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Abstract

State-of-the-art methods for human detection and pose
estimation require many training samples for best perfor-
mance. While large, manually collected datasets exist, the
captured variations w.r.t. appearance, shape and pose are
often uncontrolled thus limiting the overall performance. In
order to overcome this limitation we propose a new tech-
nique to extend an existing training set that allows to ex-
plicitly control pose and shape variations. For this we build
on recent advances in computer graphics to generate sam-
ples with realistic appearance and background while mod-
ifying body shape and pose. We validate the effectiveness
of our approach on the task of articulated human detection
and articulated pose estimation. We report close to state of
the art results on the popular Image Parsing [25] human
pose estimation benchmark and demonstrate superior per-
formance for articulated human detection. In addition we
define a new challenge of combined articulated human de-
tection and pose estimation in real-world scenes.

1. Introduction

Recent progress in people detection and articulated pose
estimation may be contributed to two key factors. First, dis-
criminative learning allows to learn powerful models on a
large training corpora [6, 11, 31]. Second, robust image
features enable to deal with image clutter, occlusions and
appearance variation [7, 22]. Large and representative train-
ing sets are essential for best performance and significant
effort has been made collecting them [6, 20, 10]. Typi-
cally, images are extracted from public data sources (e.g.
photo collections) and manually annotated. However, even
for large datasets it remains a challenge to ensure that they
adequately cover the space of possible body poses, shapes
and appearances. Even more importantly, depending on the
task (e.g. detecting people in basketball vs. golf vs. street-
scenes) the relevant distribution of shape, body pose and
appearance varies greatly and cannot be easily controlled
using manually collected datasets.

In this paper we are interested in the challenging prob-
lem of articulated people detection and pose estimation in

Figure 1: Sample detections (top) and pose estimates (bot-
tom) of multiple articulated people obtained with our model
trained on images from our new data generation method.

challenging real-world scenes. In order to achieve this goal
(e.g. illustrated in Fig. 1), we advance the state of the art in
several ways. As a first contribution, we propose a novel
method for automatic generation of multiple training ex-
amples from an arbitrary set of images with annotated hu-
man body poses. We use a 3D human shape model [16]
to produce a set of realistic shape deformations of person’s
appearance, and combine them with motion capture data
to produce a set of feasible pose changes. This allows us
to generate realistically looking training images of people
where we have full control over the shape and pose varia-
tions. As a second contribution, we evaluate our data gen-
eration method on the task of articulated human detection
and on the task of human pose estimation. We explore
how various parameters of the data generation process af-
fect overall performance. On both tasks we can signifi-
cantly improve performance when the training sets are ex-
tended with the automatically generated images. As a third
contribution, we propose a joint model that directly inte-
grates evidence from an appropriately trained deformable
part model (DPM, [I1]) into a pictorial structures frame-
work and demonstrate that this joint model further improves
performance. Last, as fourth contribution, we define a new
challenge of joint detection and pose estimation of multiple
articulated people in challenging real-world scenes.

Related work. People detection and articulated pose esti-
mation are closely related and challenging problems. Much
recent work focuses on special cases such as detection of
pedestrians [7, 9, 8] or people seen mostly from frontal
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views [13, 27]. Approaches designed for generic people de-
tection [0, 11] are often evaluated on the VOC [10] bench-
mark mostly capturing upright people. While there exist a
significant body of literature addressing pose estimation in
challenging real-world scenes [25, 30, 20], they typically
assume that people were localized in the images. With a
few notable exceptions [2, 17, 31] the task of joint detection
and pose estimation of strongly articulated people remains
largely unaddressed.

