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ABSTRACT 
In this paper, we present an automatic semantic video analysis 
system to support interdisciplinary research efforts in the field of 
psychology and media science. The psychological research 
question studied is whether and how playing violent content in 
computer games may induce aggression. To investigate this 
question, the extraction of meaningful content from computer 
games is required to gain insights into the interrelationship of 
violent game events and the underlying neurophysiologic basis 
(brain activity) of a player. Previously, human annotators had to 
index game content according to the current game state, which is 
a very time-consuming task. The automatic annotation of a large 
number of computer game recordings (i.e. videos) speeds up the 
experimentation process and allows researchers to analyze more 
experimental data on an objective basis. The proposed computer 
game video content analysis system for computer games extracts 
several audiovisual low-level as well as mid-level features and 
deduces semantic content via a machine learning approach. This 
system requires manual annotations for a single video only to 
facilitate the semi-supervised learning process. Finally, human 
experts are allowed to refine the annotation results via a graphical 
user interface. Experimental results demonstrate the feasibility of 
the proposed approach. 

Categories and Subject Descriptors 
H.3 [Information Storage and Retrieval]: Content Analysis and 
Indexing – Indexing methods. 

General Terms 
Algorithms, Measurement, Experimentation, Human Factors. 

Keywords 
 Semantic video analysis, computer games, psychology. 

1. INTRODUCTION 
Computer games play a very important role in today’s 
entertainment media and belong to the most popular entertainment 
products. Unfortunately, the number of computer games 
containing serious violence increases. There is an extensive 
ongoing debate about the question whether playing violent games 
causes aggressive cognitions, aggressive affects or aggressive 
behavior, in particular with respect to teens and young adults. 
The neurophysiologic perspective of mass communication 
research concentrates on emotional responses to video game 
playing. Mathiak and Weber [11] developed neurophysiologically 
grounded measures for the “human experience of media 
enjoyment”. The study continues their prior work (Weber et al. 
[19]) on video game playing in which functional magnetic 
resonance imaging (fMRI) scans were taken during video game 
playing. Through this neurophysiologic perspective, they 
demonstrated that a specific neurological mechanism is activated 
when playing a first-person-shooter game. One central finding is 
that cognitive areas seem to suppress affective areas during the 
(virtually) violent interactions. This mechanism helps to better 
understand a potential link between playing certain types of 
violent video games and aggressive cognitions and affects.  
The experimental design presented by Weber et al. [19] is based 
on the definition of certain game states and captures a player’s 
brain activity via fMRI while (s)he is playing a violent computer 
game. Several semantic game events are distinguished: 1.) 
inactive; 2.) preparation; 3.) search and explore; 4.) danger; 5.) 
under attack, and 6.) fighting and killing. Once the game 
recordings are annotated with these semantic categories, the 
interrelationship of violent game events and the underlying 
neurophysiologic basis (brain activity) of the player can be 
investigated. Normally, human annotators are required to index 
such game content according to the current game state, but this is 
a very time-consuming task. In this context, computer-based 
automatic video content analysis of computer game recordings 
promises several advantages: Human annotation efforts can be 
reduced noticeably, and the annotation process is speeded up and 
is based on reproducible and objective criteria only. At the same 
time, researchers are enabled to investigate a larger number of 
computer game videos to gather more experimental data. 
In this paper, we present an automatic semantic video analysis 
system that supports the experimental design described above by 
automatically identifying the game states (i.e. categories). The 
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system is aimed at minimizing the human annotation effort and 
thus requires manual annotations for a single video only to 
facilitate the semi-supervised learning process. Content analysis 
relies on audiovisual low-level features as well as on mid-level 
features. The considered mid-level features are the results of shot 
boundary detection [3], camera motion estimation [4], audio 
segmentation, text detection [6] and face detection [13]. For each 
game category, a support vector machine (SVM) is trained using 
the low- and mid-level features. In our approach, only a single 
video sequence with a duration of 12 minutes is required to 
provide training data and hence, human annotation effort is kept 
at a minimum. Afterwards, new videos are automatically analyzed 
using these SVM models. To achieve a more robust result, an 
automatic semi-supervised correction step is employed separately 
for each video: Based on the initial classification result, the 
system automatically labels the frames in a new video and adapts 
its concept models to this video by employing feature selection 
and adaptively building a specialized classifier for a particular 
game video. Finally, the graphical user interface of our software 
system Videana1 allows a human expert to refine respectively 
correct the annotation results, if needed. Experimental results 
demonstrate the very good performance of the proposed approach, 
which is thus indeed applicable to this interdisciplinary research 
field. 
The paper is organized as follows. In section 2, related work of 
semantic analysis of videos for certain genres is discussed. 
Section 3 presents the experimental design and the main 
processing steps of the proposed semantic video analysis system. 
Experimental results are presented in section 4. Section 5 
concludes the paper and outlines areas for future work. 

