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Provably Sound Nullness Analysis of Java Code
Wouter Raateland, TU Delft

Abstract—Null pointer dereferences in Java raise exceptions,
occur often, are hard to debug and cost a lot of unnecessary effort
and resources. Therefore, a lot of effort has been put in analyses
spotting those null pointer dereferences. As developers rely on
those analyses it is important that they are sound. However,
proving null pointer analyses sound has been a complex problem.
Hence, we developed a nullness analysis for Java that is provably
sound. The analysis is built as an abstract interpreter upon
the sturdy framework, that allows for compositional soundness
proofs. This reduces the proof effort greatly. By creating a
concrete interpreter, and by generating arbitrary programs, we
were able to assess the soundness of the nullness analysis to great
extend. Also, we have proven a part of the analysis to be sound
in a formal way.

Index Terms—Static analysis, Abstract Interpretation, Nullness
Analysis, Java, Arrows

I. INTRODUCTION

JAVA allows one to store null values into both fields
and variables. Dereferences of null pointers result in

exceptions or segmentation faults.
Null pointer dereferences occur often and are notoriously

hard to debug. According to Tony Hoare, the inventor of
null pointers, the errors, vulnerabilities and system crashes
caused by dereferencing null values have cost around a
billion dollars. Hence, spotting null dereferences before they
are executed is important. Java checks for nullness during
run-time. By checking for nullness statically, Java programs
have to make less checks during run-time and they would run
more efficient. As developers rely on analyses spotting null
dereferences, it is also important that the nullness analyses
are sound. That is to say they don’t miss any possible null
dereferences.

Multiple static nullness analyses have already been devel-
oped. Some of these analyses [1] [2] [3] rely on abstract
interpretation [4]. Of these analyses, only Loginov et al.
[2] and Hubert et al. [1] have stated their analysis to be
sound. Other existing analyses are based on other techniques:
Some check nullness annotations and infer further nullness
information from there [5]. Others infer nullness information
from just code. Some analyses are not intended to be sound nor
complete, they just attempt to find common null dereference
errors and aim to be easy to use [6] [7]. Other analyses are
complex and aim at high precision [8].

This work differs from this previous body of work by creat-
ing a static nullness analysis, based on abstract interpretation,
that is provably sound and that requires significantly less
effort to be proven sound than existing work. It describes a
provably sound nullness analysis of Jimple [9], a preprocessed
variant of Java, using the Sturdy framework1. Sturdy is a
Haskell framework, providing utilities for creating abstract

1https://github.com/svenkeidel/sturdy

interpreters based upon arrows [10]. It enables compositional
soundness proofs when different interpreters share parts of
their semantics, reducing the effort required for these proofs.

This work is implemented using two interpreters and a
shared interpreter interface: a concrete interpreter implement-
ing concrete Jimple semantics, which we will call the con-
crete interpreter, an abstract interpreter implementing null-
ness semantics for Jimple, which we will call the abstract
interpreter and a shared interpreter interface which describes
the shared semantics of the concrete and abstract interpreter.
First, the concrete interpreter is validated by running an
extensive test suite. Then, the soundness of the abstract
interpreter is assessed using the concrete interpreter together
with QuickCheck2 tests over each interface member. Finally,
a partial soundness proof is made for the abstract interpreter.
This illustrates the reduced complexity of the soundness proof
over other proofs.

In this paper, we make three main contributions. We formal-
ize the semantics of Jimple into a concrete interpreter and a
shared interpreter interface that can be used to implement both
an abstract nullness analysis and other analyses. We evaluate
the correctness of the implemented concrete interpreter. We
assess the soundness of our nullness analysis.

The rest of this paper is organized as follows. Section II
gives information on the general structure and properties of
the created interpreters. Section III describes important parts
of the implementation of the interpreters. Section IV evaluates
the correctness of the implementation and the soundness of
the abstract interpreter. Section V describes other work done
in this area. Section VI concludes the main findings. Section
VII states potential directions for future work.

II. BACKGROUND

Jimple programs are structured very similar to Java pro-
grams: Programs consist of multiple classes and interfaces,
which may contain fields and methods. Also, class extension
and interface implementation works just like in Java. The
main difference between Jimple and Java programs is the way
that method bodies are represented. This section describes
the general structure and some important properties of our
developed interpreters.

A. Jimple Structure

Our developed interpreters interpret desugared Jimple code.
This code is generated in two steps: first, Java code is
transformed into Jimple code by using the Jimple transformer
from SOOT. Next, this Jimple code is manually desugared into
an abstract syntax that is directly interpretable.

