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Abstract

Given a set of 2D images, we propose a novel approach
for the reconstruction of straight 3D line segments that
represent the underlying geometry of static 3D objects in
the scene. Such an algorithm is especially useful for the
automatic 3D reconstruction of man-made environments.
The main contribution of our approach is the generation
of an improved reconstruction by imposing global topologi-
cal constraints given by connections between neighbouring
lines. Additionally, our approach does not employ explicit
line matching between views, thus making it more robust
against image noise and partial occlusion. Furthermore,
we suggest a technique to merge independent reconstruc-
tions, that are generated from different base images, which
also helps to remove outliers. The proposed algorithm is
evaluated on synthetic and real scenes by comparison with
ground truth.

1. Introduction
There is an increasing need for geometric 3D models for

movie production, games, and other virtual environments.
Unfortunately, manual modelling of 3D objects is tedious
and 3D scanners are usually costly and cumbersome, and
thus not accessible to everybody. Good alternatives are ap-
proaches for automatic 3D reconstruction from image se-
quences or video.

In the attempt to reconstruct 3D models from images,
most approaches apply traditional structure-from-motion
algorithms (e.g., [9]) to the set of images to estimate the
camara parameters and simultaneously generate a 3D point
cloud of the scene. Once such an initial scene reconstruc-
tion is available, more detailed 3D models can be estimated
(e.g., [4, 14]).

In this paper we consider the problem of reconstructing
straight 3D line segments from images. This is of particular

1This work was also partially funded by the MPC-VCC (BMBF-
FKZ01IMC01) and the DAAD (D/08/13983)

interest because of its application to man-made objects, like
indoor environments, building exteriors, or urban 3D mod-
els. Many algorithms for planar reconstruction perform a
3D line estimation and afterwards sweep the 3D space to
find the best fitting plane (e.g., [11]).

Given a set of images and corresponding cameras, the
problem of 3D reconstruction of straight lines from images
has been studied by several research groups in recent years.
In general, it can be said that line matching is a difficult task,
because of weaker geometric constraint compared to point
matching. In the approach by Baillard et al. [1] lines are re-
constructed by first finding line correspondences within the
epipolar beam in different views.This is done by evaluating
the normalized cross correlation scores over the line patches
and then calculating the 3D line formed as the intersection
of the two half planes defined by the lines of sight through
the end points of the corresponding lines. Moons et al. [8]
concentrate on aerial footage and therefore have an easier
problem of matching lines only within small regions, which
are determined using epipolar geometry and flight path in-
formation. They admit on having problems when a longer
line must be matched to more than one shorter line segment
in different views. Heuel et al. [5] attempt to reconstruct
3D lines by using geometric constraints in a probabilistic
framework to model uncertainty due to measurement noise.
Since only geometric information is used, their results are
not satisfying. Woo et al. [15] propose a hybrid method
for line matching, where also the elevation maps generated
by a stereo approach are employed to reduce the space of
matching candidates. Taylor et al. [12] propose a method
where they formulate an objective function which measures
the total squared distance in the image plane between the
observed edge segments and the projections of the recon-
structed lines. The 3D line reconstruction algorithm by
Schindler et al. [10] additionally takes vanishing point infor-
mation into account. Finally, Martinec et al. [6] propose a
linear method to reconstruct 3D lines from 2D views by fac-
torisation of a matrix containing line correspondences using
SVD.

All the above mentioned algorithms for 3D line recon-
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struction are solely local, and do not take into account any
global topology of the lines. Further, because of cluttered
or noisy images or partial occlusion, corresponding line seg-
ments for matching may not be detected in all views.

