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Abstract

In this paper different application scenarios are presented
for which the merging of unconnected feature point tracks
is essential for successful camera motion estimation and 3D
reconstruction from video. The first application is drift removal
for sequential camera motion estimation of long sequences.
The state-of-the-art in drift removal is to apply a RANSAC
approach to find unconnected feature point tracks. In this
paper an alternative spectral algorithm for pairwise matching
of unconnected feature point tracks is used. It is then shown
that the algorithms can be combined and applied to novel
scenarios where independent camera motion estimations must
be registered into a common global coordinate system. In the
first scenario multiple moving cameras, which capture the same
scene simultaneously, are registered. A second new scenario
occurs in situations where the tracking of feature points during
sequential camera motion estimation fails completely, e.g.,
due to large occluding objects in the foreground, and the
unconnected tracks of the independent reconstructions must
be merged. Three experiments with challenging real video
sequences demonstrate that the presented techniques work in
practice.

1 Introduction

Camera motion estimation and 3D reconstruction of rigid
objects from video (Structure-from-Motion) is a well-
established technique in computer vision, and fully automatic
algorithms have been developed over the last decades [4, 9, 12].

Most approaches determine corresponding feature points in
consecutive frames. For video, the displacement of feature
points between two frames is usually small and therefore,
feature tracking methods, like the KLT-Tracker [11], produce
less outliers and less broken tracks than feature matching
methods (e.g. SIFT matching [8]), which are designed for
wide baseline matching between images. Once corresponding
feature points are found between consecutive frames, the
parameters of a camera model can be estimated for every
frame. Also, for each feature track, a corresponding 3D object
point position is determined. If the errors in the position
of the 2D feature points follow a Gaussian distribution, the

Maximum Likelihood estimator for camera parameters and 3D
object points is called bundle adjustment. Bundle adjustment
minimizes the reprojection error of the 3D object points into the
camera images. The error is consequently distributed equally
over the whole sequence.

During the sequential processing of the input frames, feature
tracks are often broken. This happens because of occlusion,
moving foreground objects, fast camera movements with large
feature displacements or motion blur, image noise, or because
the tracked 3D object point leaves the camera’s field of view.
Often, the same 3D position is found and tracked again later in
the sequence but a new 3D object point is assigned to the new
track. For the performance of bundle adjustment to be optimal,
it is essential that those 3D object points are merged.

An application for which the merging of unconnected feature
tracks has already been studied in the literature is drift removal
[6]. If 3D object points are not merged, errors accumulate
and drift occurs during the sequential processing of the input
frames. The presence of drift becomes particularly problematic
in long sequences where the camera visits the same part
of the scene multiple times. Often the 3D object point
clouds representing those parts of the scene differ from each
other by a significant 3D transformation. If the sequence
is closed (i.e. camera position and orientation of the first
and the last frame are the same), drift can be removed by
enforcing this special constraint for the first and last camera
view during the estimation process [3]. A more general
approach by Cornelis et al. [1] removes drift by estimating the
3D transformation between the 3D object point clouds with a
RANSAC [2] approach and afterwards merges those 3D object
points that support the estimated transformation. One problem
is that the number of possible 3D-3D matches is usually very
large and the percentage of false matches (i.e., outliers) is
high. In this case, the computational effort of the RANSAC
method is excessive because many random samples have to
be evaluated until a valid set of inliers is found. To remove
the number of outliers, Cornelis et al. propose a proximity
as well as a similarity constraint for possible 3D-3D matches.
The Bhattacharyya distances of color histograms between the
unconnected feature tracks is proposed to evaluate similarity.

In this paper novel scenarios are presented for which successful
camera motion estimation and 3D reconstruction from video
cannot be achieved without merging of unconnected feature



point tracks. We first consider the case of drift removal and
evaluate different similarity measures to find one that produces
fewer false matches and thereby speeds up the RANSAC
approach. As an alternative to the RANSAC approach, we
describe how the spectral method by Leordeanu et al. [7] can
be applied to the problem of merging unconnected feature
tracks. The main contribution of this paper, however, is the
extension to scenarios where multiple independent structure-
from-motion reconstructions are registered into a common
global coordinate system. It is shown that a modified algorithm
for merging feature point tracks can be applied in novel
scenarios where a scene is captured simultaneously by multiple
moving cameras or in situations where the tracking of feature
points completely fails (e.g., due to large occluding objects in
the foreground).