2https://github.com/nick8325/quickcheck
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We found that Jimple programs can be split in five
different levels, which are all interpreted differently. These
levels include: immediate values Immediate, boolean
expressions (BoolExpr), normal expressions (Expr),
statements ([Statement]) and complete programs
([CompilationUnit]).

Please note that expressions and boolean epxressions are
two different constructs in Jimple. Boolean typed variables in
Jimple are stored and manipulated as integers with values 1
and 0 for True respectively False. Boolean expressions only
occur as conditions for If statements. Boolean expressions
compare two immediate values with a comparison operator,
such as the equality operator Cmpq, the non-equality operator
Cmpneq and the ordering operators Cmplt, Cmple, Cmpgt
and Cmpge.

B. Values

The concrete and abstract interpreter operate on the concrete
value domain Val respectively the abstract value domain V̂al.

The concrete domain contains the following values:

data Val
= IntVal Int
| LongVal Int
| FloatVal Float
| DoubleVal Float
| StringVal String
| ClassVal String
| NullVal
| RefVal Addr
| ArrayVal [Val]
| ObjectVal String

(Map FieldSignature Val)

Note here the value RefVal Addr. Java and Jimple imple-
ment objects and arrays as pointers to the actual record re-
spectively array elements. This value mimmics this behaviour.

>V̂al

Null NonNull

⊥V̂al

Fig. 1: Complete lattice of nullness values V̂al, with top ele-
ment >V̂al containing all concrete values, Null = {NullVal},
NonNull = >V̂al \Null and ⊥V̂al = ∅.

The abstract interpreter uses the abstract domain for nullness
defined by Cousot P. and Cousot R. [4], shown in figure 1.

The relation between the concrete domain and this abstract
domain is easily described by the abstraction function αVal of
the Galois Connection for concrete values Val and abstract
nullness values V̂al:

αVal : P(Val) � V̂al : γ

αVal(X) =


> if X ⊃ {NullVal}
Null if X = {NullVal}
NonNull otherwise

(1)

C. Arrow Transformers

The concrete and abstract interpreter are implemented using
the arrow transformer stack visible in figure 2a respectively
figure 2b. The arrow transformers are defined in the sturdy
framework and follow the definition from Hughes [10] where
possible. To get a good understanding of the implementa-
tion of the interpreters, it is important to first understand
the functionality of each arrow transformer in the stack.
Except enables computations to fail with an exceptional
value. In this implementation exceptional values can be ei-
ther a StaticException or a DynamicException.
Reader keeps track of the current method being interpreted.
Environment enables scoped execution by adding a en-
vironment to a computation. The concrete interpreter keeps
an environment mapping from variable names to addresses.
The abstract interpreter keeps a mapping from variable names
directly to values. Store simulates memory by keeping a
mapping from addresses to values. State keeps track of latest
memory address used. This makes sure that fresh addresses are
allocated for each new variable declaration so that variables
don’t collide. Const keeps track of both the compilation units
required to run the current program and the memory addresses
containing the values of the static fields of these compilation
units.

D. Context

It is visible from the arrow stack that the interpreter works
in a context. For a local variable with name l, we denote the
concrete context mapping l to concrete value v by l→E v and
the abstract context mapping l to abstract value v̂ by l→Ê v̂.

III. IMPLEMENTATION

Now that the general principles of the interpreters are clear,
it is time to move on to more specific implementation details.
Hence, this section will illustrate the implementation of some
crucial language constructs in our developed interpreters.

A. Declarations

Method bodies in Jimple consist of three separate parts:
declarations, statements and catch clauses. The declarations
contain all variables used in this method. When in interpret-
ing a method body, first, its declarations are interpreted. A
declaration consists of a type and a list of variable names. For
each variable name in each declaration, first fresh memory
is allocated using the State arrow transformer. Then the
default value for the type of this declaration is assigned to this
memory address using the Store arrow transformer. Finally
the variable is made available for further use by inserting it
into the environment. In the concrete interpreter, the default
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newtype Interp x y = Interp
(Except (Exception Val

(Reader Context
(Environment String Addr
(StoreArrow Addr Val

(State Addr
(Const ([CompilationUnit],Fields)
(->)))))) x y)

(a) Concrete stack

newtype Interp̂ x y = Interp̂

(Except (Exception V̂al)
(Reader Context

(Environment String V̂al

(StoreArrow FieldSignature V̂al
(Const [CompilationUnit]

(->))))) x y)

(b) Abstract stack

Fig. 2: Arrow transformer stacks used in concrete and abstract interpreters.

value is NullVal for object and null typed variables. For
primitive typed variables, the default value depends on the
exact type, (e.g. 0 for IntType, false for BoolType). In
the abstract interpreter, the default value is Null for object
and null typed variables and NotNull for primitive typed
variables.