In contrast, in our approach we express the unknown
depth parameter of end points of detected line segments as
random variables and use a sweeping based approach to de-
fine a discrete probability distribution on the different states
(depth values) the end points can take. Then we consider
connections with neighbouring lines. We assume that two
end points of neighbouring line segments are connected, if
they share the same depth. Based on this, we consider the
joint distribution of the depth values of end points of all
lines in the image, conditioning them with respect to an-
other line if they are connected. This joint distribution can
be factorised as a graphical model. Finally, we estimate the
depth value for each end point, for which the joint proba-
bility of all the line end points is maximised. This can be
determined for all end points by loopy belief propagation.
Thus, we get the global optimum for the 3D reconstruction
of line segments. Because only a subset of lines is visible
in each image, we repeat the process for different base im-
ages. Afterwards, we merge the partial reconstructions from
different base images. The redundancy between the partial
reconstructions can be used to perform outlier elimination.
In summary, our contributions are:

• We introduce a 3D line estimation algorithm that ac-
counts for the global topology of line connections, and
thus provide additional constraints for the 3D recon-
struction. As we show in our evaluation, this approach
performs better than local approaches, which provide
less geometric constraints.

• A sweeping based approach is employed that does
not need explicit line correspondences and therefore
avoids the problem with corresponding lines that are
not detected in other views (e.g., due to image noise or
partial occlusion).

• An algorithm for merging partial reconstructions from
different base images into a global reconstruction is
suggested, which does also help to reduce the number
of outliers.

The paper is organised as follows. Section 2 describes
the problem mathematically and introduces some notations.
Section 3 starts with an overview of our approach for 3D
line reconstruction and afterwards gives details about each
step. Section 4 presents the results and the paper ends with
a conclusion.

2. Problem Statement
Given K images Ik with k = 1, . . . ,K of a scene from

different viewing locations, we want to estimate the 3D co-

ordinates of the lines detected in these views.
Let the real world scene be made of J 3D line segments,

and let the set containing all these lines be

L := {L1,L2, · · · ,LJ} (1)

where Lj represents a 3D line segment. A line Lj is
described by its 3D start and end points Pj

s,P
j
e ∈ P3

given in homogeneous coordinates P = (X,Y, Z, 1)>. Let
L(k) ⊆ L be the 3D line segments visible in a camera im-
age Ik and let us denote this set of 2D lines by

E(k) := {l(k)
1 , l(k)

2 , · · · , l(k)
J } . (2)

The 2D line segment l(k)
j is described by its start and end

points pj,(k)
s ,pj,(k)

e ∈ P2 (see Fig. 1).
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Figure 1. The projection of a 3D line segment Lj with start
point Pj

s and end point Pj
e in the camera image Ik gives a 2D

line segment l(k)
j with start point pj,(k)

s and end point pj,(k)
e .

Given the 3 × 4 camera matix A(k) for each camera im-
age k, we have a mapping L(k) 7→ E(k)

l(k)
j = A(k)(Lj) ∀ Lj ∈ L(k), l(k)

j ∈ E(k) , (3)

which is given by the projection of the start and end points

pj,(k)
s = A(k)Pj

s and pj,(k)
e = A(k)Pj

e . (4)

These back-projected 2D points in Eq. (4) and are virtual
points and thus are not expected to be visible in all views
(e.g., due to occlusions or because the back-projection lies
outside the image).

Given the set E(k) and camera matices A(k), the objective
of this work is to estimate the set of 3D line segments

L =
K⋃

k=1

L(k). (5)

In our approach the 2D lines in the set E(k) are deter-
mined in the images Ik with a straight line detector, which
establishes straight lines along image gradients obtained
with the Canny edge detector [2]. The camera matrices A(k)

for each image Ik are automatically estimated with a cam-
era tracking software [13].



3. Reconstruction of 3D Line Segments
Let us, for a moment, only consider a single detected

2D line lj . As illustrated in Fig. 2, the start point Pj
s =

(Xj
s , Y

j
s , Z

j
s , 1) of the corresponding 3D line Lj can only

be located somewhere on the line of sight through the
2D start point pj

s of lj . Similarly, the end point Pj
e =

(Xj
e , Y

j
e , Z

j
e , 1) must lie on the line of sight through the 2D

end point pj
e of lj . Therefore, these 3D points have only one

degree of freedom, which can be parameterised by their Z-
coordinate, Zi

s and Zi
e, given in the local camera coordinate

system (cp. Fig. 2).
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Figure 2. The start and end points {Pj
s,P

j
e} of the searched 3D

line can only be located somewhere on the lines of sight through
the start and end points {pj

s,p
j
e} of the 2D line.