The rest of the paper is organized as follows. In the next
section, we describe our approach for finding unconnected
feature track candidates and evaluating different similarity
measurement scores. Sections 3 and 4 introduce the RANSAC
method and spectral method for merging unconnected feature
tracks, respectively. In Section 5, a modified version of
the algorithm is presented that allows the registration of
multiple independent structure-from-motion reconstructions.
In Section 6, we report results of our experiments that show
the performance of the suggested algorithms. The paper ends
with concluding remarks in Section 7.

2 Finding unconnected feature tracks candidates

Let’s assume we are given a video sequence with K images Ik,
with k = 1, . . . ,K, and we have tracked J 3D object
points Pj , with j = 1, . . . , J . That is, we have established
J trajectories of 2D feature points pj, k in a number of
consecutive images with a feature point tracker (e.g. KLT-
Tracker [11]).

After estimation of the 3 × 4 camera matrix Ak for each
image Ik with a sequential structure-from-motion algorithm
(e.g., [12]), the reprojection of a 3D object point Pj in the
image k with the camera matrix Ak should be located on the
measured feature point pj, k. This can be seen in Fig. 1 and
follows from the bundle adjustment equation

arg min
Ak,Pj

J∑
j=1

K∑
k=1

d(pj, k , Ak Pj)2 , (1)

where d(. . . ) denotes the Euclidean distance and pj, k =
(x, y, 1) and Pj = (X, Y, Z, 1)> are homogeneous vectors.
Optimizing this bundle adjustment equation is usually the final
step in structure-from-motion algorithms.

If the covariance of the positional error of the measured
2D feature points is known, then it is possible to calculate
covariance matrices for the error of the estimated camera
parameters and the 3D object points after bundle adjustment
(see [5, 12] for details). Therefore, we assume that the 3 × 3
covariance matrix Σj of every estimated 3D object point Pj is
available.
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Figure 1: Result after structure-from-motion estimation. The
projection of a 3D object point Pj in the camera image at
time k gives the tracked 2D feature point pj, k.

If a long sequence is processed, noise from the 2D feature
points accumulates and drift occurs. As illustrated in Fig. 2,
3D object point Pj and the earlier reconstructed object point
Pi should be at the same physical position. If sequential
bundle adjustment is employed, however, due to drift this is
not necessarily the case. A real-world example of severe drift
is shown in Fig. 3.
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Figure 2: After processing a long sequence 3D object points
Pj and Pi are not at the same position because of drift.

In order to remove drift, we need to merge 3D object points Pi

and Pj , which is a pairwise matching problem. In the first step
of the matching procedure, merging candidates are discarded
if they are not in the vicinity of each other. This proximity
constraint is evaluated in the image plane. That is, two object
points are merging candidates if

d(A(j)
k Pj , A

(j)
k Pi) < τ1 , (2)

for all camera images A
(j)
k where Pj is tracked. Typically,

we choose the threshold τ1 in the range of 20 to 100 pixels,
dependent on the amount of expected drift.

The second constraint that two object points need to fulfill is



Figure 3: A real-world example of drift. After the camera
revisits the same part of the scene the 3D object points of the
current image (red) differ strongly from the 3D object points
generated earlier in the sequence (blue). The right image
shows a detail magnification from the left image. The squared
shape of the yellow paper is clearly visible in the shifted blue
point cloud.

the similarity constraint. The similarity constraint evaluates
whether the color intensity in a window around their tracked
position is similar in those images where the object points were
found. If S(. . . ) is a similarity measurement score, then two
object points are merging candidates if

S(A(j)
k Pj , A

(i)
k Pi) < τ2 , (3)

for all camera images A(j)
k where Pj is tracked and all camera

images A(i)
k where Pi is tracked.

In order to find an appropriate similarity measure we evaluate
in the following how different approaches in the literature suit
our problem. Therefore, we generated a ground truth data
set for the drift sequence presented in Fig. 3 by selecting two
images out of this sequence and labeled unconnected feature
tracks by hand, see Fig. 4. In total we found 30 correct matches
between those two images.

Figure 4: A ground truth data set with 30 hand-labeled
unconnected feature tracks, marked in green.

Four different similarity measures were evaluated: normalized
cross correlation, Bhattacharyya distance of color histograms,
scale invariant feature transform (SIFT) matching, and a
combination of SIFT matching and Bhattacharyya distance.
To generate the combined SIFT and Bhattacharyya distance
measure, the output of both similarity scores is mapped to the
range between 0.0 and 1.0 and the mean of both is used as the
combined score. We then changed the threshold τ2 in small
steps from 0.0 to 1.0 and plotted the number of inliers over the
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Figure 5: Number of inliers over number of outliers of
unconnected feature track candidates for different values
of the similarity threshold τ2. Results for four different
similarity measurements are shown: normalized cross
correlation (ncc), Bhattacharyya distance of color histograms
(bhat), scale invariant feature transform matching (sift), and
a combination of SIFT matching and Bhattacharyya distance
(sift bhat).

number of outliers. As shown in Fig. 5 the resulting inlier to
outlier ratio is generally very low for this difficult example. If
the threshold is chosen quite strict (e.g. so that only 50% of
the inliers pass the test), the inlier/outlier ratio is acceptable,
especially for the combined SIFT and Bhattacharyya distance
score. This combined similarity measure also performed best
for the other examples presented in Section 6.