B. Label & Goto Statements
Jimple contains Label and Goto statements. Both state-

ments contain a label identifier:
Label "label1"
Goto "label1"

The effect of these statements is quite obvious. They could
be compared to labels and break statements in Java. However,
since a Goto statement can be used to move the code
execution pointer to any Label defined in the current method,
they are more powerful. As we will see further in this section,
the Label statement is used for more language constructs.

C. Assignments
The only way to modify variables in Jimple is through

the Assign. This statement takes a variable, an expression
and a continuation. In interpreting an Assign statement,
first the expression is evaluated to a value, then this value is
assigned to a variable, which can either be a local variable or a
reference variable. Reference variables include array elements,
object fields and static fields. In the concrete interpreter a
map from variable name to its address in memory is kept by
the Environment arrow transformer and the StoreArrow
arrow transformer maps these addresses to actual values. This
structure enables many features, including nested objects and
circular data structures. This structure also allows the concrete
interpreter to assign a new value to a variable of each kind by
only updating the Store. The abstract interpreter works on
the more simple nullness domain (fig. 1). In this domain, all
values are defined non-recursively. Therefor a mapping from
variable names to addresses and from addresses to values is
not required and all operations on variables can be executed
using only the Environment arrow transformer. Assigning
a new value to a variable is now simulated by running the
continuation in a new environment with the updated value for
the specified variable.

D. If Statements
If statements in Jimple have the same functionality as in

if statements in Java. However their syntax is very different.
As an example, consider the following Java code:

>
B̂ool

True False

Fig. 3: Complete lattice of abstract booleans B̂ool with top
element >

B̂ool
= {True, False}, True = {True} and

False = {False}
.

if (x < 2) {
return x;

} else {
return 3;

}

This is transformed into the following Jimple statements:
If (BinopExpr (Local "x") Cmplt

(IntConstant 2)) "label1"↪→

Return (Just (IntConstant 3))
Label "label1"
Return (Just (Local "x"))

The condition x < 2 is still there. However, the if-branch is
replaced with the label ”label1” and the else-branch is put
directly after the if statement. This is interpreted as follows:
If the condition evaluates to a true value, then Java would con-
tinue in the if-branch and Jimple interpretation is continued at
statement Label "label1". Otherwise, Java code executes
the else-branch and Jimple interpretation is continued at the
next statement (Return (Just (IntConstant 3))).

The shared interpreter implements this behaviour using two
continuations as follows:
If condition label -> do

b <- evalBool -< condition
if_
(atLabel runStatements)
runStatements -<
((b,condition),(label,stmts))

The implementation of if_ in both the concrete and abstract
interpreter is shown in figure 4. The if_ operation takes
two continuations f (=atLabel runStatements) and g
(=runStatements) and requires both the condition and the
value this condition is evaluated to as input. The concrete
interpreter evaluates the condition to an ordinary boolean
value. If b = True, then f is executed. If b = False, g
is interpreted. The abstract interpreter evaluates the condition
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if_ f g = proc ((b,_),(x,y)) ->
case b of

True -> f -< x
False -> g -< y

(a) Concrete interpreter

îf f̂ ĝ = proc ((b̂,BoolExpr i1 op i2),(x,y)) -> case b̂ of
True -> f̂ -< x
False -> ĝ -< y
Top -> case (i1,op,i2) of
(Local l,Cmpeq,NullConstant) -> specify -< ((l,Null,x),(l,NonNull,y))
(NullConstant,Cmpeq,Local l) -> specify -< ((l,Null,x),(l,NonNull,y))
(Local l,Cmpne,NullConstant) -> specify -< ((l,NonNull,x),(l,Null,y))
(NullConstant,Cmpne,Local l) -> specify -< ((l,NonNull,x),(l,Null,y))
_ -> (f̂ -< x) t (ĝ -< y)

where specify = joined (extendEnv' f̂) (extendEnv' ĝ)

(b) Abstract interpreter

Fig. 4: Concrete and abstract implementation of the if_ operation

to an abstract boolean value (fig. 3), which can be both True
and False at the same time: >

B̂ool
. In most cases abstract

interpretation of if_ is the same as concrete interpretation:
If b = True or b = False, then the first, respectively the
second continuation is interpreted. If b = >

B̂ool
, then f is

interpreted assuming that condition c evaluated to True and
g is interpreted assuming that condition c evaluated to False.
After interpreting both f and g, the results are combined using
the least upper bound operation t.

