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Abstract—This paper presents a semi-automatic method to
fit a template mesh to high-resolution normal data, which
is generated using spherical gradient illuminations in a light
stage. Template fitting is an important step to build a 3D
morphable face model, which can be employed for image-
based facial performance capturing. In contrast to existing
3D reconstruction approaches, we omit the structured light
scanning step to obtain low-frequency 3D information and
rely solely on normal data from multiple views. This reduces
the acquisition time by over 50 percent. In our experiments
the proposed algorithm is successfully applied to real faces of
several subjects. Experiments with synthetic data show that
the fitted face template can closely resemble the ground truth
geometry.
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I. INTRODUCTION

3D face models are widely used for computer graphics and
computer vision applications. Of particular interest are mor-
phable 3D face models that are based on a single deforming
3D template mesh, which can represent different individuals
or different facial expressions. The template deformation is
typically controlled via a small set of parameters. Examples
are hand-crafted blend shapes [1] or learned morphable face
models [2], which are based on the analysis of a large
database of 3D laser scans. In order to generate a morphable
face model, a template mesh has to be registered to all 3D
laser scans in the database. After registration a template
vertex with a particular index in the template mesh is located
at the same semantically corresponding point in all 3D scans
(e.g., vertex no. 101 is always the tip of the nose, vertex
no. 512 is the corner of the right eye, and so on). The
registration is a crucial step in the generation of a morphable
face model because once corresponding vertex positions
are established in all the database exemplars, it is already
possible to perform a linear blend between the exemplars to
generate new individuals or interpolated facial expressions.
To reduce the number of blending weights, typically a
Principle Component Analysis (PCA) is performed, which
generates a low dimensional parameter space that can still
represent the observed differences in the vertex positions of
the exemplars [2].

Using a so called light stage (a sphere with a large
number of individually controllable light sources) a very
detailed 3D scan of a human face can be captured [3].

Here, the low resolution 3D geometry is typically acquired
using a structured light approach, and the fine details are
captured via normal map generation. The normal maps are
created by taking images under 4 to 7 different illumination
conditions that are generated with the light stage. In addition,
a projector is used to generate a series of stripe patterns
(typically 5 to 15 patterns of increasing frequency) for the
structured light reconstruction. Though projector and light
stage patterns could be in theory displayed at fast succession,
high frame rates are difficult to achieve in practice due to
frame rate limitations of the camera as well as switching
time limitations of the light stage and the projector. Con-
sequently, the captured subject should not move during the
acquisition, which is quite challenging, especially for less
relaxed facial expressions.

In order to reduce the capturing time and effort, we
propose in this paper a method to register a 3D face template
only to the normal maps. The omission of structured light
scanning reduces the capturing time by almost 50 percent.
We claim that it is possible to skip structured light scanning
because the low resolution 3D geometry is already approx-
imately given by the initial 3D face template. However,
in our experiments we found that a normal map from a
single camera view can not resolve the depth ambiguities.
Consequently, our approach uses multiple normal maps that
are generated simultaneously by observing the face with
multiple cameras, which does not increase the capturing
time.

State-of-the-art approaches [4], [3], [2] use non-rigid ICP
algorithms to fit a 3D template mesh to point cloud data (that
is obtained via laser or structured light scanning). In our set-
up this non-rigid ICP algorithm is replaced by an algorithm
that registers a 3D face template to several normal maps.
Thereby, the proposed registration approach performs three
steps. First, some manually selected feature points and their
projections on the normal maps are registered to roughly
align the template. Second, a normal registration method
is applied to align the template semantically to the normal
maps. This step aims to find the correlation between the
template geometry and the geometry information encoded
in the normal maps. The result of this step is a deformed
template mesh that better resembles the geometry of the
real subject, but still maintains its basic structure. Third, to



further refine the shape of the template, a shape refinement
is executed. In this step, we employ the constraint that for
a given 3D position, its projections in neighbouring views
should have the same normals.

