# MERGING OF FEATURE TRACKS FOR CAMERA MOTION ESTIMATION FROM VIDEO

Thorsten Thormählen, Nils Hasler, Michael Wand, Hans-Peter Seidel

Max Planck Institute for Computer Science Saarbrücken, Germany http://www.mpi-inf.mpg.de

**Keywords:** camera motion estimation, drift removal, multicamera registration, structure-from-motion.

## Abstract

In this paper different application scenarios are presented for which the merging of unconnected feature point tracks is essential for successful camera motion estimation and 3D reconstruction from video. The first application is drift removal for sequential camera motion estimation of long sequences. The state-of-the-art in drift removal is to apply a RANSAC approach to find unconnected feature point tracks. In this paper an alternative spectral algorithm for pairwise matching of unconnected feature point tracks is used. It is then shown that the algorithms can be combined and applied to novel scenarios where independent camera motion estimations must be registered into a common global coordinate system. In the first scenario multiple moving cameras, which capture the same scene simultaneously, are registered. A second new scenario occurs in situations where the tracking of feature points during sequential camera motion estimation fails completely, e.g., due to large occluding objects in the foreground, and the unconnected tracks of the independent reconstructions must be merged. Three experiments with challenging real video sequences demonstrate that the presented techniques work in practice.

## 1 Introduction

Camera motion estimation and 3D reconstruction of rigid objects from video (Structure-from-Motion) is a wellestablished technique in computer vision, and fully automatic algorithms have been developed over the last decades [4, 9, 12].

Most approaches determine corresponding feature points in consecutive frames. For video, the displacement of feature points between two frames is usually small and therefore, feature tracking methods, like the KLT-Tracker [11], produce less outliers and less broken tracks than feature matching methods (e.g. SIFT matching [8]), which are designed for wide baseline matching between images. Once corresponding feature points are found between consecutive frames, the parameters of a camera model can be estimated for every frame. Also, for each feature track, a corresponding 3D object point position is determined. If the errors in the position of the 2D feature points follow a Gaussian distribution, the

Maximum Likelihood estimator for camera parameters and 3D object points is called bundle adjustment. Bundle adjustment minimizes the reprojection error of the 3D object points into the camera images. The error is consequently distributed equally over the whole sequence.

During the sequential processing of the input frames, feature tracks are often broken. This happens because of occlusion, moving foreground objects, fast camera movements with large feature displacements or motion blur, image noise, or because the tracked 3D object point leaves the camera's field of view. Often, the same 3D position is found and tracked again later in the sequence but a new 3D object point is assigned to the new track. For the performance of bundle adjustment to be optimal, it is essential that those 3D object points are merged.

An application for which the merging of unconnected feature tracks has already been studied in the literature is drift removal [6]. If 3D object points are not merged, errors accumulate and drift occurs during the sequential processing of the input frames. The presence of drift becomes particularly problematic in long sequences where the camera visits the same part of the scene multiple times. Often the 3D object point clouds representing those parts of the scene differ from each other by a significant 3D transformation. If the sequence is closed (i.e. camera position and orientation of the first and the last frame are the same), drift can be removed by enforcing this special constraint for the first and last camera view during the estimation process [3]. A more general approach by Cornelis et al. [1] removes drift by estimating the 3D transformation between the 3D object point clouds with a RANSAC [2] approach and afterwards merges those 3D object points that support the estimated transformation. One problem is that the number of possible 3D-3D matches is usually very large and the percentage of false matches (i.e., outliers) is high. In this case, the computational effort of the RANSAC method is excessive because many random samples have to be evaluated until a valid set of inliers is found. To remove the number of outliers, Cornelis et al. propose a proximity as well as a similarity constraint for possible 3D-3D matches. The Bhattacharyya distances of color histograms between the unconnected feature tracks is proposed to evaluate similarity.