By making the stated assumptions, the abstract interpreter
can get more precise information on the program currently
being interpreted in two specific cases. Namely, when a local
variable with name l is compared to a null literal using
either the equality operator Cmpeq (≡) or the non-equality
operator Cmpneq (6=). In these cases b = >

B̂ool
and therefor

l →Ê >V̂al. Now, the original condition BoolExpr i1 op
i2 is used. If op = Cmpeq, f and g are interpreted under
the more precise assumptions that l →Ê Null respectively
l→Ê NonNull. If op = Cmpeq, f and g are interpreted under
the more precise assumptions that l →Ê Null respectively
l→Ê NonNull.

E. Switch statements
Jimple contains two distinct switch statements, namely

LookupSwitch and TableSwitch. Except for their name,
both statements have identical syntax:
TableSwitch Immediate

[(Case,LabelIdentifier)]↪→

Here a Case can be an integer or a default case. The only
difference between these statements is that they are normally
interpreted using different algorithms for speed reasons. As
speed was not a concern in this work, we implemented both
equally. For interpreting a switch statement, the immediate
value Immediate always has to be evaluated first. If the
value resulting from this evaluation matches any integer valued
case, interpretation is continued at the corresponding label.
Else, interpretation is continued at the label corresponding
to the default case. This is implemented in the shared
interpreter as follows:
TableSwitch i cases -> do

v <- evalImmediate -< i
case_ (atLabel runStatements) -<

(v,cases)↪→

The shared interpreter evaluates Immediate and passes its
result togeter with a continuation to the case_ method, which

is implemented by the specific interpreter. This continuation
atLabel runStatements takes a label name as input,
searches for the corresponding Label statement and contin-
ues interpretation from there. The concrete interpreter simply
searches for the first matching case and runs the continuation
using the matching label. The abstract interpreter does not
distinguish between different integer values. Hence it is never
certainly matches a case. Therefor it computes the continuation
for all cases and combines the results using the least upper
bound operation t.

F. Try Catch

Try Catch in Jimple is implemented by combining a
method’s catch clauses and Label statements. Take for ex-
ample the following Java code where an exception is thrown
and caught:
try {

throw new Exception("foo");
} catch (Exception e) {
return 1;

}

This is transformed into the following Jimple statements:
Label "label1"
Assign (LocalVar "$r2") (NewExpr (RefType

"java.lang.ExceptionA"))↪→

Invoke (SpecialInvoke "$r2" sig
[StringConstant "foo"])↪→

Throw (Local "$r2")
Label "label2"
IdentityNoType "$r3" CaughtExceptionRef
Return (Just (IntConstant 1))

and the following Jimple catch clause:
CatchClause {

className = "java.lang.Exception",
fromLabel = "label1",
toLabel = "label2",
withLabel = "label2"

}

Our implementation supports two types of exceptions:
StaticException’s and DynamicException’s.
StaticException’s contain an error message and
are thrown when the program contains an error, such as
invoking a non-existing method. These exceptions stop
the interpretation immediately. DynamicException’s
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contain a value, may be thrown either explicitly by a Throw
statement, or implicitly by invalid operations such as a null
dereference and can be caught using CatchClause’s. A
CatchClause contains a fromLabel, toLabel, withLabel and
a className. It catches a DynamicException when its
value is an instance of className and when it is thrown in a
statement between the Label statements corresponding with
its fromLabel and toLabel. When it catches the exception,
the exceptional value is assigned to a special variable
named @caughtexception and interpretation is continued at
the Label statement corresponding with the exception’s
withLabel.

The shared interpreter implements this behaviour using the
Reader and Except arrow transformer as seen in figure 2
and the arrow operation tryCatch as follows:

Label labelName -> do
(_,clauses) <- ask -< ()
let clauses' = filter (\c ->
fromLabel c == labelName &&
Label (toLabel c) `elem` stmts)

clauses↪→

tryCatch
(pi1 >>> runStatements)
catchException -< (rest,clauses')

This code uses the Reader arrow transformer to get the body
of the current method, which may contain CatchClause’s.
Then it filters the clauses and runs the tryCatch arrow
operation. This operation tries to execute its first argument.
If that throws an exception, then it catches that using its
second argument, catchException which is implemented
as follows:

catchException = proc ((_,clauses),e) ->
case e of↪→

StaticException _ -> failA -< e
DynamicException v -> catch

handleException -< (v,clauses)↪→

handleException = proc (v,clause) -> do
addr <- alloc -< v
extendEnv' runStatementsFromLabel -<