2. RELATED WORK 
To the best of our knowledge, neither video content analysis 
methods have been applied to computer game recordings nor 
automatic video content analysis has been suggested for the field 
of behavioral sciences. Nevertheless, there exist many semantic 
video analysis systems which are specialized for a certain genre, 
e.g. sports videos or news videos.  
There are many approaches addressing the analysis of news 
videos. This emphasis might have been enforced by the 
TRECVID evaluation series [17] in which comprehensive news 
video test collections have been provided and used for evaluation 
purposes. A summary of semantic concept detection approaches 
regarding news videos is presented by Naphade and Smith [12]. 
The authors state that in most approaches, concept detection is 
considered as a supervised pattern recognition problem.  
In a way, sports videos can be considered as somewhat related to 
the genre of computer games investigated in this paper: Since 
both genres are rule-driven, the amount of possibly appearing 

                                                                 
1 Our work on video content analysis and retrieval is motivated by 

a large media research project currently conducted at the 
Universities of Siegen, Marburg, Dortmund, and FHG St. 
Augustin, Germany, entitled “Media Upheavals”. The goal of 
our subproject is to provide a high-performance video content 
analysis system to support other subprojects applying film 
analysis. The software system Videana is currently under 
development to provide such support. 

content is limited in both sports and computer games (“e-sports”). 
The automatic indexing of sports videos has been extensively 
studied in recent years. As noted in [15], many specific 
approaches exist for several sports domains, e.g. Formula-1, 
cricket, tennis, American football, and Gaelic football.  
Apart from specific approaches, frameworks have been proposed 
that cover more than only a single type of sports. For example, Xu 
and Chua [21] propose a framework for event detection in team 
sports videos that is based on audiovisual features, domain 
knowledge, and external information sources. 
Tong et al. [16] suggest a framework for semantic shot 
representation of sports videos. This framework is applicable to 
field sports, and shots are classified based on camera distance, 
displayed subject and edited video layout. 
Sadlier and O’Connor [15] present an event detection system for 
field sports as well. They argue that it is not feasible to build a 
generic supervised event detection system for any kind of sports 
and find the limitation to field sports reasonable. The following 
features are employed in a supervised learning process: image 
crowd detection, speech-band audio activity, on-screen graphics 
tracking, motion activity measure, field line orientation and some 
other features.  

3. SEMANTIC ANALYSIS OF COMPUTER 
GAME VIDEOS 
In this section, we present our system to support interdisciplinary 
research in media and behavioral sciences via automatic 
multimodal video content analysis. First, in section 3.1 we 
describe the semantic classes which must be recognized for the 
experiment conducted by Weber et al. [19]. Then, our system is 
presented in sections 3.2 to 3.4. It utilizes automatically extracted 
audiovisual low-level and mid-level features to infer about the 
semantic game classes via supervised learning respectively semi-
supervised learning. We have pursued two main targets. First, the 
system is supposed to remain a generic video content indexing 
system and thus does not contain any specific content detectors 
(restricting its applicability to a certain computer game would 
offer a lot of tuning possibilities). Second, the annotation effort 
that is needed to apply a machine learning approach should be 
kept at minimum, i.e. we allow the system to use a single labeled 
training video only. The following parts of our system are 
discussed in more detail in sections 3.2-3.4: audiovisual feature 
extraction, feature selection, classification, and a semi-supervised 
classification approach. 