Training state-of-the-art models for detection of strongly
articulated people requires representative training sets. Col-
lecting and annotating such data sets is tedious and many
images are required for good performance [20]. Here, we
follow the appealing route to generate training data based on
computer graphics methods. Automatically generated data
has been used in computer vision in the past. However, its
application has been mostly limited to cases where realistic
appearance is not required, such as silhouette-based meth-
ods for human pose estimation [!] or depth images [29].
While training people detectors from rendered images has
been proposed [23, 21, 28], such training data often lacks
the necessary realism for good performance. An alternative
is to apply transformations to real images preserving their
realism. E.g. [9] augments the training set by applying a
morphable 2D model to images. Here we follow a similar
idea, however in our case we use a generative 3D human
shape model and motion capture data to generate possible
deformations of 2D data making our deformation model
more realistic and versatile. [24, 32] are probably closest to
our work. In our own prior work [24] we require an expen-
sive data acquisition step limiting the number of subjects in
the experiments to a handful of people. Both methods are
limited to shape deformations only. On the contrary in this
work we are able to generate new training examples from
existing 2D images while still allowing for a wide range of
shape and pose variations. We show that controlling pose
variations of generated training samples is essential when
training detection models of highly articulated people.

2. Generation of novel training examples

To improve both articulated people detection and pose
estimation we aim to generate training images with full
control over pose and shape variations. Fig. 2 gives an
overview of our novel data generation process consisting
of three stages. Starting from approximate 3D pose annota-
tions we first recover the parameters of the 3D human shape
model [16]. The body shape is then modified by reshaping
and animating. Reshaping changes the shape parameters
according to the learned generative 3D human shape model
and animating changes the underlying body skeleton. Given
the new reshaped and/or animated 3D body shape we back-
project it into the image and morph the segmentation of the
person. To that end we employ the linear blend skinning
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Figure 2: Overview of our novel data generation method.

procedure with bounded biharmonic weights described in
[18]. The following describes these steps in more detail.

2.1. Data annotation

For each subject in the training set we manually provide
a 3D pose and a semi-automatic segmentation of the person.
The 3D pose is obtained using the annotation tool intro-
duced in [6]. The pose is used later to resolve the depth am-
biguities which otherwise arise when fitting the 3D human
shape model to 2D observations. The initial segmentation
is obtained with GrabCut [26] which we automatically ini-
tialize using annotated 2D joint positions and projected 3D
shape from the fitted shape model (see below). While this
procedure already produces reasonable results, segmented
images often require user interaction to refine the segmen-
tation due to low resolution, poor contrast and bad light-
ing. We use the segmentation to compute a 2D image mesh
which is then deformed to change human shape and pose.

2.2. 3D human shape recovery and animation

3D human shape model. In order to generate photoreal-
istic synthetic images of people in different poses we em-
ploy a statistical model of 3D human shape and pose [16]
which is a variant of the SCAPE model [3]. The model is
learned from a public database of 3D laser scans of humans
and thus represents the available shape and pose variations
in the population. The shape variation across individuals is
expressed via principal component analysis (PCA). We use
the first 20 PCA components capturing 97% of the body
shape variation. Linear blend skinning is used to perform
pose changes. To this end, a kinematic skeleton was rigged
into the average human shape model. The 3D model pose is
represented by a kinematic skeleton with 15 joints having a
total of 24 degrees of freedom (DoF) plus 6 DoF for global
body position and orientation. The model surface consists
of a triangle mesh with 6450 vertices and 12894 faces.

Model fitting. Having an annotated 3D pose allows to
resolve the depth ambiguity while fitting the 3D shape
model’s kinematic skeleton to a 2D image. We retarget
the skeleton to an annotated 3D pose by computing inverse
kinematics through minimizing the Euclidean distance be-



tween a set of corresponding 3D joint positions, namely
left/right ankles, knees, hips, wrists and elbows, upper neck
and head. We use a constrained optimization based on the
iterative interior point method. Optimization is done in
shape and pose parameters space. Obtaining a good fit of
the skeleton is essential for the rest of our data generation
process and can significantly influence the realism of gener-
ated images. The fitting dependents on the flexibility of the
kinematic skeleton and also on how well the corresponding
3D joint positions match. We thus do not include shoulders,
pelvis and thorax joints into the objective function as these
tend to have different positions in the annotated 3D pose
and the 3D model’s kinematic skeleton.

