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Abstract

The Gaussian Mixture Model (GMM) is often used
in conjunction with Mel-frequency cepstral coefficient
(MFCC) feature vectors for speaker recognition. A
great challenge is to use these techniques in situations
where only small sets of training and evaluation data
are available, which typically results in poor statistical
estimates and, finally, recognition scores. Based on the
observation of marginal MFCC probability densities,
we suggest to greatly reduce the number of free param-
eters in the GMM by modeling the single dimensions
separately after proper preprocessing. Saving about
90% of the free parameters as compared to an already
optimized GMM and thus making the estimates more
stable, this approach considerably improves recogni-
tion accuracy over the baseline as the utterances get
shorter and saves a huge amount of computing time
both in training and evaluation, enabling real-time per-
formance. The approach is easy to implement and to
combine with other short-utterance approaches, and
applicable to other features as well.

1. Introduction

Furui [2] stated that one of the two major challenges
in automatic speaker recognition today is to cope with
the lack of available data for training and evaluating
speaker models. For instance, in automatic speaker in-
dexing and diarization of multimedia documents, unsu-
pervised speaker clustering has to deal with the output
of speaker segmentation algorithms that chop the sig-
nal into chunks of typically less than 2-3 seconds. In
speaker verification and identification, enrollment and
evaluation data is expensive in the sense that the sys-
tem should bother a user as little as possible. This is
in conflict with the general finding that one needs 30-
100 seconds of training data to build a state-of-the art

model of high quality that can be evaluated using ap-
proximately 10 seconds of test data. This state-of-the-
art model refers to the Gaussian mixture model (GMM)
approach with diagonal covariance matrices used in al-
most all current systems, together with Mel-frequency
cepstral coefficient (MFCC) feature vectors [7][3].

Several approaches exist in the literature to cope with
short utterances. For instance, Merlin et al. propose
to work in an explicit speaker feature space in order
to overcome the intra-speaker variability omnipresent
in acoustic features due to the phonetic structure of
speech [6]; less ambiguity and variability in the trans-
formed space is believed to lead to more stable model
estimates with less training data. A prototypical imple-
mentation of the acoustic space transformation via pro-
jection to anchor model scores shows promising results.
Larcher and his colleagues criticize the GMM (with uni-
versal background model, UBM) approach for its insuf-
ficiency for mobile appliances in terms of data demands
for training and evaluation [4]. Their solution includes
using temporal structure information (i.e. word depen-
dency) and multimodal information (video) to compen-
sate for short training and evaluation samples. Vogt et
al. use a factor analysis technique to arrive at subspace
models that work well with short training utterances and
can be seamlessly combined with the optimal GMM-
UBM model when plenty of training data is available
[8]. In subsequent work, they suggest to estimate con-
fidence intervals for speaker verification scores, leading
to accurate verification decisions after only 2-10 sec-
onds of evaluation data where usually 100 seconds are
needed [10][9].

In this paper, we present a different approach to ad-
dress the problem of small sets of training and evalua-
tion data: we propose a novel way to reduce the number
of necessary free parameters in the GMM with the aim
of obtaining more stable statistical estimates of model
parameters and likelihoods using less data. Further-
more, better—i.e., closer to truth—estimates improve
recognition accuracy, and less complex models have a



strong positive effect on runtime, too. Additionally, the
approach can be combined with other short utterance
approaches proposed in the literature.

The paper is organized as follows. In Section 2,
the motivation for our approach is explained by look-
ing at feature distributions. Section 3 introduces the
dimension-decoupled GMM (DD-GMM). In Section 4,
experimental results are presented. Section 5 concludes
the paper and outlines areas for future work.

2. Feature Distributions

Consider the plot' of a diagonal covariance GMM
with 32 mixtures in Figure 1, trained on the set of 19-
dimensional MFCCs extracted from 52.52 seconds of
anchor speech from a German news broadcast.
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Figure 1. A 32-mixture GMM of 19-
dimensional MFCCs. The topmost solid
blue line shows the joint marginal density.