3.1 Semantic Classes for the Computer Game 
Experiment 
Participants of the experiment conducted by Weber et al. [19] 
played the “mature” rated first-person-shooter game “Tactical 
Ops: Assault on Terror” [http://www.tactical-ops.de/]. As 
mentioned above, the experiment was aimed at gaining insight 
into the interrelationship of playing violent computer games and 
changes in the consumer’s brain activities. Therefore, several 
game states were defined, and the dependence of the players’ 
brain activity is set in relation to these game states. Brain activity 
was measured via fMRI scans. In this section, we present a 
system that is able to classify the following semantic classes with 
an acceptably high accuracy: 
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1.) “inactive”: The player’s avatar (PA) is dead or 
the game has not started yet. 

2.) “preparation”: The PA is buying equipment in the 
beginning of a new round. 

3.) “search/explore/danger”: The PA explores the virtual world 
and searches for hostages, enemies 
and weapons. 

4.) “violence”:  The PA is fighting and/or injured. 
In the original study, the semantic game categories were 
distinguished and annotated more sophistically (see figure 1).  

 
Figure 1. The four boxes explain the different semantic game 
classes used in this study and how they relate to the categories 
used by Mathiak and Weber [11], which are displayed in the 
dashed nested boxes. The classes are ordered from bottom to 
top in terms of increasing violent content, where PA stands 
for “player’s avatar”. 
 
Category 3 was further divided into “search” and “potential 
danger”, and for category “violence” it is distinguished whether 
the PA is injured/attacked or fighting actively. However, 
automatic distinction of these semantic classes would not be 
feasible without neglecting the target to have a generic video 
content analysis system. For example, consider the highly abstract 
semantics regarding the distinction of “search” and “danger”. 
When the PA currently is in the state “search” (no imminent 
danger) and spots another character, its state switches to 
(potential) “danger”. Now, according to whether this character is 
identified as an enemy or not, the state switches to “violence”, 
because the PA shoots at the enemy, or back to “search” when the 
appearing character is harmless. Normally, state “danger” endures 
only for a few seconds before the states evolve further in the 
mentioned manner. Furthermore, the appearance of new 
characters in the PA’s field of view often takes place near the 

horizon, where avatars are only a few pixels in size, and it is 
extremely difficult to perform the necessary friend-or-foe 
identification with a reasonable precision. Furthermore, our 
system does not distinguish between “active” and “passive” 
violence. In practice, “passive” violence is a very short segment 
before either “active” violence or “inactive” (player’s avatar is 
dead) take place. This is the reason for the definition of the four 
classes described above: In this way, an automatic and generic 
annotation system is feasible and the remaining manual revisions 
are minimized. Figure 2 shows example frames for each of the 
four semantic game categories. 

 Violence 

 Search 

 Preparation 

 Inactive 
Figure 2. Example frames of semantic game categories. 

3.2 Extraction of Audio Features 
The semantic content of computer games is present in all 
modalities of their recordings: fighting and killing, for example, is 
visible in the video domain by the presence of enemies, muzzle 
flash and blood; it is also audible in the accompanying soundtrack 
by means of shots or explosive sounds as well as moans. The 
automatic content analysis system extracts a number of general 
audio low-level features which support the recognition of the 
semantic classes. The following features are extracted from non-
overlapping 25ms frames [10] and are fed directly into the 
annotation system: 
1. Eighth-order Mel Frequency Cepstrum (MFC) Coefficients: 

Capturing the broad envelope of the spectrum; 
2. Zero Crossing Rate: 

A measure of oscillation and intra-frame variation; 
3. Short Time Energy: 

Corresponding with loudness; 

inactive 

PA is dead or game  
has not started yet 

(a) passive 
dead/no interaction 

preparation 

PA is buying equipment at the start of a new round 

violence 

 

fighting happens  
near the PA 

(d) active  
under attack  

some violent interactions 

(e) active  
fighting and killing 

many violent interactions 

search 

 

PA is neither  
equipping nor  
fighting; mainly  
exploring the virtual 
environment 