Varying model shape and pose. After fitting the skele-
ton we vary the 3D shape and pose parameters. To change
the shape we randomly sample from the underlying 3D hu-
man shape distribution. For 3D shape animation we require
a database of poses. To that end we retargeted the shape
model’s kinematic skeleton to over 280,000 of highly ar-
ticulated poses from freely available mocap data!. To do
so, we fix the bone lengths of the mocap skeleton to be the
same as for the shape model’s skeleton and compute inverse
kinematics by optimizing over global rotation, translation
and pose parameters only, which reduces the search space
and produces better results. To animate the fitted skeleton
we use the nearest retargeted poses with an average joint
distance of less than 90 mm. Informal experiments showed
that going further away from the fitted pose may result in
unrealistically looking generated images.

2.3. Generation of novel images

After shape and pose changes are applied to the fitted
3D shape model, we project its 3D joint positions into the
image and move 2D annotated joints towards corresponding
projected joints. This results in a smooth 2D mesh deforma-
tions described by linear blend skinning [18]. We only ani-
mate “dangling” arms and legs, and do not deform occluded
or occluding limbs as this leads to unrealistic deformations.

To obtain a final training sample we render the deformed
2D mesh into a photorealistically looking individual by
reusing the original appearance of the person. Finally we
combine the rendered subject with the background. We ei-
ther replace the original person with the generated one by
first removing the original person from the image using a
commercial implementation of [4], or embed the generated
sample at a random place of a new people-free image. Fig. 3
shows original images from the “Image Parsing” set and au-
tomatically generated novel images with animated and re-
shaped humans and different types of backgrounds.

'CMU MoCap Database http: //mocap.cs.cmu.edu/

(a) (b)
Figure 3: Examples of automatically generated novel im-
ages: (a) original image and (b) animated and reshaped syn-
thetic samples with different backgrounds. Note the realism
of the generated samples.

3. Articulated people detection

This section evaluates our data generation method for ar-
ticulated people detection. For this we use the deformable
part model (DPM) [1 1] and evaluate its performance on the
“Image Parsing” dataset [25]. For training we use training
sets from the publicly available datasets: PASCAL VOC
2009 (VOC) [10] consists of 2,819 images of people cap-
tured over a wide range of imaging conditions; “Image Pars-
ing” (IP) [25] consists of 100 images of fully visible people
in a diverse set of activities such as sports, dancing, and ac-
robatics; the recently proposed “Leeds Sports Poses” (LSP)
dataset [19] that includes 1, 000 images of people involved
in various sports. We denote the models trained on these
sets as DPM-VOC, DPM-IP and DPM-LSP. We introduce
two new training sets obtained from IP by reshaping (R) and
the combination of animating and reshaping (AR) training
examples®. The models trained on this data fogether with
the IP data are denoted DPM-IP-R and DPM-IP-AR accord-
ingly. Average precision (AP) is used to compare perfor-
mance and the PASCAL criterion [10] is used for matching.

DPM training. Training of DPM proceeds as usual [11].
However, we found that the initialization of DPM compo-
nents significantly influences detection performance. IL.e.
the standard way to initialize the components based on the
bounding box (BB) aspect ratio does not appear to be well
suited for our task, as people with different poses often have
similar BBs. We explore an alternative initialization strat-
egy, where we cluster the images according to the relative
displacement of the 2D joint locations w.r.t. the fixed body
joint (neck joint in our case). The comparison of detec-
tion performance is presented in Fig. 4(a). DPM-IP-AR
outperforms DPM-IP (81.6% vs. 79.5% AP) even when
initialized by BB aspect ratios. Initializing DPM by pose
clustering leads to an unequal distribution of training sam-
ples among different components and thus some compo-
nents suffer from the lack of training data. This explains the

2The data is available for research purposes on our web page.
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Figure 4. Comparison of different initializations for DPM components (a). Comparison of detection results of the DPM
model on (b) “Image Parsing” and (c) multiscale “Leeds Sports Poses” datasets.

real/synthetic AP, [%] range sampling

100 IP/0 76.1 uniform  Gauss
100 IP/400 R 83.9 +4o 85.4 90.1
100 IP/400 AR 87.2 +30 88.6 85.1
100 IP/900 AR 88.6 +20 88.0 83.2
100 IP/1900 AR 88.1 +lo 85.6 87.3

Table 2: Results for different
samplings of shape param-
eters in Animate-Reshape
data.