In this paper novel scenarios are presented for which successful camera motion estimation and 3D reconstruction from video cannot be achieved without merging of unconnected feature point tracks. We first consider the case of drift removal and evaluate different similarity measures to find one that produces fewer false matches and thereby speeds up the RANSAC approach. As an alternative to the RANSAC approach, we describe how the spectral method by Leordeanu et al. [7] can be applied to the problem of merging unconnected feature tracks. The main contribution of this paper, however, is the extension to scenarios where multiple independent structurefrom-motion reconstructions are registered into a common global coordinate system. It is shown that a modified algorithm for merging feature point tracks can be applied in novel scenarios where a scene is captured simultaneously by multiple moving cameras or in situations where the tracking of feature points completely fails (e.g., due to large occluding objects in the foreground).

The rest of the paper is organized as follows. In the next section, we describe our approach for finding unconnected feature track candidates and evaluating different similarity measurement scores. Sections 3 and 4 introduce the RANSAC method and spectral method for merging unconnected feature tracks, respectively. In Section 5, a modified version of the algorithm is presented that allows the registration of multiple independent structure-from-motion reconstructions. In Section 6, we report results of our experiments that show the performance of the suggested algorithms. The paper ends with concluding remarks in Section 7.

#### 2 Finding unconnected feature tracks candidates

Let's assume we are given a video sequence with K images  $I_k$ , with  $k = 1, \ldots, K$ , and we have tracked J 3D object points  $\mathbf{P}_j$ , with  $j = 1, \ldots, J$ . That is, we have established J trajectories of 2D feature points  $\mathbf{p}_{j,k}$  in a number of consecutive images with a feature point tracker (e.g. KLT-Tracker [11]).

After estimation of the  $3 \times 4$  camera matrix  $A_k$  for each image  $I_k$  with a sequential structure-from-motion algorithm (e.g., [12]), the reprojection of a 3D object point  $P_j$  in the image k with the camera matrix  $A_k$  should be located on the measured feature point  $\mathbf{p}_{j,k}$ . This can be seen in Fig. 1 and follows from the bundle adjustment equation

$$\underset{\mathbf{A}_{k},\mathbf{P}_{j}}{\operatorname{arg\,min}} \quad \sum_{j=1}^{J} \sum_{k=1}^{K} d(\mathbf{p}_{j,k}, \mathbf{A}_{k} \mathbf{P}_{j})^{2} \quad , \qquad (1)$$

where d(...) denotes the Euclidean distance and  $\mathbf{p}_{j,k} = (x, y, 1)$  and  $\mathbf{P}_j = (X, Y, Z, 1)^{\top}$  are homogeneous vectors. Optimizing this bundle adjustment equation is usually the final step in structure-from-motion algorithms.

If the covariance of the positional error of the measured 2D feature points is known, then it is possible to calculate covariance matrices for the error of the estimated camera parameters and the 3D object points after bundle adjustment (see [5, 12] for details). Therefore, we assume that the  $3 \times 3$  covariance matrix  $\Sigma_j$  of every estimated 3D object point  $\mathbf{P}_j$  is available.



Figure 1: Result after structure-from-motion estimation. The projection of a 3D object point  $P_j$  in the camera image at time k gives the tracked 2D feature point  $p_{j,k}$ .

If a long sequence is processed, noise from the 2D feature points accumulates and drift occurs. As illustrated in Fig. 2, 3D object point  $\mathbf{P}_j$  and the earlier reconstructed object point  $\mathbf{P}_i$  should be at the same physical position. If sequential bundle adjustment is employed, however, due to drift this is not necessarily the case. A real-world example of severe drift is shown in Fig. 3.



Figure 2: After processing a long sequence 3D object points  $P_j$  and  $P_i$  are not at the same position because of drift.

In order to remove drift, we need to merge 3D object points  $\mathbf{P}_i$ and  $\mathbf{P}_j$ , which is a pairwise matching problem. In the first step of the matching procedure, merging candidates are discarded if they are not in the vicinity of each other. This proximity constraint is evaluated in the image plane. That is, two object points are merging candidates if

$$l(\mathbf{A}_{k}^{(j)} \mathbf{P}_{j}, \mathbf{A}_{k}^{(j)} \mathbf{P}_{i}) < \tau_{1} \qquad , \tag{2}$$

for all camera images  $A_k^{(j)}$  where  $\mathbf{P}_j$  is tracked. Typically, we choose the threshold  $\tau_1$  in the range of 20 to 100 pixels, dependent on the amount of expected drift.