At last, we define a uniqueness constraint. Two object points,
Pi and Pj , are merging candidates if

S(A(j)
k Pj , A

(i)
k Pi)

Sclose

< τ3 , (4)

where Sclose is the best measurement score either Pi or Pj

achieves with any other 3D object point. This constraint
is especially important for scenes that contain repetitive
structures. If this constraint is not checked, whole groups of
3D object points may get merged with the wrong repeated
structure in the neighbourhood.

3 Merging of unconnected feature tracks with RANSAC

All 3D object point pairs (Pi,Pj), that pass all three tests in
Eqs. (2), (3), and (4) are candidates for unconnected feature
tracks. All of these candidates are added to the set Mall. This
set usually contains a large number of wrongly assigned pairs
(outliers). We now need to separate all candidates within set
Mall into a set of inliers Min and a set of outliers Mout.

As can be seen in Figs. 2 and 3, the drifted object points can
be transformed to the object points in the current frame by a
common 3D transformation H,

w Pj = HPi ∀(Pi,Pj) ∈ Min (5)

where w is an unknown scale factor. The 4 × 4 matrix H
has 16 elements. Because of the unknown scale factor for



homogeneous entities we may fix one element of H to 1 and,
therefore, H has 15 unknown parameters. These 15 parameters
can be estimated from a minimal set of 5 object point pairs,
since every pair contributes 3 linear equations.

To determine H, we use the RANSAC approach [2]. Five object
point pairs are randomly sampled out of the set Mall and an H is
estimated. Then, the support of H is measured by evaluating

ε =
∑
Mall

εi,j (6)

with εi,j =
{

d(Pj , HPi)2Σ if d(Pj , HPi)2Σ < τ4

τ4 else ,

where d(. . . )Σ denotes the Mahalanobis distance. The
Mahalanobis distance can be calculated if the covariance
matrices of Pi and Pj are available, which is the case here.
After randomly sampling 5 pairs from Mall for a sufficient
number of times (i.e., until we can assume that we have at
least once estimated H with 5 inliers), we choose the H with
the smallest ε. All object point pairs with d(Pj , HPi)2Σ < τ4

are added to the set of inliers Min and all others to the set of
outliers Mout. All 3D object point pairs in Min are considered
unconnected feature tracks and are merged. Afterwards, the
drift can be removed by a bundle adjustment over the whole
sequence.

Please note that for simplicity and speed, we assume in
our implementation that the covariance matrix Σi of Pi is
not changed by a multiplication with H, which is only an
approximation, but works well in practice. The Mahalanobis
distance d(Pj , HPi)2Σ obeys a χ2-distribution of degree 3. In
our experiments, we choose the threshold τ4 = 11.34, which
is the 99% quantile for the χ2-distribution of degree 3. This
means that we will reject an inlier in only 1% of cases, if H is
estimated correctly.

In practice, it is often the case that the inlier/outlier ratio is
small, as was shown in the previous section. It is a known
problem of the RANSAC algorithm,that for small inlier/outlier
ratios, a large number of random trials have to be performed
before it can be assumed that the RANSAC algorithm found
the correct solution. In these cases, the computational effort of
the RANSAC method can become excessive.

The computational effort can be reduced, if we assume that
H is a similarity transformation with only 7 parameters, 3 for
rotation, 3 for translation, and 1 for scale. Then, H can be
estimated from only 3 inlier object point pairs, which reduces
the number of required trials. The assumption that H is a
similarity transformation is valid, if the camera matrices Ak and
3D object points Pj are reconstructed in the metric and not in
the projective space by the structure-from-motion algorithm. In
our experiments, we found that this is a valid approximation
after auto-calibration [13], even if drift is present in the
reconstruction.

4 Spectral method for merging of unconnected tracks

The spectral method by Leordeanu et al. [7] is an alternative to
the previously described RANSAC algorithm and is adapted to
the problem of merging unconnected tracks in case of drift in
the following.

All 3D object point pairs (Pi,Pj) that pass the three tests
in Eqs. (2), (3), and (4) are candidates for unconnected
feature tracks and are added to the set Mall. If N is the total
number of elements in Mall, then we denote the n-th element as
(P(n)

i ,P(n)
j ), with n = 1, . . . , N .