The proposed algorithm resides on the following core
contributions:
• A novel method to semi-automatically fit a 3D face

template to normal maps. This includes three main
steps: feature point registration, normal registration, and
shape refinement.

• In normal registration, a novel optimization strategy to
minimize a highly non-linear function is proposed. It
splits the problem to several constrained optimization
steps which can be linearised and solved efficiently.

As structured-light scanning is omitted, the acquisition
time can be reduced by over 50%, while the fitting result is
still accurate.

The rest of the paper is organized as follows. The next
section reviews related work in the area of template fitting
and 3D reconstruction from normal maps. In Section III,
the employed hardware set-up for normal map generation is
introduced. The proposed template registration algorithm is
described in Section IV. In Section V, several experiments
are presented to evaluate our algorithm. The paper ends with
concluding remarks and future works in Section VI.

II. RELATED WORK

In the past few years, many algorithms for recovering 3D
facial geometry have been proposed. This section gives an
overview of the most related work to our method.

Marker-based Performance Capture: Marker-based
performance capture systems are still the most widely
adopted solutions for facial performance capture in the
industry and have achieved great success in the commer-
cial world. As markers at certain semantically significant
locations are attached to the face, it is relatively easy to fit
a template mesh to the marker data. The advantage of this
technique is that it is fast, robust to noise, and easy to deploy.
However, the captured detail is quite low, as measurements
are only available at the marker positions.

Photometric Stereo: Photometric stereo [5] is an active
illumination approach used for surface normals recovery.
The normals provide derivative information of the 3D sur-
face and can be used to generate accurate high-frequency
local geometry [6]. Recent light stage developments [3], [7]
adopt a spherical gradient illumination approach for gener-
ating a detailed normal map of the input face. Real-time
computation [8] for this approach has been achieved using
high-speed video cameras and a fast GPU implementation.
Ma et al. [9] applied structured light scanning to capture low-
frequency 3D structure, so their hardware system has to be
well designed to allow capturing a large number of images
in fast succession (13 images = 8 spherical illuminations
+ 5 structure light patterns per time instance). In contrast,

our approach only requires 6 images per time instance for
normal map calculation, thus can greatly increase the frame
rate. Many extensions have appeared afterwards [10], [11],
most related to our work is Wilson et al.’s approach [12],
which made two improvements to Ma et al.’s work by firstly
reducing the requirements of illumination condition, and
secondly exploring dense temporal stereo correspondence
for 3D structure reconstruction rather than structured light
scanning. With the benefits of these improvements, their
system can achieve higher frame rates and also more stable
results. However, the aim of these approaches is to generate
detailed 3D geometry for every captured frame rather than
fitting a consistent template mesh.

3D morphable models: 3D morphable model based ap-
proaches [2], [13], [14] can provide useful prior knowledge
for marker-based or image-based facial performance captur-
ing. General facial models [15], [16], which are trained on
a large database, may miss fine details unique to a specific
person, hence, recent developments also focus on subject
specific models [17], or single patch representation in region
based variants [18], [19]. To build a 3D face model, these
approaches require semi-automatic fitting of templates to
3D scanner data with manually selected markers, while our
automatic approach relies solely on normal data.

III. HARDWARE SET-UP AND NORMAL MAP GENERATION

The employed data capturing system is shown in Fig. 1. It
comprises of a light stage consisting of 156 LEDs arranged
on a spherical metal frame and six digital cameras. The light
stage is used to produce six axis parallel spherical gradient
illuminations. The set of images captured by the c-th camera
is denoted as Lc =

{
Lxc , L

−x
c , Lyc , L

−y
c , Lzc , L

−z
c

}
. For the

spherical gradient illumination the intensity values of the
LEDs are translated and shifted to the range [0, 1], since
negative light cannot be emitted. The normal map of the
c-th camera can be calculated using the spherical gradient
illuminations in a pixel-wise manner (as proposed in [12]):