We define a probability distribution p(Lj) over the space
of possible orientations for a line Lj , described by discrete
random variables for Zj

s , Z
j
e . Thus p(Lj) = p(Zj

s , Z
j
e). We

describe how we obtain this distribution in subsection 3.1.
Thus for a single line Lj ,

arg max
Zjs ,Zje

p(Zj
s , Z

j
e) (6)

gives us the optimal 3D position for this line.
Let us now consider multiple lines and their connections.

We define another set J , which contains the connections
between all 3D line segments, and thus describes the global
3D line segment topology of the scene. If two line seg-
ments Lp = {Pp

s ,P
p
e} and Lq = {Pq

s,P
q
e} are connected,

the set J would indicate the equivalence relation for the
connected points by

J :=
{
αp,q = 1 if Pp

a = Pq
b where a, b ∈ {s, e}

αp,q = 0 else
(7)

As start points can be connected to end points and vice
versa, the set J has a size of 4J(J − 1) with J the total
number of 3D lines in the scene. For image Ik, the set cor-
responding to the topology of L(k) is J (k). We describe
how we determine the initial set J (k) in subsection 3.2.

In subsection 3.3, we look at the joint probability distri-
bution of 3D lines, given the set of connections J (k). The

states at which the random variables Zj
s , Z

j
e attain a max-

imum in the joint distribution p(L(k) | J (k)) will give us
the globally best position of all 3D line segments L(k) seen
in image k constrained by the topology of the global line
connectivity. So, we have to solve

arg max
L1,L2,··· ,LJ

p(L(k) | J (k)) (8)

for all lines visible in image k. Since solving Eq. (8) directly
is np-hard, we will describe in Section 3.3 how the initial
line connectivity given by the set J (k) helps us to factorise
this joint distribution using a graphical model, and then lets
us find the max-product for the distribution on the graph,
using belief propagation in the loopy setting. Once we have
found the best line positions for the initial line connectiv-
ity, we alternate between refining the line connectivity J (k)

and estimating the best line positions L(k) with Eq. (8) until
convergence.

We repeat this whole procedure using other images k as
base images. For each base image we can only reconstruct
the visible subset of lines L(k) ⊆ L. Thus we need a strat-
egy to group these lines together to generate the conjoined
set L (see Eq. 5). This merging strategy will be described
in subsection 3.4, where we also explain, how we use lines
from more than one base image to remove outliers.

3.1. Line sweeping

In this subsection, we describe how we define the proba-
bility distribution p(Zj

s , Z
j
e) used in Eq. (6) for all possible

3D positions of line Lj , given by the Z-coordinates Zj
s , Z

j
e

of its start and end point. This probability distribution is
estabilished using a sweeping approach [3]. Thereby, the
Z-coordinates are given in the coordinate system of the cur-
rent base camera view k where the corresponding 2D line
was detected.

pj
e

back-projected 2D line segment lj

gradient image

pj
s

Figure 3. Calculating a scoring function for a back-projected line
in the gradient images k′. The small green dots represent measure-
ment points where the gradient is evaluated.

To define p(Lj) = p(Zj
s , Z

j
e), we say that the prob-

ability of the line Lj taking a certain position in space
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Figure 4. a) Connection candidates are established by searching end points of lines in the proximity of other end points in the camera
image. b) The initial line connectivity is found by pairwise evaluation. Lines are connected if the connected cost Cp,q is smaller than the
unconnected cost Up,q . c) The line connectivity can be transformed into a factor graph for loopy belief propagation. d) For each line the
additional cost caused by the global connections is calculated. e) The connection that causes the largest cost is erased, if it is larger than a
threshold. Afterwards the process is repeated starting from c) until convergence.