The second constraint that two object points need to fulfill is



Figure 3: A real-world example of drift. After the camera revisits the same part of the scene the 3D object points of the current image (red) differ strongly from the 3D object points generated earlier in the sequence (blue). The right image shows a detail magnification from the left image. The squared shape of the yellow paper is clearly visible in the shifted blue point cloud.

the similarity constraint. The similarity constraint evaluates whether the color intensity in a window around their tracked position is similar in those images where the object points were found. If S(...) is a similarity measurement score, then two object points are merging candidates if

$$S(\mathbf{A}_{k}^{(j)} \mathbf{P}_{j}, \mathbf{A}_{k}^{(i)} \mathbf{P}_{i}) < \tau_{2} \qquad , \tag{3}$$

for all camera images  $A_k^{(j)}$  where  $\mathbf{P}_j$  is tracked and all camera images  $A_k^{(i)}$  where  $\mathbf{P}_i$  is tracked.

In order to find an appropriate similarity measure we evaluate in the following how different approaches in the literature suit our problem. Therefore, we generated a ground truth data set for the drift sequence presented in Fig. 3 by selecting two images out of this sequence and labeled unconnected feature tracks by hand, see Fig. 4. In total we found 30 correct matches between those two images.



Figure 4: A ground truth data set with 30 hand-labeled unconnected feature tracks, marked in green.

Four different similarity measures were evaluated: normalized cross correlation, Bhattacharyya distance of color histograms, scale invariant feature transform (SIFT) matching, and a combination of SIFT matching and Bhattacharyya distance. To generate the combined SIFT and Bhattacharyya distance measure, the output of both similarity scores is mapped to the range between 0.0 and 1.0 and the mean of both is used as the combined score. We then changed the threshold  $\tau_2$  in small steps from 0.0 to 1.0 and plotted the number of inliers over the



Figure 5: Number of inliers over number of outliers of unconnected feature track candidates for different values of the similarity threshold  $\tau_2$ . Results for four different similarity measurements are shown: normalized cross correlation (ncc), Bhattacharyya distance of color histograms (bhat), scale invariant feature transform matching (sift), and a combination of SIFT matching and Bhattacharyya distance (sift bhat).

number of outliers. As shown in Fig. 5 the resulting inlier to outlier ratio is generally very low for this difficult example. If the threshold is chosen quite strict (e.g. so that only 50% of the inliers pass the test), the inlier/outlier ratio is acceptable, especially for the combined SIFT and Bhattacharyya distance score. This combined similarity measure also performed best for the other examples presented in Section 6.

At last, we define a uniqueness constraint. Two object points,  $P_i$  and  $P_j$ , are merging candidates if

$$\frac{S(\mathbf{A}_{k}^{(j)} \mathbf{P}_{j}, \mathbf{A}_{k}^{(i)} \mathbf{P}_{i})}{S_{\text{close}}} < \tau_{3} \qquad , \tag{4}$$

where  $S_{\text{close}}$  is the best measurement score either  $\mathbf{P}_i$  or  $\mathbf{P}_j$  achieves with any other 3D object point. This constraint is especially important for scenes that contain repetitive structures. If this constraint is not checked, whole groups of 3D object points may get merged with the wrong repeated structure in the neighbourhood.

# 3 Merging of unconnected feature tracks with RANSAC

All 3D object point pairs  $(\mathbf{P}_i, \mathbf{P}_j)$ , that pass all three tests in Eqs. (2), (3), and (4) are candidates for unconnected feature tracks. All of these candidates are added to the set  $M_{\rm all}$ . This set usually contains a large number of wrongly assigned pairs (outliers). We now need to separate all candidates within set  $M_{\rm all}$  into a set of inliers  $M_{\rm in}$  and a set of outliers  $M_{\rm out}$ .

As can be seen in Figs. 2 and 3, the drifted object points can be transformed to the object points in the current frame by a common 3D transformation H,

$$w \mathbf{P}_j = \mathrm{H} \mathbf{P}_i \qquad \forall (\mathbf{P}_i, \mathbf{P}_j) \in M_{\mathrm{in}} \tag{5}$$

where w is an unknown scale factor. The  $4 \times 4$  matrix H has 16 elements. Because of the unknown scale factor for

homogeneous entities we may fix one element of H to 1 and, therefore, H has 15 unknown parameters. These 15 parameters can be estimated from a minimal set of 5 object point pairs, since every pair contributes 3 linear equations.