First, a symmetric non-negative N ×N matrix L is generated.
The n-th diagonal element of L is set to the similarity score
S(P(n)

i ,P(n)
j ) that was determined with Eq. (3) for the n-

th element. The off-diagonal elements L(n, m), with m =
1, . . . , N , are set to the score D((P(n)

i ,P(n)
j ), (P(m)

i ,P(m)
j )),

which measures how well the n-th and m-th pair in Mall support
the same Euclidean transformation:

D((P(n)
i ,P(n)

j ), (P(m)
i ,P(m)

j )) =

{
e−

∆d2

2σ2 if ∆d < τ5

0 else

with

∆d = d(P(n)
i ,P(m)

i )− d(P(n)
j ,P(m)

j ) . (7)

If D(. . . ) is close to 1, then the n-th and m-th pair support the
same Euclidean transformation.

We then determine the principal eigenvector of the matrix L
with the Power method [10], which is usually very fast because
it converges after a few iterations.

The value of the eigenvector at position n can be interpreted
as the confidence that the n-th pair is a valid match and can
be merged (see [7] for details). Therefore, first the pair with
the highest confidence is moved from Mall to the inlier set
Min. All other pairs in Mall that are in conflict with the highest
confidence pair are moved to the outlier set Mout. Pairs are
in conflict, if they share either Pi or Pj with the highest
confidence pair or the corresponding D(. . . ) to the highest
confidence pair is zero. Now the remaining second highest
confidence pair from Mall is processed the same way, and so
on, until Mall is empty.

For drift removal, all 3D object point pairs in Min are
considered unconnected feature tracks and are merged.
Finally, a bundle adjustment is executed over the whole
sequence.

5 Registration of independent structure-from-motion
reconstructions

The algorithms which were described in the previous two
sections are not limited to drift detection and removal. With
slight modifications, these algorithms can find the correct
transformation between two or more independent structure-
from-motion reconstructions.



The first application we want to address here is the registration
of multiple moving cameras that capture the same scene
simultaneously.
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Figure 6: Registration of multiple moving cameras that
capture the same scene simultaneously. Drift removal and
registration of multiple cameras are similar problems, which
becomes obvious, when this figure is compared with Fig. 2.

For each camera, the video sequences are processed
independently with a sequential structure-from-motion
algorithm. As shown in Fig. 6, the resulting reconstruction
of camera motion and 3D object points for each camera is
determined only up to a similarity transformation with 7
degrees of freedom, 3 for rotation, 3 for translation, and 1 for
scale. In the following, we present an algorithm to register
these independent reconstructions into a common global
coordinate system.

Registration algorithm:

1. Run the RANSAC algorithm of Section 3, where the
proximity constraint should not be used. This means all
3D object point pairs (Pi,Pj) that pass the similarity and
uniqueness constraint in Eq. (3) and Eq. (4) are merging
candidates.

2. Transform all object points Pi and camera matrices of the
second image sequence with the transformation H.

3. Enforce the proximity constraint. All merging
candidates have to pass the three tests in Eqs. (2), (3),
and (4). The uniqueness constraint now filters out less
candidates because the search for candidates is guided by
the proximity constraint.

4. Run the spectral method of Section 4 (or, alternatively,
the RANSAC algorithm)

5. Merge the inlier 3D object point pairs.

6. Bundle adjust the merged sequences.

Optionally, after step 4, reduce the proximity threshold τ1 and
go to step 2. (This re-selection of candidates with reduced

proximity threshold can also help in the case of drift removal if
only a few candidates were found in the first run.)

The same registration algorithm can also be applied if the
motion estimation of a single camera cannot be continued and
has to restart. This is often the case if no feature points can
be tracked because of large occlusions in the foreground or
because of extreme motion blur. In these cases, the sequential
structure-from-motion algorithm automatically stops and starts
again with a new independent reconstruction. Afterwards,
the independent reconstruction can be registered with the
registration algorithm described above.

6 Results

In this section, we present three real-world examples
of structure-from-motion estimation where merging of
unconnected feature tracks is necessary. All examples are
recorded with off-the-shelf consumer HDV cameras at a
resolution of 1440×1080 pixels and a frame rate of 25 Hz.

The examples are also shown in the video provided on the
authors’ website 1.

6.1 Example 1: Drift removal

Figure 7: Five images out of the input video of example 1
and a top view on the resulting camera path after sequential
structure-from-motion.