Nc =
(Lxc − L−xc , Lyc − L−yc , Lzc − L−zc )

>∣∣∣∣∣∣ (Lxc − L−xc , Lyc − L−yc , Lzc − L−zc
)> ∣∣∣∣∣∣ . (1)

The digital cameras are calibrated with a calibration pat-
tern. The calibration pattern is placed inside the light stage
in an axis-aligned way such that its center coincides with the
center of the light stage. This assures that the cameras are
calibrated with respect to the light stage coordinate system.
During camera calibration we employ the focal length given
by the EXIF data provided by the camera and estimate
the extrinsic camera parameters with Tsai’s approach [20].
Then a bundle adjustment is performed to further refine the
extrinsic camera parameters. The size of the normal maps
used in our experiments is 2592 × 1728.



Figure 1. (from left to right) The employed data capturing system comprising a light stage, which can produce different illumination patterns, and several
digital SLR cameras; six spherical gradient illumination patterns; normal map computed from the images of the six gradient illumination patterns.

IV. ALGORITHM

The proposed algorithm aims to register a mesh template
to multi-view normal maps. The input consists of a face
template, given as a polygonal mesh S = {V, E} which
is defined by a set V of vertices Vi and a set of edges E .
Also, the set-up described in Section III provides the camera
perspective projection matrices Pc, and normal maps Nc for
each camera (with index c) of the camera set C. The output
is a deformed template face which is fitted to the observed
face.

The algorithm has three steps. Firstly, to roughly align
the template and the normal maps, we manually select eight
3D feature points for the template and their projections
for all the views. We register these eight points to the
normal maps, and the rest of the template deforms smoothly.
Secondly, ignoring the neighbour-view consistency, a normal
registration method is executed to align the vertices of the
template to their semantically correct positions in all the
normal maps. Thirdly, through a multi-view refinement,
the shape of the face is further improved by enforcing
neighbouring-view consistency.

These three steps of the algorithm are described in the
following three subsections in detail.

A. Feature-based registration

This step aims to match eight 3D feature points of the
template to a set of user-defined 2D locations, while the rest
of the vertices should deform smoothly. In our experiments
we used the eight feature points visualized in Fig. 2. The
problem is solved as a non-rigid registration problem.

We assign each vertex of the template Vi = (vx, vy, vz)
>

a translation vector Ti = (tx, ty, tz)
>. To enforce that the

back-projection of a translated vertex is located at a user-
defined 2D location u = (ux, uy)> in the normal maps, an
energy term is defined by

Ecorner =
∑
c∈C

∑
uic∈U

||uic − Pc (Vi + Ti) ||22 , (2)

Figure 2. The template used in our experiments. It has 1250 vertices in
total. The red points indicate the 3D feature points.

where Pc{·} is a projection function which projects a 3D
point to a 2D location in the image plane of the c-th camera;
a set U includes all the user-defined 2D locations u. To make
the rest of the vertices deform smoothly, we constrain the
translations of two connected vertices in the template mesh
to be similar. The smoothness term is given by

Esmooth =
∑

(i,j)∈E

||Ti −Tj ||22 . (3)

Combining Eq. (2) with Eq. (3), the total cost can be
written as

E = Ecorner + λEsmooth (4)

where λ is a weighting factor. The result is obtained by
minimizing Eq. (4) using the non-linear optimizer.