(b) active  
safe, no imminent danger

no violent interactions 

(c) active  
potential danger occurs 

violent interactions expected
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4. Sub-band Energy Distribution: 
Loudness ratio for four successive frequency bands; 

5. Brightness and Bandwidth: 
The spectrum’s frequency centroid and spread; 

6. Spectrum Flux: 
Inter-frame spectral variation; 

7. Band Periodicity 
Periodicity of the four subbands; 

8. Noise Frame: 
Noisiness corresponding to lack of periodicity. 

 

 

 
Additionally, these features are fed into a content-based audio 
classification and segmentation system based on the approach of 
Lu et al. [10]. The system produces mid-level features on a per-
second (sub-clip) basis in the form of acoustic class labels and 
related probabilities for silence (SIL), pure-/non-pure speech 
(PSp/NpSp), music, background (BG) and action sounds (ACTN). 
The low-level features are therefore aggregated per second, 
normalized and then concatenated to form one feature vector per 
sub-clip, which is processed by a hierarchical tree of SVMs, if it 
was not previously classified as silence by a threshold based 
classifier. Figure 3 shows this classification tree. It is trained on 
more than 32 hours of audio – TIMIT [9] data for clean speech, 
NOIZEUS [7] and broadcast speech data for non-pure speech, pop 
and instrumental music, various movie sound samples from 
broadcast material, and free web resources for the different types 
of noise. Five-fold cross-validation on a subset of 15000 feature 
vectors has been used to find the best parameter settings for a 
one-class SVM with RBF (radial basis function) kernel via 
libSVM [1]. The final acoustic class labels and their respective 
probabilities are fed into the game state learning algorithm as 
mid-level features to further guide the discovery of semantic 
patterns.  

3.3 Extraction of Visual Features  
Several visual features are extracted for each video frame. In 
addition to low-level features as color moments and texture 

features, several mid-level features are extracted automatically by 
utilizing camera motion estimation [4], face detection [13] and 
text detection [6]. In the following, the extracted features are 
briefly described: 

• Color moments: Color moments are extracted at two 
different granularities. The first three global color moments 
are computed for the whole image. Corresponding values are 
extracted for each region of a 3 x 3 grid in HSV (Hue, 
Saturation, Value) color space. The i-th pixel of the j-th color 
channel of an image region is represented by cij. Then, the 
first three color moments are defined as: 
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• Texture features: The gray-scale image co-occurrence 

matrices mk are constructed at 8 orientations. We use these 
matrices to extract the following values representing the 
global texture:  
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where N is the number of gray values and mkij is the value of 
the co-occurrence matrix mk at position (i, j). 

• Camera motion features: Videos are segmented into shots 
using the cut detection approach described in [3]. Motion 
vectors embedded in MPEG videos are employed to compute 
camera motion at the granularity of P-frames, according to 
the approach presented in [4]. The following camera motion 
types are distinguished: translation along the x-axis, 
respectively y-axis, rotation around the x-axis, respectively 
y-axis and z-axis, and zoom.  

• Text features: A robust text detection approach [6] is applied 
which can automatically detect horizontally aligned text with 

silence? 

speech / noise 
SVM 1 

pure / non-pure speech  
SVM 2 

music / other 
SVM 3 

background / action 
SVM 4 

SIL PSp NpSp MUSIC BG ACTN

Figure 3: Scheme of the hierarchical audio type classifier: A 
single feature vector per sub-clip serves as input; output is a 
single acoustic class label and its corresponding probability.
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different sizes, fonts, colors and languages. First, a wavelet 
transformation is applied to the image and the distribution of 
high-frequency wavelet coefficients is considered to 
statistically characterize text and non-text areas. Then, the k-
means algorithm is used to classify text areas in the image. 
The detected text areas undergo a projection analysis in order 
to refine their localization. We use the detected text areas to 
derive the following features: number of text elements, 
distribution of text elements, and text frame coverage. 

• Face features: Frontal faces are detected in each video frame 
using the face detector provided by Intel’s OpenCV library 
[www.intel.com/technology/computing/opencv]. The 
number of detected faces and the face frame coverage are 
considered as feature values. 