While the first several coefficients show a multi-
modal or skewed distribution, many of the later di-
mensions look more Gaussian-like. Different feature
types like linear prediction-based cepstrum coefficients
(LPCC) show a similar characteristic. Others, like line
spectral pairs (LSP) or filterbank energies are more
Gaussian-like in any of their dimensions, while Pitch’s
single dimension is quite non-Gaussian. In combina-
tion, the marginal densities of most practical feature sets
exhibit a similar structure as shown in Figure 1.

This leads us to the following reasoning: different
coefficients obviously have different distributions, so

IProduced with PlotGMM, see http://www.informatik.
uni-marburg.de/~stadelmann/eidetic.html.

different (often small) numbers of 1D Gaussian mix-
tures are necessary to approximate their true marginal
density. In contrast, a standard GMM uses a certain
(high) number of multivariate mixtures, giving equal
modeling power to each dimension, also to those with
very simple marginal densities. Visual inspection sug-
gests: several parameters could be saved by modeling
the dimensions independently, i.e. decoupling the num-
ber of mixtures for one dimension from the number of
mixtures for any other dimension.

Accomplished in a straightforward fashion, to de-
couple the dimensions means to fit a one-dimensional
GMM to each dimension of the feature vectors instead
of training a single multimodal mixture model; the com-
plete model would then be the ordered set of univari-
ate GMMs, renouncing to model any interrelation of
the marginals. In fact, practical GMMs use diagonal
covariance matrices, assuming that the features are un-
correlated (as is the case with MFCCs) or that this in-
formation is unimportant or can be modeled via more
mixture components. The only correlation information
still possibly present in such a multivariate model is in-
troduced by the training procedure: a complete (mul-
tivariate) mixture is always trained based on complete
(multivariate) feature vectors. Thus, the togetherness of
values for different dimensions in one mixture compo-
nent allows inferring the co-occurrence of these values
in the training data. However, this information is cur-
rently not used for speaker recognition and might only
play a role in speech synthesis.

3. The Dimension-Decoupled GMM

The Dimension-Decoupled GMM (DD-GMM) App
can be formalized as follows:

App = {(Mg,Ag) |1 <d<D}u{Q} (1)
A = AW, pim, o) [1 <m < Mg} (2)

The DD-GMM is essentially a set of tuples, one for
each dimension d within the dimensionality D of the
feature vectors. Each tuple contains an univariate GMM
Mg and the number of mixtures M in this dimension. )
is the matrix of eigenvectors of the covariance matrix of
the training data, used to perform an orthogonal trans-
formation on the (training and evaluation) data prior to
modeling/recognition in order to further decorrelate the
features and thus to justify the decoupled modeling, as
suggested by Liu and He [5]. After transforming the
training set this way, each \; is trained on only the
d*" dimension of the training vectors using the stan-
dard expectation maximization-based maximum likeli-
hood training procedure. The optimal number of mix-
tures M, for each model is estimated via the Bayesian
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Figure 2. Speaker identification accuracy (vertical) vs. changing data availability conditions.

information criterion (BIC) by training all different can-
didate models with 1 < m < 32 mixtures, penalizing
the likelihood of the training data with their number of
parameters and choosing the candidate that maximizes
the BIC score [1]. The model is evaluated, then, on the
Q)-transformed evaluation set of feature vectors by cal-
culating the likelihood [ according to Equation (3):

D T Mgy

d=1t=1m=1

Here, x(t)q is the d'* dimension of the ' feature
vector from overall T vectors, N(..) is the univari-
ate normal distribution, and w,,, i, and o,, are the
weight- mean- and standard deviation-parameters of the
m!" mixture in GMM )\, respectively.

We have implemented the DD-GMM within our C++
class library sc1lib as a mere wrapper around the ex-
isting GMM class; using Liu and He’s code [5] for the
orthogonal transform, the essential parts constitute less
than 80 lines of code. On the one hand, this leaves room
for speed optimizations (e.g. by integrating the DD-
GMM with the GMM); on the other hand, this shows
that the approach can be integrated with any existing
GMM implementation.