Non-linear optimization: Since projection from 3D
space to 2D space is non-linear, Eq. (4) becomes a non-
linear optimization problem. We solve it as a non-linear least
squares problem iteratively. The projection process is given
as

m

 u
v
1

 =

 ū
v̄
m

 = Pc (Vi + Ti) , (5)

where u and v are the coordinate elements of a 2D location.
To linearise this process, we can calculate the derivatives of



a 2D coordinate, i.e. ∂u
∂Ti

and ∂v
∂Ti

, analytically. Then the
Jacobian J of Eq. (2) is the concatenation of

Ji =

(
· · · − ∂u

∂Ti
− ∂v

∂Ti
· · ·
)

(6)

for each vertex. The Jacobian of Eq. (3) can be written as

H = D⊗ I3×3 , (7)

where D is the node-arc incidence matrix [21], and ⊗ is
the Kronecker product operator. By combining Eq. (6) and
Eq. (7), the final over-determined linearised equation system
can be written as(

J

λ H

)
︸ ︷︷ ︸

B

∆T = −
(

r
0

)
︸ ︷︷ ︸

b

, (8)

where the residual vector r is the concatenation of ri =
uic−Pc (Vi) for each vertex. The resulting normal equation
is given as

B>B∆T = B> b . (9)

Since the coefficient matrix in Eq. (9) is large and sparse,
it can be solved efficiently using the iterative conjugate
gradient method.

B. Normal registration

After feature-based registration, the template is roughly
aligned. The purpose of normal registration is to semanti-
cally register the template to the normal maps. The constraint
is that the projections of the normals of the template should
be equal to the normals in the normal maps.

The main difference between color images and normal
maps is that normal maps encode the geometric infor-
mation, e.g. convex and concave positions, as a normal
distribution. This means a surface can be recovered using
normal integration from one normal map only, while for
surface reconstruction multiple color images are needed
(approximation techniques such as shape from shading can
recover a surface from only one color image, but it also
needs to approximate a normal map from the image). In
order to overcome the influence of occlusions and also the
errors in normal maps, an approach based on multi-view
normal registration is proposed.

Since the three elements of a normal n = (nx, ny, nz)
>

are correlated, e.g. ||n||2 = 1, first we re-parametrize a
normal to spherical coordinates, so that we can use two
independent angular components θ and φ to represent a
normal. Then the cost for the normal similarity is defined
as:

Enormal =
∑
c∈C

∑
i∈V̄c

∑
p∈{θ,φ}

∑
w∈W

(rcipw)
2

, (10)

where V̄c is the set of vertices which are not occluded in
the view of camera c, p is the element index of a normal in

spherical coordinates,W is a square window. Here, rcipw is
defined as

rcipw = G (w)·Nc (Pc (Vi + Ti) + w)p−Ñ (Vi + Ti)p ,
(11)

where G is a Gaussian kernel function defined on the window
W , and Nc(·) is a function which takes a pixel position as
the input and returns the normal at the given pixel position
of the c-th normal map.

Considering that the semantics of the template changes
when some non-smooth deformations are applied, a smooth-
ness term which not only allows a big range of deformation
but also maintains the basic structure of the template is
needed. In this paper, instead of using absolute translations,
i.e. Eq. (3), to ensure the mesh rigidity, we employ mesh
differentials as used in [22] to define the smoothness term.
It can be written as

Esmooth =
∑
Vi∈V̄

||Vi + Ti −
1

k

∑
Vj∈N{Vi}

(Vj + Tj)||22 ,

(12)
where N{·} represents a set of neighbouring vertices.

Combining with the cost of the feature points in Eq. (2),
the result can be obtained by minimizing the cost function

E = Enormal + αEsmooth + βEcorner , (13)

where α and β are weighting factors.
Non-linear optimization: In Eq. (11), Nc (·) given a

2D image location returns the normal from the normal map
of view c. Since the vertex’ normal can be changed by
deforming its neighbouring vertices, the representation of
a vertex normal by using the positions of its neighbouring
vertices, i.e. Ñ (·), is a non-linear function. Concluded from
that, Eq. (13) is a highly non-linear function. In particular,
we find that the minimization of Eq. (13) cannot be solved
by direct linearisation. In this paper, we address this problem
by separating the whole optimization to several constrained
optimization steps. These steps are:

1) Update the normals of the template using the current
structure of the template, and fixate the normals.

2) Optimize Eq. (13) iteratively until the largest transla-
tion of all the vertices is smaller than a threshold.