("@caughtexception", addr, withLabel
clause)

↪→

↪→

This code passes clauses that may catch the excep-
tion e to catch, which is implemented in the con-
crete and abstract interpreter. catch also takes a contin-
uation, handleException, which uses the Store and
Environment arrows to allocate memory for and assign a
value to the special variable @caughtexception. The concrete
interpreter implements catch by finding the first clause such
that the exceptional value e is an instance of the className of
this clause. If no such clause can be found, then the exception
is passed down the stack. The abstract interpreter does not
discern between different object types. Hence it implements
catch by both interpreting the given continuation for each
given clause and by passing the exception down the stack and
then joining the results using the least upper bound operation.

IV. EVALUATION

In this research we evaluate whether it is feasible to imple-
ment a shared arrow-based interpreter for Java, we evaluate the
correctness of the implemented concrete interpreter and we
evaluate the feasibility of proving the implemented nullness
analysis sound. The previous section already shows the fea-
sibility of implementing a shared arrow-based interpreter for
Java. Therefore, this section will evaluate the correctness of
the concrete interpreter by describing test effort taken and this
section will evaluate the feasibility of proving the implemented
nullness analysis sound by assessing its soundness and by
proving a part of its soundness.

The two interpreters that we created in this work are imple-
mented on top of the non-leaky shared interpreter interface,
which is shown in appendix A. It contains a total of 50
operations split over 5 classes: 38 value operations (class
UseVal), 3 exception operations (class UseException),
7 operations using values and booleans (class UseBool), 1
environment operation (class UseEnv) and 1 constant opera-
tion (class Useconst). Together these operations describe
the complete semantics of Jimple. By making use of the
compositional soundness proofs that the Sturdy framework
provides, proving the abstract interpreter sound, would re-
quire proving 50 soundness lemmas, one for each interface
method. This was outside the scope of this research. However,
the soundness of the abstract interpreter is assessed using
QuickCheck tests. Also, to illustrate the reduced effort required
to prove the interpreter sound, a soundness proof is given
for if_ which is used to interpret switch statements. In
both assessing soundness of the abstract interpreter, and prov-
ing soundness of switch statements, a soundness proposition
derived from the soundness proposition for the collecting
semantics [11] of evalImmediate, evalBool, eval and
of runStatements is used:

f v̊ Interpf̂

⇐⇒ ∀a ∈ P(A),∀â ∈ Â, αA(a) v â =⇒ αÂ(f(a)) v f̂(â)

Herein f v̊ Interpf̂ means that interpretation of f̂ is sound with
respect to f and v denotes an reflexive and transitive ordering
relation.

A. Assessing correctness of the concrete interpreter

Without the concrete interpreter implementing Jimple cor-
rectly, assessing and proving soundness of an abstract inter-
preter that shares code with it, makes no sense. Hence, we
will describe how we assessed the correctness of the concrete
interpreter here.

To assess the correctness of the concrete interpreter, we
made several efforts. First, for translating the syntax of Jimple
into an abstract syntax tree that would be parseable in Haskell,
the original Jimple documentation [9] was used in combination
with the source code of Jimple3. As no official documentation
was available, describing the semantics of Jimple code, the
concrete semantics were derived from the source code. Then,

3https://github.com/Sable/soot/tree/develop/src/main/java/soot/jimple
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we wrote small unit tests, testing the interpretation of imme-
diate values, boolean expressions and expressions. Gradually
larger tests were added, interpreting multiple statements or
even complete programs consisting of multiple classes. In
the end, we had a test suite containing 30 tests: 24 simple
tests, testing interpretation up to statements and 6 tests which
tested interpretation of complete Java programs. The test
suite targeted most language constructs of Jimple, including
program initialization, variable shadowing, operating on arrays
and objects, throwing and catching exceptions, branching with
if and case statements, handling arithmetic operations and
using static fields. Because some rules for typecasting, like
narrowing rules for primitives4, have not been implemented,
the test suite does not cover typecasting of variables.

B. Assessing Soundness of the Nullness Analysis

For each level of interpretation: immediate values, boolean
expressions, general expressions, statements and complete
programs, we designed QuickCheck tests. In this research, we
only used these tests to assess the soundness of the abstract
interpreter for nullness semantics. However, the tests were
designed to test the soundness of any abstract interpreter for
Jimple.

The QuickCheck tests made heavy use of the typeclass
Arbitrary5. This allowed us to automatically generate random
immediate values, identifiers, variable names and even random
expressions and statements. Testing the interpreters in this way
allowed for a high coverage without having to write many tests
by hand.