is proportional to its cumulative gradient overlap. There-
fore, we back-project the 3D line into the other camera
views k′ 6= Ik using Eq. (4). In order to avoid occlusion,
we only back-project into neighbouring camera views k′ in
the proximity of the base view k with up to 45 degree dif-
ference in the cameras’ principal axes. For each image k′

we also calculate the gradient image ||∇Ik′ ||.
As shown in Fig. 3, the backprojected line is divided be-

tween ps(Lj(Zs, Ze)),pe(Lj(Zs, Ze)) into gp equispaced
points. At each such point p̄1, p̄2, · · · , p̄gp , we look at gl

measurement points perpendicular to the line on both sides,
and we call this set of points G. With these measurements
the probability of the line Lj(Zs, Ze) is given by

p(Lj(Zs, Ze)) ∝
∑
k′

gp∑
i=1

∑
x∈G
||∇Ik′(x)||e

−λ||x−p̄j ||
2

||gl||2 (9)

To get the whole distribution of Lj , we evaluate Eq. (9) for
all values of Zi

s, Z
i
e the line can take. In our experiments we

restricted the Z-coordinates between 2 and 9 times the focal
length of the camera view k. The distribution is calculated
for all lines in L(k) and for all base images k that we are
interested in. Note that without considering connectivity
constraints, we could now determine the optimal 3D line
segment with Eq. (6).

3.2. Finding initial line connections

To factorise the joint probability in Eq. (8), we need to
find an initial set J (k) of 3D line connections. This ini-
tial set can be found by looking at pairwise connections
between lines. As illustrated in Fig. 4a for each start or
end point of a 2D line we evaluate, if within a certain ra-
dius in the base image Ik, there lies any other start or end
point of another 2D line. For all these connection candi-
dates {Pp,Pq} we evaluate the unconnected cost Up,q

Up,q = arg min
Lp,Lq

(− log (p( Lp) p(Lq) )) , (10)

where we assume that p(Lp) and p(Lq) are statistically in-
dependent and each p(L) is given by Eq. (9), and the con-

nected cost Cp,q

Cp,q = arg min
L̄p,L̄q

(
− log

(
p(L̄p) p(L̄q)

))
−B , (11)

where p(L̄) is given by Eq. (9) with the additional con-
staint that the Z-coordinates of the connection candidates
{Pp,Pq} are equal. The user-defined scalar value B is a
constant bonus term, which we substract from the negative
log likelihood to encourage line connections. Without this
bonus term the connected cost Cp,q would be always larger
than the unconnected cost Up,q . However, with this bonus
term we often have the situation that Cp,q < Up,q . In this
case we connect the lines by setting αp,q = 1 in the set J (k)

of possible connections. Otherwise, we leave the candidate
unconnected by setting αp,q = 0. Fig. 4b shows a possible
connected topology for the example given in Fig. 4a.

3.3. Belief propagation and line connectivity update

Once we have the initial connectivity of lines given by
J (k), this can be transformed into a factor graph for loopy
belief propagation (see. Fig. 4c). Each factor vertex is only
connected to two variable vertices, where the variables are
the unknown Z-coordinates of the 3D line points. Thus, the
joint probability from Eq. (8) can be written as:

p(L(k) | J (k)) =
∏
j

p(L̂j(Zj
s , Z

j
e)) , (12)

and thus we have to solve

arg max
L1,L2,··· ,LJ

∏
j

p(L̂j(Zj
s , Z

j
e)) , (13)

where p(L̂) is given by Eq. (9). If two line points are con-
nected, they must be represented by the same random vari-
able Zj . Loopy belief propagation can be employed on the
resulting factor graph to estimate the best 3D positions for
the 3D lines taking the global connectivity into account (we
used the implementation by Mooij [7]). Once a solution is
obtained, we calculate the additional cost ∆Cj for each 3D



line Lj caused by the global connections

∆Cj =
(
− log

(
p( L̂j)

) )
−

(
arg min

Lj

(− log (p( Lj)) )

)
,

(14)
where p(L̂) is evaluated at the optimal global Z-coordinates
obtained by the belief propagation algorithm and the subtra-
hend is the cost for an unconnected 3D line (see. Eq. (6)).
We sort the resulting values ∆Cj and check if the highest
value is above a user-defined thresholdH . If this is the case,
the connection that causes the highest cost is erased and a
new belief propagation is performed with an updated factor
graph. This procedure is repeated until all ∆Cj are smaller
than the threshold H . This results in a 3D reconstruction
where the positions of 3D lines L(k) and the line connectiv-
ity J (k) is conjointly optimized.