 
The camera motion features are useful to recognize the game state 
of searching and exploring, whereas text detection and texture 
features help recognizing the preparation state. A player steps into 
the preparation state with the intention to maintain his/her 
equipment. This screen contains several menus and is 
characterized by a high proportion of overlaid text. Thus, text 
features are assumed to be very good criteria to detect preparation 
states. However, text detection in the used game videos is a 
challenging task, because the text is printed on complex 
background and the frames include many MPEG artifacts. For the 
first-person-shooter game “Tactical Ops: Assault on Terror” color 
moment features seem to be useful to detect the state inactive 
because of the mostly appearing black areas at the top and bottom 
of the screen. 
 

3.4 Semantic Classification  
The goal of the proposed system is to learn models for the high-
level semantic states of video games described in section 3.1 
based on the extracted audiovisual low-level and mid-level 
features. As stated above, we do not focus on special properties of 
the computer game under consideration (“Tactical Ops: Assault 
on Terror”). Instead of using a specific and narrow approach that 
only works for a single video game, a generic video content 
analysis system is utilized that can be easily adapted to other 
games or video genres. We have used the SVM suggested in [14] 
with improvements of Keerthi et al. [8] to learn the mapping 
between the extracted audiovisual features and the semantic game 
classes. We employ multimodal analysis using an early fusion 
scheme. The datasets consequently consist of concatenated audio 
and visual features. The training of the SVM is realized by 
Sequential Minimal Optimization [14]. This is a fast training 
method which scales somewhere between linear and quadratic in 
the training set size. We have investigated several strategies to 
classify the computer game videos which are described below. 

3.4.1 Classification Using the Baseline System 
Several SVMs (one for each game class) must be combined to 
solve our problem, since SVMs are binary classifiers. To make a 
decision about the game state of a certain frame, the SVM models 
are employed to provide probability scores for a test instance 
(frame). These scores are compared and the class with the highest 
score is chosen.  

3.4.2 Classification Using Temporal Neighborhood 
It is observable that the appearance of a certain class is reflected 
also by the probability scores which are assigned to neighbored 

frames by an initial SVM classifier. This is the motivation for our 
second strategy to classify the computer game content. In addition 
to the audiovisual features, some time series information is 
utilized. The basic idea of this strategy is to obtain information 
about the temporal neighborhood of a frame using the probability 
scores of the initial SVM classifier. Based on the classification 
results, the relative frequency of each class in the temporal 
environment is computed for the current frame. The relative 
frequency of class c in the neighborhood of frame k is calculated 
according to the following formula: 

∑
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with tc(instancei)=1 if frame i is classified as class c and  0 
otherwise, and w defines the window size. For example, if the 
relative frequency of violence is 0.5 for a frame, it follows that 
50% of the neighboring frames are classified as violence. 
Furthermore, a smoothing filter is applied to the class 
probabilities obtained by the initial classifier. In both cases, a 
sliding window size of 25 frames is applied. We use the 
probability scores of the initial classifier, the frequencies and the 
smoothed values (4 features each) as new features and then re-
train another classifier that makes the final decision. The 
processing steps are displayed in figure 4. 
 
 

    

Initial ClassifierData Set

Probabilities

Time Series 
Filter

Second Classifier

Probabilities + Temporal 
Environment Information

Final Decision

 
Figure 4. Concatenation of classifiers in order to employ 

temporal information. 
  

3.4.3 Refinement Using Semi-Supervised Learning 
In the setting of the addressed psychological experiment, the 
consumers always play the same game but at different levels and 
hence, they explore different virtual environments. Thus, it is 
possible that the SVM models learned from the training video are 
not suited well to distinguish between the different game classes 
in the test video. In previous papers [2][5], we have shown that an 
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initial model obtained via unsupervised learning can be improved 
adaptively for a particular video. In order to achieve a more 
robust classification for a particular game video in our scenario, 
we employ a similar idea and propose a semi-supervised learning 
approach. A machine learning approach is called semi-supervised 
when unlabeled samples are incorporated in the training process. 
In our case, these are all frames of the test video since the class 
labels are unknown for them. 