To get a feeling of how such a QuickCheck test works,
we show how the soundness of arbitrary unary operations is
assessed. Please note that in order to be more readable in this
paper format, the code shown here differs from the original
code. Unary operations in Jimple are expressions with the
format:
UnopExpr op immediate

To assess them, the method for assessing expression evalu-
ation is called:
soundExpr :: (Arbitrary a,Show a,Arbitrary

b,Show b,Galois (Pow vc) va,Galois
(Pow rc) ra,Complete ra,Eq rc,Hashable
rc,Show rc,Show ra) =>

↪→

↪→

↪→

String ->
(a -> [(String,vc)]) -> (b -> Expr) ->
([(String,vc)] -> Expr -> rc) ->
([(String,va)] -> Expr -> ra) ->
Spec

soundExpr desc genMem genExpr runCon
runAbs =↪→

it ("sound value approximation " ++
desc) $ property $ \(a,b) -> do↪→

let mem = genMem a
let mema = map $ second (alpha .

singleton)↪→

4https://docs.oracle.com/javase/specs/jls/se7/html/jls-5.html#jls-5.1.2
5http://hackage.haskell.org/package/QuickCheck-2.11.3/docs/Test-

QuickCheck-Arbitrary.html

let expr = genExpr b
let rc = runCon mem expr
let ra = runAbs mema expr
rc `shouldBeApproximated` ra
where c `shouldBeApproximated` a =

unless↪→

(ca v alpha (singleton c))
(expectationFailure "soundness

failed")↪→

This test method takes as input a memory generation func-
tion and an expression generation function. First it generates
memory and an expression. Then, it runs the concrete and
abstract interpreters on this generated memory and expres-
sion. Now, the value resulting from concrete interpretation is
abstracted using the abstraction function (1). Finally, it checks
whether the value resulting from abstract interpretation over
approximates the abstracted concrete value.

The test is called in the following way:

soundExpr "Unary operations"
(const []::() -> [(String,vc)])
(uncurry UnopExpr)
Con.eval Abs.eval

Testing in this way has allowed us to cover 92% of all top
level definitions and 78% of all expressions in the concrete
interpreter, abstract interpreter and shared interpreter interface
combined. These results give us a strong indication that the
abstract interpreter is actually sound.

C. Proving If Statements Sound

This section will provide a proof of the if_ operation
described in section III-D. We chose the if_ operation as a
first proof and as an example, because proving its soundness
is neither trivial, nor to complex.

Lemma 1 (Soundness of if_.). If f v̊ f̂ and g v̊ ĝ, then
if f g v̊ îf f̂ ĝ.

Proof. Let f v̊ f̂ and g v̊ ĝ and let X ∈ P(Bool) and
b̂ ∈ B̂ool such that αBool(X) v b̂. Also let e be a boolean
expression BoolExpr i1 op i2, where op is either an equality
operation (Cmpeq or Cmpneq) or an ordering operation and
i1 and i2 are two immediate values. Finally, let x and y be
the two inputs to f,f̂ and g,ĝ respectively. Note that f and f̂,
and g and ĝ take inputs of the same type. We distinct three
separate cases:

“b̂ = True” Now X ⊆ {True}, and thus

{if f g−< ((b, e), (x, y))|b ∈ X}
⊆ {if f g−< ((True, e), (x, y))} = {f−< x}

Hence,

αBool({if f g−< ((b, e), (x, y))|b ∈ X})
v αBool({f̂−< x}) v f̂−< x

= îf f̂ ĝ−< ((True, e), (x, y))
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“b̂ = False” This case is similar to the first. Now X ⊆
{False}, and thus

{if f g−< ((b, e), (x, y))|b ∈ X}
⊆ {if f g−< ((False, e), (x, y))} = {g−< y}

Hence,

αBool({if f g−< ((b, e), (x, y))|b ∈ X})
v αBool({g−< y}) v ĝ−< y

= îf f̂ ĝ−< ((False, e), (x, y))

“b̂ = >
B̂ool

” In this case X ⊆ {True, False}. To handle
the more complex structure of the abstract interpreter we split
this case into two subcases:
1). If then one of i1 and i2 is a local variable with name l,
the other is a null constant and op ∈ {Cmpeq, Cmpneq}, îf
will modify the interpretation context with extendEnv’. We
can now reason as follows:

First consider op = Cmpeq. If now b = True, l →E

NullVal. Otherwise, l→E a for some a ∈ V al, a 6= NullVal

and

{if f g−< ((b, e), (x, y))|b ∈ X}
⊆ {if f g−< ((b, e), (x, y))|b ∈ {True, False}}
= {if f g−< ((True, e), (x, y)),

if f g−< ((False, e), (x, y))}
= {f−< x|l→ENullVal, g−< y|l→Ea}

Now

αVal({if f g−< ((b, e), (x, y))|b ∈ X})
v αVal({f−< x|l→ENullVal, g−< y|l→Ea})
v αVal({f−< x|l→ENullVal}) t
αVal({g−< y|l→Ea})

v f̂−< x|l→ÊNull t ĝ−< y|l→ÊNonNull

= (extendEnv′f̂−< (x, l,Null)|l→Ê>
B̂ool

)t
(extendEnv′ĝ−< (y, l, NonNull)|l→Ê>

B̂ool
)

= îf f̂ ĝ−< ((b̂, e), (x, y))|l→Ê>
B̂ool

We can use a similar argument to prove that soundness also
holds when op = Cmpne.
2). Otherwise,

{if f g−< ((b, e), (x, y))|b ∈ X}
⊆ {if f g−< ((b, e), (x, y))|b ∈ {True, False}}
= {f−< x, g−< y}

And thus,

αVal({if f g−< ((b, e), (x, y))|b ∈ X})
v αVal({f−< x, g−< y})
v αVal({f−< x}) t αVal({g−< y})
v f̂−< x t ĝ−< y

= îf f̂ ĝ−< ((b̂, e), (x, y))

Now, for all cases,

αVal({if f g−< ((b, e), (x, y))|b ∈ X})
v îf f̂ ĝ−< ((b̂, e), (x, y))

Hence the lemma follows.

V. RELATED WORK

As far as we know, only one attempt at concrete interpre-
tation of Jimple code has been done before. This project by
University of Colorado Boulder6 is incomplete and there has
been no progress since October 2017.

The creators of SOOT have stated plans to write a concrete
interpreter for Jimple7, however no progress has been made
there yet.

On static nullness analysis, a lot of work has been done.
We will list the most relevant work done to date and compare
it to our work.

Most works are based upon techniques other than abstract
interpretation. These works include the following:

The Checker framework8 contains a nullness checker that
guarantees to find all null dereferences 9 and that is sound.

FindBugs10 contains a static null pointer analysis, which
they show to be very precise [8]. This analysis is not proven
sound.

Both Eclipse IDE11 and Intellij IDE12 contain a simple
nullness analysis1314. These analyses are available for free and
serve as a first check. They are neither sound nor complete.

The SOOT15 analysis suite, contains a static nullness anal-
ysis [12]. This analysis is tested using the test suit from Soot.
However, nothing could be found on the soundness of this
analysis.

OpenJML16 is a static analysis tool using Java annotations,
which includes a null pointer analysis. It is the successor
of ESC/Java and ESC/Java2. It is neither sound nor com-
plete. CANAPA17 and Houdini are analyses built on top
op ESC/Java2 respectively ESC/Java. These analyses aim to
reduce the effort of eliminating null pointer exceptions [6] [7].

JastAdd18 is an extensible Java compiler, which includes
modules for static non-null checking [5].

Our nullness analysis is based upon abstract interpretation of
complete programs and is focused upon soundness rather than
precision. Hence, our analysis differs from the above works.

Then, there is a nullness analyses based upon abstract
interpretation that is not sound. Spoto et al. [3] created a

6https://github.com/cuplv/cuanto/tree/develop/src/main/scala/edu/colorado/plv/cuanto
7https://conf.researchr.org/track/issta-2018/panathon-2018
8https://checkerframework.org/
9https://checkerframework.org/releases/1.1.1/checkers-

manual.html#nullness-checker
10http://findbugs.sourceforge.net/
11https://www.eclipse.org/ide/
12https://www.jetbrains.com/idea/
13https://wiki.eclipse.org/JDT Core/Null Analysis
14https://www.jetbrains.com/help/idea/nullable-and-notnull-

annotations.html
15https://www.sable.mcgill.ca/soot/
16http://www.openjml.org/
17http://www.mimuw.edu.pl/ chrzaszcz/Canapa/
18http://jastadd.org/web/
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null pointer analysis for Java bytecode. This work is mainly
focused on precision.

Finally, there are two nullness analyses based on abstract
interpretation that are sound.