3) If no further optimization of Eq. (13) is achieved, then
finish, otherwise go back to step 1.

In step 2, when we fixate the normals of the template,
Eq. (11) becomes

rcipw = G (w) ·Nc (Pc (Vi + Ti) + w)p −mip (14)

where mi represents the current fixated normal of the i-th
vertex. We solve Eq. (14) by linearization. The Jacobian of
Eq. (14) can be calculated as

Rcipw = G (w)
∂Nc (Pc (Vi + Ti) + w)p

∂Ti

= G (w)

(
∂Ncp
∂nx

∂nx
∂Ti

+
∂Ncp
∂ny

∂ny
∂Ti

)
, (15)



where Ncp is an abbreviation of Nc (Pc (Vi + Ti) + w)p,
and n = {nx,ny}> is a 2D image location.

In Eq. (15), ∂nx

∂Ti
and ∂ny

∂Ti
can be calculated analytically,

and ∂Ncp

∂nx
and ∂Ncp

∂ny
are the normal gradients in image

domain. Since we re-parametrize the normal representation
to spherical coordinates, the two angles θ and φ are inde-
pendent, so that we can interpolate a normal by performing
a finite difference operation.

The Jacobian of Eq. (12) can be written as a constant
matrix Q defined as follows:

Qij =


1, i = j

− 1
ki
, Vj ∈ N (Vi)

0, else
, (16)

where ki is the number of the neighbouring vertices of Vi.
The final linear equation system of Eq. (13) can be written

as  R

α Q

β J


︸ ︷︷ ︸

B

∆T = −

 h
α s
β r


︸ ︷︷ ︸

b

, (17)

where R is the concatenations of Eq. (15), Q is defined
as in Eq. (16), h is the normal residual defined as the
concatenation of

hcip =
∑
w∈W

Gw ·Nc (Pc (Vi) + w)p −mip ,

s is the smoothness term residual defined as the concatena-
tion of

si = Vi −
1

k

∑
Vj∈N{Vi}

(Vj) ,

J and r are the correlated feature point terms defined in
Eq. (8). As in Eq. (9), the resulting normal equation can be
solved efficiently by the conjugate gradient method.

C. Multi-view Refinement

After normal registration, the position of the vertices of
the template are much closer to their semantically correct
positions in the normal maps. However, a shape refinement
is needed to further correct the resulting surface for two
reasons: First, the smoothness term that was employed in
normal registration maintains the basic structure of the
template, and second, in order to make the optimization
solvable, we use several constrained optimization steps to
approximate the original problem formulation. In this refine-
ment step, we make use of the neighboring view consistency
information to enforce that the projections of a vertex to
a pair of neighboring camera views should have the same
normal in both normal maps. Since the shape refinement
only refines the 3D shape but does not have any concept of
semantics, a good initial result of normal registration from

the previous step is required. A good result means that, after
normal registration, vertices are moved very close to their
semantically correct positions and the back-projections are
consistent in all views.

We formulate the optimization problem as

argmin
ti

∑
(s,t)∈M

∑
i∈V̄s∩V̄t

∑
p∈{θ,φ}

∑
w∈W

(astipw)2

+σ
∑

(i,j)∈E

‖Ti −Tj‖22

+τ
∑
c∈C

∑
uic∈U

||uic − Pc (Vi + Ti) ||22 ,(18)

where

astipw = Ns (Ps (vi + ti) + w)p
− Nt (Pt (vi + ti) + w)p (19)

is the difference of the two normals in normal map Ns and
Nt, M is a set which consists of all the available camera
pairings, σ and τ are weighting factors. The smoothness term
and feature data term in Eq. (18) are the same as the ones
in the feature-based registration in Eq. (3) and Eq. (2). This
optimization problem can also be solved by linearisation.
The Jacobian of the two parts of Eq. (19) are calculated as
in Eq. (15), and the final normal equations are similar to
Eq. (9).

