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Abstract

Visual fixation is employed by humans and some animals
to keep a specific 3D location at the center of the visual
gaze. Inspired by this phenomenon in nature, this paper
explores the idea to transfer this mechanism to the context
of video stabilization for a hand-held video camera. A novel
approach is presented that stabilizes a video by fixating on
automatically extracted 3D target points. This approach is
different from existing automatic solutions that stabilize the
video by smoothing. To determine the 3D target points, the
recorded scene is analyzed with a state-of-the-art structure-
from-motion algorithm, which estimates camera motion and
reconstructs a 3D point cloud of the static scene objects.
Special algorithms are presented that search either virtual
or real 3D target points, which back-project close to the
center of the image for as long a period of time as possible.
The stabilization algorithm then transforms the original
images of the sequence so that these 3D target points are
kept exactly in the center of the image, which, in case of
real 3D target points, produces a perfectly stable result at
the image center. The approach is evaluated on a variety
of videos taken with a hand-held camera in natural scenes.

Keywords: video stabilization, visual fixation, camera shake,
camera motion estimation, structure-from-motion.

1 Introduction

When moving in an environment, the vision system of humans
and several animals uses the process of ocular fixation that
stabilizes the center of the visual gaze on a particular position
in 3D space. Thereby, the movement of the eyes compensates
the possible jitter introduced by the motion of the body [2].
Inspired by ocular fixation, in this paper we investigate, how
the process of fixation can be used to stabilize the images of a
video recorded with a hand-held video camera.

Current consumer cameras are usually equipped with video
stabilization hardware to reduce camera shake; e.g., special
lens systems or moveable image sensors in combination with
gyroscopic sensors [7, 11]. However, these systems can usually
compensate only small vibrations.

Software solutions offer greater flexibility and are able to
remove undesired camera shakes of large amplitude. Most
methods track image features [3] or estimate the optical
flow [4] between successive images. This information is then
used to obtain the parameters of 2D transformation between
the images. The transformation parameters are then smoothed
and the difference between the original and the smooth
transformation is applied to compensate the undesired camera
shake.

Different 2D transformations were explored, starting from a
simple two-dimensional shift of the image [6, 12] to affine
transformations [4]. Instead of using 2D transformations
there are also approaches that employ 2.5D [9] or 3D camera
models [13, 10, 1]. Various smoothing approaches exist, e.g.,
Kalman filters [6], particle filters [5], the Viterbi method [14],
or other digital filters [12].

In this paper, we present an image stabilization approach,
which simulates ocular fixation used in human and animal
vision by fixating the camera orientation to a specific 3D target
point in the scene. The advantage of this technique, in contrast
to smoothing, is that after stabilization the target point is kept
perfectly stable in the image center. The 3D target points are
automatically determined by analyzing the recorded scene with
a structure-from-motion algorithm. Thereby, the algorithm can
either generate a virtual target point or a target point that is
located on a real surface in the 3D scene. These target point
extraction algorithms are simple to implement and require only
a single user parameter, which controls directly how strongly
the original image sequence is altered due to fixation.

The paper is organized as follows. In the next section, we
describe the information that is available after employing a
state-of-the-art structure-from-motion approach. Sections 3
and 4 introduce the algorithms to extract the virtual and real
target points from the recorded image sequence. Section 5
explains how the target points can be used for video
stabilization. These sections correspond to individual steps of
the algorithm, which is illustrated in Fig. 1. In Section 6, we
report results of our experiments that show the performance
of the suggested algorithms. The paper ends with concluding
remarks in Section 7.
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Figure 1: The processing pipeline of the stabilization by
visual fixation algorithm.

2 Structure-from-Motion Algorithm

Reliable algorithms for camera motion estimation and 3D
reconstruction of rigid objects from video have been developed
over the last decades [8, 15, 17]. Employing such a state-of-
the-art structure-from-motion algorithm is the first step in our
processing pipeline.

Consider an image sequence consisting of K images Ik, with
k = 1, . . . ,K. Let Ak be the 3×4 camera matrix corresponding
to image Ik. First, corresponding 2D feature points pj, k are
determined in consecutive frames with the KLT-Tracker [16].
Using the corresponding feature points, the parameters of a
camera model Ak are estimated for each frame. As shown
in Fig. 2, for each feature track a corresponding 3D object
point position is determined, resulting in set of J 3D object
points Pj , with j = 1, . . . , J , where

pj, k ' AkPj . (1)

Thereby, the 2D feature points pj, k = (px, py, 1)> and 3D
object points Pj = (Px, Py, Pz, 1)> are given in homogeneous
coordinates.
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Figure 2: Result after structure-from-motion estimation. The
projection of a 3D object point Pj in the camera image at
time k gives the tracked 2D feature point pj, k.