3.4. Outlier elimination by line grouping

We repeat the above process for different base images Ik
and thus obtain sets of 3D lines L(k) for each base image.
Then, we group these 3D lines using spatial proximity.

encircling cylinder

3D line segments from
different base images

outlier

Figure 5. 3D lines segments from different base images Ik are
grouped with other 3D lines if these are located within an encir-
cling cylinder. A representative line is estimated for each such
group. Lines that do not form a group with at least one other line
are considered as outliers.

As show in Fig. 5 we define an cylinder around each 3D
line, and check if both end points of a 3D line from another
base image fall within this cylinder. If this is the case, these
lines form a group. Thereby the cylinder is extended at both
sides by 10 percent along the 3D line. Once the groups are
established, each group is replaced by a single line. This
is done by generating a new line along the principal com-
ponent direction, which is the eigenvector corresponding to
the largest eigenvalue of the scatter matrix of all line points
of a group. The new extent of the line segment is defined by
projecting all group points onto the principal component di-
rection. The maximal and minimal values in principal com-
ponent direction define the new start and end point of the
segment. All 3D lines that do not form a group with at least
one other line are considered as outliers and are removed
from the final reconstruction.

The grouping may disturb the established connections
between 3D lines. Therefore, we need to refine this solu-
tion by solving a linear cost function, which imposes that
the connections between lines are reenforced. For all re-
maining connections in the set J where αp,q = 1 we up-
date the current points Pj

p,P
j
q to the refined points P̂j

p, P̂
j
q

by solving

arg min
P̂jp,P̂jq

=
∑
J
αp,q||P̂j

p −Pj
p||2 + ||P̂j

q −Pj
q||2 . (15)

4. Results
In this section our approach is evaluated on 3 datasets: a

synthetic data set, a real data set captured in our lab together
with a laser scan for ground truth evaluation, and another
example taken outside with a consumer camera.

The synthetic image sequence is generated from a 3D
CAD model of a timber-frame house. From this scene we
rendered 240 images with a resolution of 1280 × 960 pix-
els. Examples of the input images are shown in Fig. 6. After
we generated a 3D reconstruction of the 3D lines with the
presented approach, we compared the result with the known
3D CAD model. In Tab. 1 we compare the root mean square
error (RMSE) of our 3D reconstruction with a 3D recon-
struction that would be obtained without considering global
line connectivity. The RMSE is shown for different cut-off
thresholds. If the measured error for a particular point on a
3D line is higher than this cut-off threshold, the error is not
included in the RMSE measurement. It can be seen, that the
approach with global connectivity constraints outperforms
the local approach for all cut-off thresholds. These results
show, that the additional geometric constraints introduced
by the connections of 3D lines improves the accuracy and
helps to reduce the number of outliers in the final recon-
struction. In Fig. 6 we also show the color-coded recon-
struction error of our approach for visual inspections. It can
be seen that a large majority of the lines have a very small
reconstruction error.

Note, that we employed the outlier elimination from sub-
section 3.4 for both methods before we compared them in
Tab. 1. Otherwise the improvement provided by our ap-
proach would be even more significant. Fig. 7 shows a
comparison of the results before and after line grouping and
outlier elimination.

The next example was recorded with a HDV video cam-
era in our lab. The input images have a resolution 1440 ×
1080 pixels and show yellow and red building blocks on a
planar black and white checker board. Each square of the
checker board has an edge length of 50mm. A total of 84
images was recorded. At the same time the scene was re-
constructed with a commercial laser scanner, which gener-
ated a 3D model for ground truth evaluation. The camera
matrices were estimated with a camera tracking software



Figure 6. Timber-frame house (synthetic scene): Top row: example images from the input sequence. Bottom left: color coded reconstruc-
tion error of our approach (blue indicates a low error, red a high error, and black an error larger than 0.5m). Bottom right: ground truth
model rendered textured and in wireframe.