To determine H, we use the RANSAC approach [2]. Five object point pairs are randomly sampled out of the set  $M_{\rm all}$  and an H is estimated. Then, the support of H is measured by evaluating

$$\epsilon = \sum_{M_{\text{all}}} \epsilon_{i,j}$$
(6)  
with  $\epsilon_{i,j} = \begin{cases} d(\mathbf{P}_j, \mathbf{H} \mathbf{P}_i)_{\Sigma}^2 & \text{if } d(\mathbf{P}_j, \mathbf{H} \mathbf{P}_i)_{\Sigma}^2 < \tau_4 \\ \tau_4 & \text{else} \end{cases},$ 

where  $d(...)_{\Sigma}$  denotes the Mahalanobis distance. The Mahalanobis distance can be calculated if the covariance matrices of  $\mathbf{P}_i$  and  $\mathbf{P}_j$  are available, which is the case here. After randomly sampling 5 pairs from  $M_{\rm all}$  for a sufficient number of times (i.e., until we can assume that we have at least once estimated H with 5 inliers), we choose the H with the smallest  $\epsilon$ . All object point pairs with  $d(\mathbf{P}_j, \mathrm{H}\mathbf{P}_i)_{\Sigma}^2 < \tau_4$  are added to the set of inliers  $M_{\rm in}$  and all others to the set of outliers  $M_{\rm out}$ . All 3D object point pairs in  $M_{\rm in}$  are considered unconnected feature tracks and are merged. Afterwards, the drift can be removed by a bundle adjustment over the whole sequence.

Please note that for simplicity and speed, we assume in our implementation that the covariance matrix  $\Sigma_i$  of  $\mathbf{P}_i$  is not changed by a multiplication with H, which is only an approximation, but works well in practice. The Mahalanobis distance  $d(\mathbf{P}_j, \mathbf{H} \mathbf{P}_i)_{\Sigma}^2$  obeys a  $\chi^2$ -distribution of degree 3. In our experiments, we choose the threshold  $\tau_4 = 11.34$ , which is the 99% quantile for the  $\chi^2$ -distribution of degree 3. This means that we will reject an inlier in only 1% of cases, if H is estimated correctly.

In practice, it is often the case that the inlier/outlier ratio is small, as was shown in the previous section. It is a known problem of the RANSAC algorithm, that for small inlier/outlier ratios, a large number of random trials have to be performed before it can be assumed that the RANSAC algorithm found the correct solution. In these cases, the computational effort of the RANSAC method can become excessive.

The computational effort can be reduced, if we assume that H is a similarity transformation with only 7 parameters, 3 for rotation, 3 for translation, and 1 for scale. Then, H can be estimated from only 3 inlier object point pairs, which reduces the number of required trials. The assumption that H is a similarity transformation is valid, if the camera matrices  $A_k$  and 3D object points  $P_j$  are reconstructed in the metric and not in the projective space by the structure-from-motion algorithm. In our experiments, we found that this is a valid approximation after auto-calibration [13], even if drift is present in the reconstruction.

#### 4 Spectral method for merging of unconnected tracks

The spectral method by Leordeanu et al. [7] is an alternative to the previously described RANSAC algorithm and is adapted to the problem of merging unconnected tracks in case of drift in the following.

All 3D object point pairs  $(\mathbf{P}_i, \mathbf{P}_j)$  that pass the three tests in Eqs. (2), (3), and (4) are candidates for unconnected feature tracks and are added to the set  $M_{\rm all}$ . If N is the total number of elements in  $M_{\rm all}$ , then we denote the *n*-th element as  $(\mathbf{P}_i^{(n)}, \mathbf{P}_j^{(n)})$ , with  $n = 1, \ldots, N$ .