The camera matrix A can be factorized into

A = K R [ I | −C ] , (2)

where the 3 × 3 calibration matrix K contains the intrinsic
camera parameters (e.g., focal length or principal point offset),
R is the 3×3 rotation matrix representing the camera orientation
in the scene, and the camera center C describes the position of
the camera in the scene.

3 Virtual Target Point Fixation

Once the camera motion parameters and 3D object points
have been obtained, the 3D target points Ti for fixation are
estimated. It is assumed that the camera operator tries to
keep the respective object of interest centered in the image
but introduces large jitter because of the hand-held camera.
Given the principal point ck of the camera view k, which
is the intersection of the optical axis with the image plane,
an estimate for the 3D target point Ti can be found by a
triangulation algorithm, which minimizes

arg min
Ti

∑
n∈Ni

d(cn , An Ti) . (3)

where Ni is a subset of the whole set of images [1 . . .K]
consisting of strictly consecutive images, and d(. . . ) denotes
the Euclidean distance.

To determine a suitable subset of images Ni for a target
point, a multi-scale approach is employed, which evaluates the
sequence at multiple time-scales.

The coarsest scale is assigned to scale index S = 0, while the
index is incremented for the subsequent, refined scales. Given
a specific scale with the corresponding scale index S, the total
number NS of consecutive images for all individual subsetsNi

for this scale is
NS = K − S . (4)

For any given scale with scale index S the maximum number
MS of possible subsets Ni evaluates to

MS = K −NS + 1 = S + 1 . (5)
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Figure 3: Example 1 - Comparison between the camera parameters estimated from the original image sequence, the smoothed
parameters [4], and the fixated parameters. Results for camera parameters pan, tilt, and roll are shown. The diagram in the
lower right corner shows a detail magnification for the pan parameter. The gray region indicates the fixation to a target point.

This is due to the fact that the subsetsNi are required to consist
only of strictly consecutive frames. As an example, consider a
sequence containing a total of K = 90 images for a scale with
scale index S = 30, there are at most M30 = 31 different
subsets Ni with a length of N30 = 60 images each.

Starting at the coarsest scale, the algorithm evaluates all
possible subsets of consecutive images, by checking if the
residual error of Eq. (3) is below a certain user defined
threshold τ . If this condition is satisfied, a target point
candidate is created and stored in a candidate list, which is
sorted ascendingly according to the residual error.

After processing all subsets, the target point candidate with
the lowest residual error is selected and moved to the list
of accepted target points. The corresponding image set is
assigned to the accepted target point and is excluded from
further processing. All target point candidates, which share
images with the accepted target point are removed from the
candidate list. The process is repeated for the next target point
candidate in the candidate list until the list is empty.

At the next finer time-scale all remaining possible subsets Ni

containing NS consecutive images are considered. Once all
subsets of a given scale have been processed, the scale index
S is increased and the corresponding subsets of the next finer
time-scale are considered, where it is made sure that only
subsets not containing images assigned to subsets on coarser
time-scales are selected. This reduces the number of possible

subsets for all finer scales.

The algorithm terminates after all images have been assigned
to an accepted target point or further refinement is no longer
possible.

4 Real Target Point Fixation

Only a 3D target point on a real surface permits a perfectly
stable projection of the surface at the image center. Therefore,
it is often desirable that the selected target point corresponds to
a real 3D object point of the scene. When the user activates this
real target point fixation, a suitable 3D object point is selected
form the set of all J 3D object points Pj for each virtual target
point. Thereby, it is evaluated whether the back-projection of
the 3D object points in the subset of images, which is assigned
to the current virtual target point, is close to the principal point
cn:

εj =
∑

n∈Ni

d(cn , An Pj) . (6)

The 3D object point Pj with the smallest error εj is selected.

Undesired results might be obtained for image sequences
where 3D object points in the vicinity of the virtual target
points were not generated during the structure-from-motion
step due to a lack of interest points in the respective image
regions. This problem can be solved by enforcing an additional
threshold on the residual error εj and by reverting to the virtual
target point if necessary.



Figure 4: Example 1 - Original image sequence (top), result of stabilization by fixation (middle), result of smoothing with an
affine model [4] (bottom). The images on the right are magnifications. With the stabilization by fixation approach the center
of the image is kept perfectly stable. The red marker lines were added to facilitate visual verification.

5 Video Stabilization by Fixation

To stabilize the image sequence, a 2D transformation, given
by the 3 × 3 matrix Hk, is applied to all images Ik of the
sequence. If (x′, y′)> and (x, y)> are the pixel positions in the
stabilized and unstabilized images, respectively, this operation
can be written as x′

y′

1

 ' Hk

x
y
1

 , (7)

with
Hk = (Kk R

(s)
k )(Kk Rk)−1 . (8)

The calibration matrices Kk and the rotation matrices Rk are
known from the structure-from-motion algorithm. The rotation
matrices R(s)

k are the smoothed versions.