Multi-resolution: Both in the normal registration and
multi-view refinement, a multi-resolution approach is em-
ployed to improve efficiency and accuracy. In the experi-
ment, we use three layers with different resolutions. Since
the three elements of a normal in Cartesian coordinates are
correlated, we first convert the normal representation from
Cartesian coordinates to spherical coordinates, and employ
a Gaussian kernel in this domain to blur the images. While
processing each layer, the weighting parameters of the cost
function are fixated.

V. RESULTS

Our template fitting approach is evaluated with synthetic
data as well as real data. Both types of experiments are
executed with the same camera setup. We use only 6 cameras
to cover the frontal face, and the face template shown in
Fig. 2 in all experiments.

In the synthetic data experiment, we use a 3D head model
to represent the human head, and render it in 3D Max to
generate normal maps. The size of the model is similar to
the size of a real human head. Fig. 4 shows the result after
each optimization step. We can see that after feature-based
registration, the shape is still dissimilar to the input head
model. After normal registration, the face is deformed closer
to the head model but still keeping the basic shape of the face
template. This step is performed to ensure that each semantic
position, i.e. concave and convex positions, is moved closer
to the corresponding position of the head model. The next



step refines the shape of the face. To compare the final
result with the synthetic model, we show the comparison
with several horizontal and vertical slices in Fig. 3. Since
the mesh of the face template is sparser than the synthetic
model, the two contours cannot be perfectly matched. We
can see that larger errors appear only at the boundary of
the face. That is because the camera matrix only covers
the frontal area of the face. When computing the Hausdorff
distance between the model and our result, the mean error is
1.65mm and the root mean squared error(RMSE) is 4.62mm.

In the real data experiment, we evaluate our algorithm
with three subjects. The result is shown in Fig. 5. For each
subject, we use a neutral face and a face with an expression.
Since eyes and mouth have very complicated structures, in
all experiments, we ask the subjects to close their eyes
and mouth. We can see from the result that the normal
maps have high-resolution, but our template is comparatively
sparse. Consequently, our algorithm can only recover the
most significant features of a face, some subtle features
such as skin foldings are not captured. All computations
are performed on a single consumer-level computer, and
the running time of the complete algorithm is about 5
minutes. The most time-consuming operation is to solve the
large sparse linear systems. In this paper, we solve these
system directly using the conjugate gradient method. If a
factorization step, such as Cholesky factorization, is applied,
the execution time can be further reduced.

VI. CONCLUSION

We have presented a semi-automatic approach to fit a
template mesh to multi-view normal data. This approach
reduces the acquisition time compared to state-of-the-art
approaches which employ structured light scanning to gen-
erate the low-resolution 3D reconstruction. The method
consists of three steps: feature-based registration, normal
registration, and multi-view shape refinement. In the feature-
based registration, we match a few manually selected feature
points. In the normal registration, we deform the template
to align semantic positions to the normal data. Since the
resulting cost function is highly non-linear, we propose
a linearisation method for efficient optimization. In the
multi-view refinement step, we further refine the shape by
enforcing the consistency of normals in neighbouring views.

Future work: In the real data experiment, to prevent
errors, we have asked our subjects to close their eyes and
mouth. To relax this constraint, a reliable face contour
tracker could help. By restricting the movements of eyes and
mouth to tracked contours, many complicated expressions
could be captured. Moreover, our camera set-up is currently
only capable of covering the frontal face. However, it can be
expected that adding more cameras allows fitting a complete
3D head template with the same approach. In future work,
we would like to apply this technique to a large database of

Figure 3. Some slices of the synthesis ground-truth model and our result.
The red contour indicates the ground-truth model, and the green contour
indicates our result. The left column includes three vertical slices, and
the right column includes three horizontal slices. (To evaluate the overlap
clearly, an interested reader can open a digital version of this paper and
can zoom into the figure)

subjects to build a morphable face model that features very
high resolution geometry.
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