RMSE without [m] with [m] Threshold [m] Improvement [%]

0.3361 0.1970 none 41.1
0.2019 0.1810 3.5 10.3
0.1918 0.1736 2.5 9.4
0.1470 0.1262 1.5 14.1
0.0964 0.0807 0.5 16.2

Table 1. Timber-frame house: RMSE of the 3D line reconstruc-
tion without and with global connectivity constraints. The RMSE
is shown for different cut-off thresholds.

Figure 7. Timber-frame house: 3D line reconstruction before
(left) and after (right) line grouping and outlier elimination.

and the laser scan data was fitted to the camera images us-
ing the features points provided by the checker board 1. In

1Ground truth data, and our results can be downloaded from
http://www.mpi-inf.mpg.de/resources/LineReconstruction/

Fig. 8 as well as in Tab. 2 a comparison between our ap-
proach with and without global connectivity constraints is
shown. Again our method with global connectivity shows
significant improvements of the RMSE. Though for a cut-
off threshold of 5mm the improvement is only 3.3%. How-
ever, this particular comparison is maybe already affected
by the measurement error of the laser scanner.

RMSE without [mm] with [mm] Threshold [mm] Improvement [%]

10.66 9.65 none 9.4
8.87 6.29 75.0 29.1
7.41 4.30 50.0 42.0
5.48 3.83 25.0 30.1
2.36 2.28 5.0 3.3

Table 2. Building blocks: RMSE of the 3D line reconstruction
without and with global connectivity constraints. The RMSE is
shown for different cut-off thresholds.

The third example is a 3D line reconstruction from a set
of 20 photos taken with a consumer SLR camera in a low-
light situation, which resulted in images with a high pixel
noise. Fig. 9 shows the 3D line reconstruction of this scene.
Many details are reconstructed including the tiles on the
wall of the rightmost house.

5. Limitations and Conclusion
We have presented a novel approach for 3D line recon-

struction from image sequences. In contrast to existing ap-

http://www.mpi-inf.mpg.de/resources/LineReconstruction/


Figure 9. Street (real scene): Top: example images from the input sequence. Bottom: 3D line reconstruction with global connectivity
constraints.

proaches, we automatically establish connections between
neighboring 3D lines. These additional geometric con-
straints improves the reconstruction significantly as shown
by our evaluation with ground truth data. The root mean
squared reconstruction error is reduced by approx. 20 per-
cent.

Our sweeping-based approach does not use explicit 2D
line matching and, thus, can often reconstruct a line in
situations where matching based approaches fail because
the corresponding line is not detected in the neighbouring
views. This can often happen due to noise or partial occlu-
sions. However, a disadvantage of the sweeping approach

is that evaluating all possible Z-coordinates is computation-
ally more expensive than explicit 2D line matching. For
some scenes with many base images we had to run our al-
gorithm over night (8 to 10 hours) to obtain our results. An-
other limitation of the sweeping approach is that 3D lines
that are not in the sweeping range (of 2 to 9 times the focal
length in our case) can not be correctly reconstructed.

We have also presented an automatic approach for merg-
ing partial reconstructions from different base image, which
tries to merge lines using spatial proximity. If a line does
not form a group with at least one other line from a differ-
ent reconstruction, it is rejected as outlier. As shown in our



Figure 8. Building blocks (lab scene): Top to bottom: example
images from the input sequence; color coded reconstruction error
without global connectivity constraints (blue indicates a low er-
ror, red a high error, and black an error larger than 5mm); color
coded reconstruction error with global connectivity constraints;
laser scan used for ground truth evaluation.

results, only very few outliers remain. A limitation of this
approach is that we sometimes also merge lines that are in
fact no outliers but different 3D lines in close proximity.

To further increase the reconstruction quality, in future
work, we want to consider additional geometric constraints,
like the perpendicularity of 3D lines often present in man-
made environments. Furthermore, the achieved 3D line re-
construction can be a perfect starting point for algorithms
that try to extract a more complete surface reconstruction
from images.
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