.com/monto-editor/java
https://github.com/monto-editor/services-javascript
https://github.com/monto-editor/services-javascript
https://github.com/monto-editor/editor-browser
http://pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html#tag_09_03_05
http://pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html#tag_09_03_05
http://caniuse.com/#feat=websockets
http://zeromq.org/
http://rfc.zeromq.org/spec:39

	Introduction
	Scope of Work
	Overview of the Thesis

	Background: Fundamentals of Monto
	Architecture of Monto
	Monto Sources
	The Monto Broker
	Services for Monto
	Monto Sinks

	Web-based Code Editor
	Concept and Development
	Websockets
	Software Design
	Implementation of the Editor
	Graphical User Interface of the Editor

	Implementation of JavaScript Services
	Existing Product Types
	The 'Errors' Product

	Discoverability in the Monto Framework
	Registering Services
	Discovering Services

	Configurability of the Monto Framework
	Configuring the Broker
	Configuring Services

	Evaluation and Validation
	Related Work
	Conclusion and Future Work
	Abbreviations
	JSON Schemas
	Discoverability
	Configurability