Table 1: Results using “Im-
age Parsing” (IP) data alone
and jointly with Reshape (R)
or Animate-Reshape (AR).

performance decrease for DPM-IP (76.1% AP). However
pose clustering accounts for a significant improvement for
DPM-IP-AR (87.2% AP), as each component gets enough
training data. This underlines the argument that our data
generation method does indeed help to cover more shape
and pose variations compared to the real data alone.

Data ratio. We study the influence of increasing shape
and pose variations in the training data by changing the ra-
tio between AR and IP data (results in Tab. 1). Clearly,
performance is worst when training on IP data alone (76.1%
AP). Adding 400 of R samples (increasing only shape varia-
tions) noticeably improves performance (83.9% AP). How-
ever adding the same number of AR samples (increasing
both shape and pose variations) accounts for further im-
provements (87.2% AP). This supports the intuition that
a global articulated people detector requires training data
with large shape and pose variations and thus can signifi-
cantly profit from our data generation method. Increasing
the amount of AR data further improves the performance to
88.6% AP. Adding even more AR samples leads to a slight
decrease in performance due to overfitting.

Shape variations. The ability to sample from the under-
lying 3D human shape distribution provides a direct con-
trol over generated data variability. Thus it is important to
evaluate various ranges of shape changes and different sam-
pling strategies. We sample shape parameters within +1,
2, 3 and 40 (standard deviation) from the mean shape us-

ing uniform and Gauss-sampling and report the results in
Tab. 2 for 100 IP/900 AR data. For both uniform and Gauss
strategies sampling from +3¢ outperforms +2¢ as it bet-
ter covers the space of possible shapes. Interestingly, by
Gauss-sampling from +4¢ and thus oversampling the tails
of possible shape variations represented by our 3D human
shape model we are able to improve the performance to
90.1% AP. Intuitively, the tails of the data distribution are
important for learning powerful detectors. Increasing the
sampling range increases the likelihood to sample unlikely
but possible shape variations, which is far more difficult to
achieve when using manually collected datasets only.

Summary of detection results. In Fig. 4(b) we summa-
rize our findings and compare the obtained results to both
DPM-VOC and DPM-LSP. DPM-VOC performs the worst
(68.0% AP) trained on mostly upright people without strong
articulations. This intuition is also supported by a better
performance of DPM-IP (76.1% AP) trained from a much
smaller set of images containing highly articulated people.
Although training from a larger number of real samples
(DPM-LSP) increases the detection rate (81.2% AP) this
improvement is less pronounced compared to DPM-IP-AR
(90.1% AP). This is due to the fact that the data variability
is uncontrolled in LSP, as thus by adding more real samples
we do not necessarily increase the variability. Training on
our data generated from only 100 real images and having
controllable pose and shape variations outperforms other
models by a large margin achieving a remarkable 90.1%
AP. We also show example detections at the equal error rate
for DPM-IP-AR and DPM-IP in Fig. 5. Both qualitative
and quantitative results clearly show the advantage of our
method to increase the shape and pose variability of train-
ing data by sampling from the underlying 3D human shape
distribution and changing human poses.

4. Articulated pose estimation

Motivated by the success of our data generation method
to enable articulated people detection, this section proposes
a new joint model for body pose estimation combining our
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Figure 5: Examples of articulated people detections at EER
by DPM trained on our joint synthetic and real “Image
Parsing” (IP) data (top) and IP data alone (bottom). DPM
trained on VOC2009 failed to detect people in these images.

pictorial structures model with DPM. We first briefly de-
scribe the Pictorial Structures (PS) model [14, 12] and then
introduce our novel Joint PS-DPM model. We evaluate
both models on the challenging “Image Parsing” dataset and
show that pose estimation can directly profit from our strong
articulated people detector. We use the percentage of cor-
rect parts (PCP) [13] measure for performance comparison.