 

Initial SVM game 
category models

For each computer 
game video X:

Classify frames in particular video X and label 
the best instances of each category 
automatically as new training data

Adaboost

Train SVMs and 
re-classify video X

Confidence scores

Selected features

Automatically labeled 
training data

 
Figure 5. Main processing steps of the semi-supervised 

learning approach. 
The main processing steps depicted in figure 5 are as follows. 
First, we use the training video to build a classifier consisting of 
the initial game category models. The initial classifier is used to 
classify the instances (frames) of a test game video as described in 
section 3.4.1. Then, the instances are ranked separately for each 
game category based on the probabilities of the detected classes. 
These rankings are then used to choose the instances with the 
highest confidence of each class. The top fifty percent of each 
class of the automatically labeled instances are chosen as positive 
training samples. Based on these automatically labeled most 
relevant instances of the test video, relevant features are selected 
using Adaboost [18]. The most relevant 77 features are chosen for 
subsequent use. An additional classifier is built using the 
previously chosen instances and selected features. Finally, this 
semi-supervised classifier, consisting of four newly trained 
SVMs, is used to classify the test video. 

4. EXPERIMENTAL RESULTS 
In this section, we present several experiments to test the system’s 
applicability for the psychological study. The main goal is to 
significantly reduce the human annotation effort while achieving 
an accuracy that is comparable to a manual annotation. In the 

original experimental setting, the human annotators needed 120 
hours to label the entire video collection [19]. In addition, the goal 
was to keep the video content analysis approach generic. 
Four computer game videos were used to evaluate the system 
performance. All computer game videos show a resolution of 352 
x 288 pixels and a video frame rate of 25 frames per second. 
Table 1 presents the distribution of the semantic game categories 
for each of the used videos. The ground truth data were created by 
Weber et al. as described in [19]. 
Table 1. Number of frames referring to semantic game 
categories for each of the used computer game videos. 

 Prepa- 
ration 

Search Vio- 
lence 

Inactive Total 

Game-
vmj3_7 

2390 11657 488 2155 16690 

Game-
vmj6_3 

1665 8574 525 5601 16365 

Game-
vmj6_4 

2364 6445 2630 5251 16690 

Game-
vmj6_5 

2157 10023 1211 2581 15972 

 
A “leave k-1 videos out” cross validation scheme is used: Since 
the main goal is the reduction of human annotation effort, only 
one video is used as training data in each test while the remaining 
three videos are used as test videos. The SVM has been 
implemented using the WEKA library [20]. A radial basis 
function kernel was used for the SVM. Adaboost has been 
implemented according to the description given in [18]. 
The following system variations were tested: 1.) The first one is 
the baseline system as described in 3.4.1. All features mentioned 
in section 3.2 and 3.3 are used to learn a SVM model for each 
semantic game class; 2.) After an initial SVM training, further 
features are generated that capture temporal characteristics of 
classes as described in section 3.4.2; 3.) The semi-supervised 
learning scheme as described in section 3.4.3: after an initial 
classification of a test video, the frames that are classified with 
highest confidence are used as training data. These training data 
are used to learn new SVM models, and finally the same video is 
classified using these models.  
The results for these experiments are presented in Table 2 - Table 
4. The following definitions are used to evaluate the results:  
 

Items
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Table 2. “Baseline” system: Recall, precision and f1-measure 
for each of the four semantic classes as well as the total recall. 

 Prepa- 
ration 

Search Vio- 
lence 

In- 
active 

Total 
recall 

Recall 84.3 92.3 53.9 88.5 87.5 
Precision 86.0 87.5 68.7 93.4  
F1 85.1 89.8 60.4 90.9  

 
Table 3. “Baseline + temporal features”: Recall, precision and 
f1-measure for each of the four semantic classes as well as the 
total recall. 

[%] Prepa- 
ration 

Search Vio- 
lence 

In- 
active 

Total 
recall 

Recall 83.1 92.6 56.7 91.6 88.5 
Precision 87.7 88.5 68.4 94.1  
F1 85.4 90.5 62.0 92.8  

 
Table 4. “Baseline + Semi-Supervised Learning”: Recall, 
precision and f1-measure for each of the four semantic classes 
as well as the total recall. 