In this example, the camera performs two complete loops
around an advertising column. A total of 2500 frames were
recorded. In Fig. 7, the input sequence and the resulting camera

1The video can be downloaded at:
http://www.mpi-inf.mpg.de/homepage/thormae/index.html

http://www.mpi-inf.mpg.de/homepage/thormae/index.html


a) b) c)

Figure 8: a) result without drift removal after two loops
around the column, b) result with drift removal, c) first frame
of the sequence as drift-free reference. Only the 3D object
points that were generated in the first frame are shown as
blue dots. The second row shows detail magnifications of the
above images.

path after sequential structure-from-motion are shown. The
white dots are the reconstructed 3D object points. The green
dots are the 3D object points of the first frame. The first frame
is also marked with a small camera icon. In total, 34214 object
points were reconstructed.

In Fig. 8, the results are compared with and without drift
removal. Fig. 8c shows the first frame of the video. Only
those 3D object points are shown that were generated out of
the 2D feature tracks that started in the first frame. These
3D object points are displayed as blue dots, and they project
perfectly onto the detected corners in the first frame. This first
frame can therefore be used as a reference. If the estimation
contains no drift, these 3D object points of the first frame
must project to the same corners even after two complete loops
around the advertising column. In Fig. 8a, the result is shown
after two complete loops without drift removal. The 3D object
points do not project to their original position. To visualize
the amount of drift, a 3D model of a column (pink wireframe
in Fig. 8) was fitted to the 3D object points of the first frame.
The displacement is clearly visible in Fig. 8a. Fig. 8b shows
the result after the drift is removed with the spectral method
of Section 4. The 3D object points project exactly to the
correct positions. The RANSAC method computes very similar
results, which are not shown here for this reason. If, however,

we compare the computation time of both methods the spectral
method needs 459.28 ms on average compared with 613.26 ms
for the RANSAC method - an increase in speed of 25 percent.
In total, we applied each method 76 times with appropriate
frame offsets to find the unconnected feature tracks for this
sequence. In total, 8055 of 34214 object points were merged.

6.2 Example 2: Registration of multiple cameras

This example, which is shown in Fig. 9, was recorded
simultaneously with four moving cameras. Each of the four
video sequences has a length of 188 frames. The camera
motion and the 3D object point cloud of every sequence are
estimated independently for each sequence. Afterwards, the
independent reconstructions are merged with the registration
algorithm of Section 5. The sequence is challenging because
of the large number of moving objects and because of the
repetitive flagging and repeated windows. However, all four
independent reconstructions were registered successfully, as
can be verified in Fig. 10. In order to test the registration,
the scene was augmented with a 3D model of a gate. This
virtual gate stays perfectly at its assigned position (see video
or Fig. 9).

Figure 10: Top view on the resulting camera path of four
moving cameras. The four independent reconstructions were
registered into a common global coordinate system.

6.3 Example 3: Recovery after large occlusions

This challenging example of a market scene has a total
length of 319 frames. The sequential structure-from-motion
estimation automatically restarts twice because too few feature
point tracks were available, due to large occluding objects in
the foreground (Fig. 11). After each restart, the structure-from-
motion algorithm produces an independent reconstruction of
the camera motion and 3D object points for that part of the
sequence. The registration algorithm of Section 5 was applied,
and the three independent reconstructions were successfully
registered into a common global coordinate system, as can
be seen in Fig. 12. In total, 243 of 13007 object points were
merged. To test the results, five virtual 3D objects were
rendered into the sequence. As can be verified in Fig. 11 and
in the video provided with this paper, these virtual object do
not show any visual misalignments or jitter.



Figure 9: In example 2, four moving cameras simultaneously capture a street scene. Top row: Two sample images out of the
sequence for each of the four cameras. Bottom row: The scene is augmented with a 3D model of a gate.

Figure 12: Camera path and 3D object point cloud
after registration of three independent structure-from-motion
estimations in example 3

7 Conclusion

In this paper, we presented three scenarios where merging of
unconnected feature tracks was necessary to achieve robust
camera motion estimation and 3D reconstruction from video:
drift removal, registration of multiple moving cameras, and
recovery of camera motion after large occlusions. For each of
these three scenarios, we showed results of automatic camera
motion estimation for challenging real-world video sequences
with repetitive structures and moving objects.

A key ingredient for the successful processing of these videos is
our choice of the similarity measure, as well as the application
of a uniqueness and proximity constraint to find fewer false
candidates for unconnected feature tracks. Furthermore, we
have adopted the spectral method by Leordeanu et al. [7] to the
problem of merging unconnected feature tracks.

We believe that this unified technique for merging unconnected
feature tracks in different scenarios is an important step
towards fully automatic camera motion estimation in difficult
situations.
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