Nit, the Nullability Inference Tool19, is a static analysis tool
that infers nullness annotations for Java bytecode [1]. The
analysis underlying the tool is proven sound for some part
[13]. They state that a soundness proof for the analysis for
the complete Java bytecode would be necessarily large and
that they would require machine-checking to verify this proof.
The soundness proof for our developed analysis would also
be large, but it would be compositional and would not require
machine-checking.

Loginov et al. [2] presents a tool named SALSA, which
uses a novel technique named expanding-scope analysis to
soundly analyze null dereferences with reasonable precision.
They state that their analysis is sound given any sound call-
graph construction and alias analysis. In this work, no formal
proof is given. Hence we cannot compare their proof effort to
ours.

VI. CONCLUSION

We presented a novel approach to creating a static nullness
analysis, based upon abstract interpretation using a shared in-
terpreter interface. We implemented an interpreter for concrete
Jimple semantics, an interpreter for abstract Jimple nullness
semantics and a non-leaky shared interpreter interface con-
taining the common functionality of the two interpreters using
arrow transformers, making the abstract interpreter provably
sound. We evaluated the soundness of the abstract interpreter
in three steps. First, we assessed the correctness of the concrete
interpreter using an extensive test suite. Then, we assessed the
soundness of the abstract interpreter running both the concrete
and abstract interpreter on randomly generated interpretable
structures, giving a good indication that the abstract interpreter
is actually sound. Finally, we have shown a proof of the
soundness of the if_ operation of the shared interpreter
interface.

VII. FUTURE WORK

Currently, the abstract interpreter will not terminate when
interpreting programs containing loops and recursion. In future
work, a fixpoint cache should be added to the interpreter. This
would allow analysis of more complex programs including
these language features. Also, in the current work, we fo-
cused on soundness rather than precision. In future work, the
precision of the interpreter can be improved, for example by
using a more precise abstract domain using Raw values [1]
or by incorporating variable aliasing. Also, in this work, only
a small part of the abstract interpreter is yet proven sound, it
makes sense to expand this proof and to prove the complete
interpreter sound. Most of the code of this work is written
agnostic of the exact abstract interpreter. In future work, it
would be interesting to create more complex analyses on top
of the already created shared interpreter interface and to prove
them sound as well.

19http://nit.gforge.inria.fr/index.html
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APPENDIX A
SHARED INTERPRETER INTERFACE

class Arrow c => UseVal v c | c -> v where
doubleConstant :: c Float v
floatConstant :: c Float v
intConstant :: c Int v
longConstant :: c Int v
nullConstant :: c () v
stringConstant :: c String v
classConstant :: c String v
newSimple :: c Type v
newArray :: c (Type,[v]) v
and :: c (v,v) v
or :: c (v,v) v
xor :: c (v,v) v
rem :: c (v,v) v
cmp :: c (v,v) v
cmpg :: c (v,v) v
cmpl :: c (v,v) v
shl :: c (v,v) v
shr :: c (v,v) v
ushr :: c (v,v) v
plus :: c (v,v) v
minus :: c (v,v) v
mult :: c (v,v) v
div :: c (v,v) v
lengthOf :: c v v
neg :: c v v
instanceOf :: c (v,Type) v
cast :: c ((v,Type),v) v
defaultValue :: c Type v
declare :: c x (Maybe v) ->

c ((String,v),x) (Maybe v)
readVar :: c String v
updateVar :: c x (Maybe v) ->

c ((String,v),x) (Maybe v)
readIndex :: c (v,v) v
updateIndex :: c x (Maybe v) ->
c (((v,v),v),x) (Maybe v)

readField :: c (v,FieldSignature) v
updateField :: c x (Maybe v) ->
c ((v,(FieldSignature,v)),x) (Maybe v)

readStaticField :: c FieldSignature v
updateStaticField :: c (FieldSignature,v) ()
case_ :: c String (Maybe v) ->

c (v,[CaseStatement]) (Maybe v)

class Arrow c => UseException e v c | c -> e v where
failStatic :: c String a
failDynamic :: c v a
catch :: c (v,CatchClause) (Maybe v) ->

c (e v,[CatchClause]) (Maybe v)

class Arrow c => UseBool b v c | c -> b v where
eq :: c (v,v) b
neq :: c (v,v) b
gt :: c (v,v) b
ge :: c (v,v) b
lt :: c (v,v) b
le :: c (v,v) b
if_ :: c String (Maybe v) -> c x (Maybe v) ->
c ((b,BoolExpr),(String,x)) (Maybe v)

class Arrow c => UseEnv env c | c -> env where
emptyEnv :: c () env

class Arrow c => UseConst c where
askCompilationUnits :: c () [CompilationUnit]