[%] Prepa- 
ration 

Search Vio- 
lence 

In- 
active 

Total 
recall 

Recall 92.2 94.9 55.3 92.0 91.0 
Precision 96.0 90.0 66.0 97.6  
F1 94.1 92.4 60.2 94.8    

 
Several observations can be made. At first, our automatic baseline 
system achieves a frame-based total recall of 87.5% on the 
average. This is a very good result if one considers that the inter-
coder reliability in the original psychological experimental setting 
between the human annotators was 0.85 [19]. In nearly any 
experiment, preparation, search and inactive states were 
recognized well, whereas the recognition of violent states is rather 
difficult. In terms of total recall, the semi-supervised approach 
outperforms the alternative approaches (see Table 5). The 
approach using temporal neighborhood information achieves the 
best performance for the most difficult concept “violence” and 
recognizes more than half of the violent actions correctly while 
keeping the precision at nearly 70% at the same time. The 
confusion matrix in Table 6 allows gaining insight in the system 
failures of the best system (semi-supervised learning). The 
diagonal represents the number of correctly classified frames. For 
example, the most frequent error is that a violence frame is 
misclassified as search, and vice versa, whereas e.g. a violence 
frame was never classified as preparation. Overall, we conclude 
that our proposed system achieves a very satisfying performance. 
It demonstrates the ability to reduce human annotation efforts to a 
minimum because the system automatically determines relevant 
game events with high reliability. 

Table 5. Total recall for each of the tested systems. 

[%] Baseline Tem- 
poral 

Semi-Sup- 
Learning 

Total 
recall 87.5 88.5 91.0 

 
Table 6. Confusion matrix for the semi-supervised learning 
experiment. For example, the most frequent  error is that a 

violence frame is misclassified as search and vice versa. 

 
Prep. 
(GT) 

Search 
(GT) 

Vio- 
lence 
(GT) 

In- 
active 
(GT) 

Det. Prep. 23733 918 52 8 
Det. Search  1991 104535 6449 3194 
Det. Violence 0 3623 8046 520 
Det. Inactive 4 1021 15 43042 

 

5. CONCLUSIONS 
In this paper, we have presented an automatic semi-supervised 
semantic video analysis system that supports psychological 
experiments with respect to violence in computer games. In the 
addressed interdisciplinary study, annotations are required to find 
interrelationships between the consumer’s brain activity and game 
events during the recorded game sessions, in particular with 
respect to violent actions. Our proposed system automatically 
labels such videos and achieves a total recall of up to 91% in the 
best case using a semi-supervised learning approach. This 
approach adaptively refines a model on a particular video: Based 
on the initial classification result, the approach automatically 
labels the frames in a new video and adapts its concept models to 
this video by employing feature selection to adaptively learn a 
classifier for a particular game video. 
Considering the fact that Weber et al. [19] observed an inter-coder 
reliability of 0.85 for human annotators, our automatic system 
demonstrates an excellent performance. In addition, since our 
semi-supervised approach needs labeled training data for a single 
video only, the required human supervision could be kept at a 
minimum in this interdisciplinary study. The graphical user 
interface of our software Videana enables a human expert to 
refine respectively correct the annotation results: As a basic 
requirement, the annotations must be as accurate as possible to 
investigate the interrelationship with a player’s brain activity. 
However, such a correction step must also be applied when only 
human annotators label the videos. Overall, we conclude that the 
experimental results demonstrate the applicability of our system 
for the interdisciplinary studies in the field of media and 
behavioral sciences. 
There are several areas for future work. For example, semantic 
concepts like “danger” in our scenario are very difficult to 
recognize. This concept depends on the detection of person 
occurrences and particularly on a “friend-or-foe” distinction. 
However, these persons appear in very small sizes in the game, 
and it is even hard for a human annotator to make a decision 
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whether the situation is actually “dangerous” or not. Finally, 
temporal state transitions promise to entail additional useful 
information, e.g. the state “inactive” is always preceded by the 
state “violence”. Such temporal relationships should also be 
incorporated in the automatic annotation system. 
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