4.1. Pictorial structures model

Pictorial structures (PS) [12, 14] represent the human
body as a flexible configuration L = {lo,l1,...,In} of
body parts. The state of each part 7 is denoted by [; =
(4, Yi,0:, i), where (x;,vy;) gives the part position in im-
age coordinates, ; the absolute part orientation, and s;
indicates the part scale relative to the part size in the
scale normalized training set. Given image evidence F,
the posterior of the part configuration L is described by
p(L|E) « p(E|L)p(L), where p(L) is the kinematic tree
prior and p(E|L) is the likelihood of image evidence E for
the body part configuration L. The tree prior describes de-
pendencies between model parts and can be factorized as
p(L) = p(lo) [1; jeq p(Lill;), where G is the set of all di-
rected edges in the kinematic tree, [ is assigned to the root
node (torso) and p(l;]!;) are pairwise terms along the kine-
matic chains. Pairwise terms are modeled by Gaussians in
the transformed space of part joints while p(ly) is assumed
to be uniform. The likelihood term is decomposed into the
product of single part likelihoods p(FE|L) = HiV:O p(E|l;),

We use our publicly available implementation [2]. In
this implementation part likelihoods are modeled with Ad-
aBoost classifiers [15] and image evidence is represented
by a grid of shape context descriptors [5]. Inference is per-
formed by sum-product belief propagation, which allows to
compute marginal posteriors of each body part.

4.2. Joint PS-DPM model

While being conceptually similar, the DPM model and
the PS model are designed for different tasks. The DPM

model is designed for object detection and its parts are op-
timized to localize a bounding box of the person only. In
particular it is non-trivial to map these parts to the locations
of the anatomical body parts as is necessary for human pose
estimation. On the contrary the PS model is defined directly
in terms of anatomical parts and explicitly models their mu-
tual positions and orientations. However anatomical body
parts are not necessary optimal for detection, as they might
be non-discriminative with respect to background.

To benefit from the complementary properties of PS
and DPM models we define a joint model by embedding
the evidence provided by DPM model into the PS frame-
work. In the joint model we define the likelihood of the
torso part as a product of two likelihood terms p(FE|l;) =
Pps (E|l:)papm (E|l;), where the first term is the original PS
torso likelihood, and the second term is given by the torso
prediction from the DPM. We adapt the DPM model to es-
timate the torso location by training linear regression model
that predicts torso endpoints from the positions of the DPM
model parts. These estimates are robust since the torso is
typically associated with multiple parts of the DPM, which
reduces uncertainty in the prediction. For each predicted
torso location [; we define papm (E|l;) = o(m(l;)), where
m(l;) is the confidence score of the DPM detection, and o (+)
is a sigmoid function that calibrates the DPM score with re-
spect to the PS likelihood. For all locations that did not have
torso predictions we set the likelihood to ¢ = 1073.

4.3. Experimental evaluation

Here we evaluate both original PS and the proposed joint
PS-DPM model on the task of pose estimation. In the fol-
lowing experiments the spatial and the part likelihoods of
both models are learned on different training data, namely
real “Image Parsing” (IP) data alone and together with the
Reshape (R) data produced by our data generation method.

Training on IP data alone. First we report the best re-
sults obtained by training the PS model on IP data only.
Similar to [2] we train part detectors on the training set aug-
mented with the slightly rotated, translated and scaled ver-
sions of the original training samples. As in [2], we use a
repulsive factor for lower and upper legs and perform in-
ference by loopy belief propagation on the reduced state
space of samples from part posteriors. Using IP data only
we achieve 59.6% PCP. The results are shown in Tab. 3.