A camera rotation matrix can be represented by three Euler
angles, pan ϕ, tilt ϑ, and roll ρ with

R = Ry(ϕ) Rx(ϑ) Rz(ρ) , (9)

where Ry , Rx, and Rz are rotations around the y, x, and z axis,
respectively. Note that in Eq. 9 the index k is omitted for the
sake of readability.

To find the smoothed rotation matrices R
(s)
k , a regularization

framework, as presented in [4], is employed. The
regularization framework smoothes each of the three Euler
angles independently and smoothed rotation matrices are
generated from the smoothed Euler angles, as outlined in
Eq. 9. Using this approach yields a smooth stabilization
similar to the results presented in [4].

In our case, however, the fixation on a target point constraints
the pan and tilt angle, and only the roll angle can still be chosen

arbitrarily. Therefore, the pan and tilt angle are not smoothed
but are are directly obtained from the fixation on the target
point. As the fixation does not gives us any information about
the roll angle, in absence of other knowledge, the smoothed roll
angle as given by the regularization framework is employed.

Since our approach perfectly stabilizes the given target point
in the center of the corresponding images, it is clear that the
transitions between adjacent target points can be very abrupt.
In most cases this effect is not desired and a smooth transition
between adjacent targets is preferred. This can be achieved by
applying the regularization framework mentioned above on a
short image sequence covering the transition. With the same
technique smoothed parameters can be calculated for longer
parts of the image sequence that where not assigned to any
target point.

6 Results

In this section, we present four real-world examples of video
stabilization by fixation. Except example 2, all examples
are recorded with off-the-shelf consumer HDV cameras at a
resolution of 1440×1080 pixels and a frame rate of 25 Hz. In
example 2 a SD camera with a resolution of 720×576 pixels
was employed. The examples are also shown in the video
provided with this submission.

Example 1 has a total length of 700 frames. With a threshold of
τ = 5.0 pixels eleven real target points were found. In Fig. 3 a
comparison between the camera parameters estimated from the
original image sequence, the smoothed parameters generated
using the approach described in [4], and the fixated parameters
is shown. The deviation of the fixated parameters from the
smoothed parameters is visible, especially in the shown detail
magnification. Because the roll parameter is also smoothed



Figure 5: Example 1 - Original image sequence (top), result of stabilization by fixation (middle), result of smoothing with an
affine model [4] (bottom).

during fixation the smoothed and fixated roll parameter curve
are on top of each other.

For comparison, sample images of the stabilization by fixation
approach are shown in Figures 4 and 5, along with the
corresponding images obtained through stabilization with an
affine model. To facilitate verification of the visual fixation, a
red cross-hair at the center of the images is superimposed. It
can be observed that the fixation approach, in contrast to the
affine stabilization, keeps the same 3D location perfectly in the
image center.

Example 2 presents a sequence of 250 images with an
approximate orbit motion around a dredger. A threshold
of τ = 0.5 pixels generated three real target points for
stabilization by fixation. Sample images from the original and
stabilized video are shown in Fig. 6.

Figure 6: Example 2 - Original image sequence (top), result
of stabilization by fixation (bottom).

In example 3 and 4 very strong camera shakes are compensated
by our video stabilization approach. Therefore, a large
threshold of τ = 50.0 pixels was chosen. In example 3, shown
in Fig. 7, two target points were established over a sequence of
212 images. In example 4, shown in Fig. 8, three target points
where established over a sequence of 150 images.

Figure 7: Example 3 - Original image sequence (top), result
of stabilization by fixation (bottom).

7 Conclusion

In this paper we presented a video stabilization approach
that fixates the center of the image to a specific 3D target
point. After analyzing the scene with a structure-from-motion
algorithm, these target points are automatically detected within
the scene. The user can control how much the original
sequence is altered by adjusting a single parameter τ . This
user-supplied parameter specifies the maximum offset value of
the projected target point to the image center in the original
image sequence.

In contrast to existing automatic approaches, our approach
can achieve an absolutely stable result in the center of the



Figure 8: Example 4 - Original image sequence (top), result
of stabilization by fixation (bottom).

images. One limitation of the approach is its dependency on
the structure-from-motion algorithm. If this processing step
provides wrong parameters, unpredictable results may occur.
However, other automatic stabilization approaches are also
dependent on reliable feature tracking. For scenes where the
tracking of features is possible, state-of-the-art structure-from-
motion also seldomly fails. If the camera performs a pure
rotational motion, target points can not be found with the
presented technique. However, similar techniques could be
developed for this special case in future.

A general problem, which occurs with all image stabilization
techniques that apply a 2D transformation to the image, is that
the translational motion of the camera and the resulting motion
parallax can not be compensated. This can be perceived as
residual jitter artifacts in some of the presented videos. These
artifacts could only be removed if a high quality depth map
with occlusion information would be available for every pixel
of all images. This is left for future research.
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