First, a symmetric non-negative  $N \times N$  matrix L is generated. The *n*-th diagonal element of L is set to the similarity score  $S(\mathbf{P}_i^{(n)}, \mathbf{P}_j^{(n)})$  that was determined with Eq. (3) for the *n*-th element. The off-diagonal elements L(n,m), with  $m = 1, \ldots, N$ , are set to the score  $D((\mathbf{P}_i^{(n)}, \mathbf{P}_j^{(n)}), (\mathbf{P}_i^{(m)}, \mathbf{P}_j^{(m)}))$ , which measures how well the *n*-th and *m*-th pair in  $M_{\rm all}$  support the same Euclidean transformation:

$$D((\mathbf{P}_i^{(n)}, \mathbf{P}_j^{(n)}), (\mathbf{P}_i^{(m)}, \mathbf{P}_j^{(m)})) = \begin{cases} e^{-\frac{\Delta d^2}{2\sigma^2}} & \text{if } \Delta d < \tau_5 \\ 0 & \text{else} \end{cases}$$

with

$$\Delta d = d(\mathbf{P}_i^{(n)}, \mathbf{P}_i^{(m)}) - d(\mathbf{P}_j^{(n)}, \mathbf{P}_j^{(m)}) \quad .$$
(7)

If D(...) is close to 1, then the *n*-th and *m*-th pair support the same Euclidean transformation.

We then determine the principal eigenvector of the matrix L with the Power method [10], which is usually very fast because it converges after a few iterations.

The value of the eigenvector at position n can be interpreted as the confidence that the *n*-th pair is a valid match and can be merged (see [7] for details). Therefore, first the pair with the highest confidence is moved from  $M_{\rm all}$  to the inlier set  $M_{\rm in}$ . All other pairs in  $M_{\rm all}$  that are in *conflict* with the highest confidence pair are moved to the outlier set  $M_{\rm out}$ . Pairs are in *conflict*, if they share either  $\mathbf{P}_i$  or  $\mathbf{P}_j$  with the highest confidence pair or the corresponding  $D(\ldots)$  to the highest confidence pair is zero. Now the remaining second highest confidence pair from  $M_{\rm all}$  is processed the same way, and so on, until  $M_{\rm all}$  is empty.

For drift removal, all 3D object point pairs in  $M_{\rm in}$  are considered unconnected feature tracks and are merged. Finally, a bundle adjustment is executed over the whole sequence.

# 5 Registration of independent structure-from-motion reconstructions

The algorithms which were described in the previous two sections are not limited to drift detection and removal. With slight modifications, these algorithms can find the correct transformation between two or more independent structurefrom-motion reconstructions. The first application we want to address here is the registration of multiple moving cameras that capture the same scene simultaneously.



Figure 6: Registration of multiple moving cameras that capture the same scene simultaneously. Drift removal and registration of multiple cameras are similar problems, which becomes obvious, when this figure is compared with Fig. 2.

For each camera, the video sequences are processed independently with a sequential structure-from-motion algorithm. As shown in Fig. 6, the resulting reconstruction of camera motion and 3D object points for each camera is determined only up to a similarity transformation with 7 degrees of freedom, 3 for rotation, 3 for translation, and 1 for scale. In the following, we present an algorithm to register these independent reconstructions into a common global coordinate system.

Registration algorithm:

- 1. Run the RANSAC algorithm of Section 3, where the proximity constraint should not be used. This means all 3D object point pairs  $(\mathbf{P}_i, \mathbf{P}_j)$  that pass the similarity and uniqueness constraint in Eq. (3) and Eq. (4) are merging candidates.
- 2. **Transform** all object points  $P_i$  and camera matrices of the second image sequence with the transformation H.
- 3. Enforce the proximity constraint. All merging candidates have to pass the three tests in Eqs. (2), (3), and (4). The uniqueness constraint now filters out less candidates because the search for candidates is guided by the proximity constraint.
- 4. **Run the spectral method** of Section 4 (or, alternatively, the RANSAC algorithm)
- 5. Merge the inlier 3D object point pairs.
- 6. **Bundle adjust** the merged sequences.

Optionally, after step 4, reduce the proximity threshold  $\tau_1$  and go to step 2. (This re-selection of candidates with reduced

proximity threshold can also help in the case of drift removal if only a few candidates were found in the first run.)