Training on IP and Reshape data. Our findings indicate
that by jointly training on IP and Reshape data we improve
over IP data alone. The best result is achieved by adding
1200 synthetic samples to the training data (61.9% PCP).
Further increasing the proportion of Reshape samples leads
to worse performance due to overfitting to synthetic sam-
ples, while decreasing the number of Reshape samples re-
duces variability and leads to worse performance. Training



Setting Torso  Upperlegs Lowerlegs Upperarms Forearms Head Total
Image Parsing (IP) 84.9 71.5 61.5 50.2 36.6 712 59.6
+ Reshape (R) 87.8 75.1 65.9 52.4 36.1 71.7 619

+ Joint PS+DPM 88.8 77.3 67.1 53.7 36.1 737  63.1
Andriluka et al., [2] * 83.9 70.5 63.4 50.5 35.1 70.7 594
Yang&Ramanan, [31] * 82.9 69.0 63.9 55.1 354 77.6  60.7
Johnson&Everingham, [20] 87.6 74.7 67.1 67.3 45.8 76.8 67.4

* evaluated using our implementation of PCP criteria introduced in [13]

Table 3: Pose estimation results (PCP) on the “Image Parsing” (IP) dataset.
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Figure 6: Comparison of body pose estimation results be-
tween the PS trained on IP (top) and our Joint PS+DPM
model trained on IP + Reshape data (bottom).

on IP and Animate-Reshape (AR) data (60.0% PCP) per-
forms slightly worse than the Reshape data. The PS does
not benefit from the animated training data as it can already
model such transformations via a flexible pose prior. The
best performance is achieved by uniformly sampling from
+10 (61.9% PCP) while Gauss-sampling performs slightly
worse (+20, 61.2% PCP).

Training Joint PS-DPM. Results of training our Joint
PS-DPM model on IP and AR data are shown in Tab. 3
(row 3). The Joint PS-DPM model outperforms the PS
model alone (63.1% vs. 61.9% PCP). Expectedly, the lo-
calization of torso improved (87.8% vs. 88.8% PCP) which
is explained by the increased confidence of torso estimation
in the Joint PS-DPM model. Clear improvement is achieved
for all body parts apart from forearms, while the limbs di-
rectly connected to the torso profit at most.

Comparison to the state of the art. We compare our re-
sults to the best results from the literature in Tab. 3. We out-
perform our previous work [2] and more complex discrimi-
natively trained mixtures of parts model [3 1]. The achieved
performance is slightly below [20] who use far more train-
ing data and learn multiple PS models after clustering sim-
ilar poses. We envision that their clustering scheme could
be effective in our case as well, in particular since we could
generate sufficient amounts of training data even for clusters
with rare poses. We leave this extension to future work.
Note that the results of [31] presented in Tab. 3 differ
from those found in the original publication. The differ-

ence is due to the use of evaluation toolkit provided with
the “Buffy” dataset [13], which deviates from the PCP cri-
teria introduced in [13] in several ways leading to higher
PCP scores®. For the sake of comparison we re-evaluate
our method using the publicly available toolkit [13]. The
results are shown in Tab. 4. Clearly, both peculiarities of
evaluation procedure employed by [3 1] contribute to signif-
icantly higher PCP results.

In Fig. 6 we show examples of pose estimation results
by our joint PS+DPM model trained on Reshape data and
PS model trained on IP data alone. Note that the PS fails
due to background clutter (left and middle) and presence of
human-like structures (right). The Joint model uses addi-
tional information from the DPM torso prediction and thus
is more robust. Clearly, correct estimation of torso position
is the key to correct estimation of the rest parts.

5. Articulated pose estimation “in the wild”

Most recent work on articulated pose estimation consid-
ers a simplified problem by assuming that there is a single
person in the image and that an approximate scale and po-
sition of the person is known [25, 19, 27, 30]. The pro-
posed approaches typically output a single estimate of body
configuration per image and do not provide any confidence
score that the pose estimate is indeed correct. This ignores
two important issues which arise when applying these ap-
proaches on real images. First, many images contain multi-
ple people and so in addition to estimating poses of people
it is also necessary to decide how many people are present.
Second, for each person it becomes necessary to search over
a wide range of possible positions and scales, and it is not
clear how well the proposed methods are able to deal with
such increase in complexity. We argue that in order to prop-