4. Experimental Results

We have conducted several experiments to validate
that the DD-GMM improves speaker recognition per-
formance while saving free parameters and reducing
computational cost. Reynolds’ experimental speaker
identification scenario is used as our basic setting [7]:
The 630 speakers of the TIMIT database are split into
a training- and a separate test set, leading to an aver-
age of 21.67/5.09 seconds of training/evaluation utter-
ance length. The minimum and maximum length are
14.57/2.93 and 33.54/8.18 seconds, respectively, lead-
ing to a standard deviation of 2.82/0.90 seconds for the
two phases. The utterances are transformed to MFCC

feature vectors (20ms frames with 50% overlap, coeffi-
cients 1-19 discarding the 0*"). For the 630 training ut-
terances, models are built a priori, then an identification
experiment is run for the 630 test utterances. As models
we use the standard 32-mixtures GMM from Reynolds
(32-GMM in the figures) and a BIC-tuned multivariate
GMM with 1 < m < 32 mixtures (BIC-GMM) as base-
lines to compare with our DD-GMM. To simulate var-
ious short utterance conditions, we reduce the training-
and/or evaluation data lengths in steps of 5% from 95%
of their original length to 5% and observe the corre-
sponding models’ behavior.

First, Figure 2(a) shows speaker identification accu-
racy for all three models as training and evaluation utter-
ance length drops simultaneously. While until 45% re-
duction the models’ identification performance is about
the same (with the 32-GMM having a small advan-
tage), the DD-GMM then outperforms the other two
competitors clearly. With > 50% reduction, the DD-
GMM performs on the average 7.56% better then the
best competitor using the same amount of data (vertical
distance), while it achieves similar recognition scores as
the best competitor with an average of 4.17% less data
(horizontal distance) in this general short utterance case.
This effect increases in the case of merely reducing
training data (with evaluation data fixed at reasonable
50%), as depicted in Figure 2(b), while it is smaller, yet
still visible, when only the evaluation data rate drops, as
in Figure 2(c). This validates the dimension-decoupled
modeling scheme at least for MFCC features.

Second, Figure 3(a) shows the evolution of the pa-
rameter count in the three model types as the utterances
get shorter. The drop in 32-GMM’s parameters towards
the end is due to the fact that here the amount of data
is too small to find even enough cluster centers for mix-
ture candidates. Thus, the mixture count is reduced in
this case until a valid model can be trained. Besides
this anomaly, the figure shows the efficiency of the DD-
GMM in reducing the number of free parameters in the
model, even more so in comparison with the standard
parameter optimization via the BIC: the saving here still
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Figure 3. Effect of short utterances on...

constitutes 90.98% on the average. For comparison,
Liu and He achieved a parameter saving of about 75%
using their orthogonal GMM without additionally en-
abling short utterance support or boosting accuracy [5].

Finally, runtime plots given in Figure 3(b) show the
computational efficiency of our approach: due to the
BIC parameter search (training essentially 32 times as
many models as for the 32-GMM), the DD-GMM’s
training time is on the average 2.3 times longer than for
the 32-GMM, but 5.1 times faster than with the BIC-
GMM and still 13.5 times faster than real-time. In the
evaluation phase that occurs more often in practice, the
DD-GMM is the fastest, outperforming the BIC-GMM
and 32-GMM by a factor of 2.1 and 3.6, respectively,
taking only 54.5% of real-time.

5. Conclusion

We have presented the dimension-decoupled GMM
as a novel approach to cope with short (training and
evaluation) utterances in speaker recognition tasks. In
the case of lacking data, the DD-GMM gives more re-
liable results (i.e. higher accuracy) than the baselines,
while it is computationally more efficient even in the
case of having plenty of data, where it also gives com-

petitive accuracy. The DD-GMM allows to recognize
speakers in regions where baseline GMM approaches
are not usable anymore (i.e. more than 80% recogni-
tion accuracy with less than 5.5 seconds of training- and
1.3 seconds of evaluation data). At the same time, our
approach can easily be integrated into other short utter-
ance schemes, allowing for synergetic effects, and can
straightforwardly be implemented in any GMM envi-
ronment. Areas for future work are: testing the DD-
GMM with other feature types, evaluating its perfor-
mance using further data sets, and applying it in other
domains than speaker recognition.
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