The same registration algorithm can also be applied if the motion estimation of a single camera cannot be continued and has to restart. This is often the case if no feature points can be tracked because of large occlusions in the foreground or because of extreme motion blur. In these cases, the sequential structure-from-motion algorithm automatically stops and starts again with a new independent reconstruction. Afterwards, the independent reconstruction can be registered with the registration algorithm described above.

#### 6 Results

In this section, we present three real-world examples of structure-from-motion estimation where merging of unconnected feature tracks is necessary. All examples are recorded with off-the-shelf consumer HDV cameras at a resolution of  $1440 \times 1080$  pixels and a frame rate of 25 Hz.

The examples are also shown in the video provided on the authors' website  $^{1}$ .

### 6.1 Example 1: Drift removal



Figure 7: Five images out of the input video of example 1 and a top view on the resulting camera path after sequential structure-from-motion.

In this example, the camera performs two complete loops around an advertising column. A total of 2500 frames were recorded. In Fig. 7, the input sequence and the resulting camera

<sup>&</sup>lt;sup>1</sup>The video can be downloaded at:

http://www.mpi-inf.mpg.de/homepage/thormae/index.html



Figure 8: a) result without drift removal after two loops around the column, b) result with drift removal, c) first frame of the sequence as drift-free reference. Only the 3D object points that were generated in the first frame are shown as blue dots. The second row shows detail magnifications of the above images.

path after sequential structure-from-motion are shown. The white dots are the reconstructed 3D object points. The green dots are the 3D object points of the first frame. The first frame is also marked with a small camera icon. In total, 34214 object points were reconstructed.

In Fig. 8, the results are compared with and without drift removal. Fig. 8c shows the first frame of the video. Only those 3D object points are shown that were generated out of the 2D feature tracks that started in the first frame. These 3D object points are displayed as blue dots, and they project perfectly onto the detected corners in the first frame. This first frame can therefore be used as a reference. If the estimation contains no drift, these 3D object points of the first frame must project to the same corners even after two complete loops around the advertising column. In Fig. 8a, the result is shown after two complete loops without drift removal. The 3D object points do not project to their original position. To visualize the amount of drift, a 3D model of a column (pink wireframe in Fig. 8) was fitted to the 3D object points of the first frame. The displacement is clearly visible in Fig. 8a. Fig. 8b shows the result after the drift is removed with the spectral method of Section 4. The 3D object points project exactly to the correct positions. The RANSAC method computes very similar results, which are not shown here for this reason. If, however,

we compare the computation time of both methods the spectral method needs 459.28 ms on average compared with 613.26 ms for the RANSAC method - an increase in speed of 25 percent. In total, we applied each method 76 times with appropriate frame offsets to find the unconnected feature tracks for this sequence. In total, 8055 of 34214 object points were merged.

#### 6.2 Example 2: Registration of multiple cameras

This example, which is shown in Fig. 9, was recorded simultaneously with four moving cameras. Each of the four video sequences has a length of 188 frames. The camera motion and the 3D object point cloud of every sequence are estimated independently for each sequence. Afterwards, the independent reconstructions are merged with the registration algorithm of Section 5. The sequence is challenging because of the large number of moving objects and because of the repetitive flagging and repeated windows. However, all four independent reconstructions were registered successfully, as can be verified in Fig. 10. In order to test the registration, the scene was augmented with a 3D model of a gate. This virtual gate stays perfectly at its assigned position (see video or Fig. 9).



Figure 10: Top view on the resulting camera path of four moving cameras. The four independent reconstructions were registered into a common global coordinate system.

#### 6.3 Example 3: Recovery after large occlusions

This challenging example of a market scene has a total length of 319 frames. The sequential structure-from-motion estimation automatically restarts twice because too few feature point tracks were available, due to large occluding objects in the foreground (Fig. 11). After each restart, the structure-frommotion algorithm produces an independent reconstruction of the camera motion and 3D object points for that part of the sequence. The registration algorithm of Section 5 was applied, and the three independent reconstructions were successfully registered into a common global coordinate system, as can be seen in Fig. 12. In total, 243 of 13007 object points were merged. To test the results, five virtual 3D objects were rendered into the sequence. As can be verified in Fig. 11 and in the video provided with this paper, these virtual object do not show any visual misalignments or jitter.



Figure 9: In example 2, four moving cameras simultaneously capture a street scene. Top row: Two sample images out of the sequence for each of the four cameras. Bottom row: The scene is augmented with a 3D model of a gate.



Figure 12: Camera path and 3D object point cloud after registration of three independent structure-from-motion estimations in example 3

### 7 Conclusion

In this paper, we presented three scenarios where merging of unconnected feature tracks was necessary to achieve robust camera motion estimation and 3D reconstruction from video: drift removal, registration of multiple moving cameras, and recovery of camera motion after large occlusions. For each of these three scenarios, we showed results of automatic camera motion estimation for challenging real-world video sequences with repetitive structures and moving objects. A key ingredient for the successful processing of these videos is our choice of the similarity measure, as well as the application of a uniqueness and proximity constraint to find fewer false candidates for unconnected feature tracks. Furthermore, we have adopted the spectral method by Leordeanu et al. [7] to the problem of merging unconnected feature tracks.

We believe that this unified technique for merging unconnected feature tracks in different scenarios is an important step towards fully automatic camera motion estimation in difficult situations.

#### Acknowledgements

This work has been partially funded by the Max Planck Center for Visual Computing and Communication (BMBF-FKZ01IMC01).

### References

- Kurt Cornelis, Frank Verbiest, and Luc Van Gool. Drift detection and removal for sequential structure from motion algorithms. *IEEE Trans. Pattern Anal. Mach. Intell.*, 26(10):1249–1259, 2004.
- [2] R. M. A. Fischler and C. Bolles. Random sample consensus: A paradigm for model fitting with application to image analysis and automated cartography. *Communications of the ACM*, 24(6):381–395, 1981.



Figure 11: Top row: Five images out of the input video of example 3. The motion estimation has to restart two times because of large occlusions in the foreground. These large occlusions are visible in the second and fourth image of the top row. Bottom row: Augmented video sequence.

- [3] Andrew W. Fitzgibbon and Andrew Zisserman. Automatic camera recovery for closed or open image sequences. In ECCV '98: Proceedings of the 5th European Conference on Computer Vision-Volume I, pages 311–326, London, UK, 1998. Springer-Verlag.
- [4] Simon Gibson, Jon Cook, Toby Howard, Roger Hubbold, and Dan Oram. Accurate camera calibration for offline, video-based augmented reality. In *IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR 2002)*, Darmstadt, Germany, September 2002.
- [5] Richard I. Hartley and Andrew Zisserman. *Multiple View Geometry*. Cambridge University Press, 2000.
- [6] Kevin Koeser, Bogumil Bartczak, and Reinhard Koch. Drift-free pose estimation with hemispherical cameras. In Proceedings of Conference on Visual Media Production (CVMP 2006), London, 2006.
- [7] Marius Leordeanu and Martial Hebert. A spectral technique for correspondence problems using pairwise constraints. In *Proceedings of the Tenth IEEE International Conference on Computer Vision*, pages 1482–1489, Washington, DC, USA, 2005. IEEE Computer Society.
- [8] David G. Lowe. Distinctive image features from scaleinvariant keypoints. *Int. J. Comput. Vision*, 60(2):91–110, 2004.
- [9] M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops, and R. Koch. Visual modeling with a hand-held camera. *International Journal of Computer Vision*, 59(3):207–232, 2004.
- [10] Yousef Saad. *Numerical Methods for Large Eigenvalue Problems*. Manchester University Press, 1992.
- [11] Jianbo Shi and Carlo Tomasi. Good features to track. In *IEEE Conference on Computer Vision and Pattern Recognition*, pages 593–600, 1994.

- [12] Thorsten Thormählen. Zuverlässige Schätzung der Kamerabewegung aus einer Bildfolge. PhD thesis, University of Hannover, Fortschritt-Berichte, Reihe 10, VDI Verlag, 2006.
- [13] Thorsten Thormählen, Hellward Broszio, and Patrick Mikulastik. Robust linear auto-calibration of a moving camera from image sequences. In *Proceedings of the 7th Asian Conference on Computer Vision (ACCV 2006)*, Hyderabad, India, January 2006.