3 According to the definition of PCP from [13] the body part is consid-
ered correct if both of its endpoints are closer to their ground truth positions
than a threshold. The code in “Buffy” toolkit requires that the average
over endpoint distances is smaller than the threshold. Such loose matching
allows a segment to be accepted even if it is far from the ground-truth, be-
cause small distance of one endpoint can compensate for a large distance
of the other endpoint. Another difference is that the code accepts multiple
pose hypotheses as input, and evaluates the PCP score only for the hypoth-
esis matching the ground-truth upper body bounding box. This is the “best
case” evaluation that relies on the ground-truth annotation. In contrast, the
PCP criteria [13] assumes there is one hypothesis for each part per image.



Setting Torso  Upperlegs Lowerlegs Upperarms Forearms Head Total
Our method, our evaluation 88.8 71.3 67.1 53.7 36.1 73.7  63.1
Our method, loose matching 92.7 84.1 74.4 62.2 44.1 81.0 703
Our method, evaluation of [31] 98.9 90.1 79.6 68.8 48.1 92.5 76.5
Yang&Ramanan, [3 1], our evaluation 82.9 69.0 63.9 55.1 354 77.6 60.7
Yang&Ramanan, [31], loose matching 88.8 78.5 71.7 70.7 41.7 81.5 69.6
Yang&Ramanan, [31], evaluation of [31] 97.6 83.9 75.1 72.0 48.3 93.2 74.9

Table 4: Pose estimation results (PCP) on the “Image Parsing” (IP) when using our evaluation and evaluation of [31].

erly asses the state-of-the-art in articulated people detection
and pose estimation it is necessary to consider these prob-
lems jointly. To that end we define a new dataset and eval-
uation criteria, and use them to validate the results obtained
in Sec. 3 and Sec. 4 in a more realistic setting.

Dataset and evaluation criteria. The “Leeds Sport
Poses” (LSP) dataset [19] contains images of people
rescaled to the same scale and cropped around the person
bounding box. We define a new dataset based on the LSP by
using the publicly available original non-cropped images.
This dataset, in the following denoted as “multi-scale LSP”,
contains 1000 images depicting multiple people in different
poses and at various scales. We extended the annotations on
the new dataset to include ground truth body configurations
and bounding boxes of all people taller than 150 pixels re-
sulting in 2, 551 annotated people total. To jointly asses the
performance of detection and articulated pose estimation we
evaluate the pose estimation in terms of recall and precision
curves (RPC) and use AP to compare the performance. The
PASCAL criterion [10] is used for matching people detec-
tions to the ground truth. For part matching to the ground
truth we employ the PCP measure (Sec. 4) and use the peo-
ple detector score as a confidence score of the hypothesis
of each part. In addition to already mentioned training data
we animate and reshape original LSP [19] training images
(LSP-AR) and use them to train a DPM.

Results. Similar to [13] we use pre-filtering by running an
articulated people detector. We collect all detections at the
highest recall, and estimate poses independently for each of
the detections matching the ground truth. All misdetections
are considered when computing an RPC curve for each part.

We first evaluate the performance of DPM trained on dif-
ferent types of data. Results are shown in Fig. 4(c). Again
DPM-IP-AR is much better than DPM-IP (57.2% vs. 51.3%
AP), while DPM-LSP-AR outperforms DPM-LSP (68.4%
vs. 65.4%) achieving the best result. These results show
that the detectors trained on data augmented with reshaped
and animated examples are more robust to strong pose vari-
ations. All DPM models outperform the PS model that is
not trained discriminatively and is therefore more prone to
failures in the presence of background clutter.

Fig. 7 shows RPC curves for individual body parts cor-
responding to different combinations of detection and pose

estimation models. The best result is achieved by com-
bining the DPM-LSP-AR detector with our Joint PS+DPM
model (Fig. 7(c)). The performance varies greatly across
parts. The localization is especially difficult for small parts
such as forearms that are frequently occluded and foreshort-
ened. To compare part detection performance across dif-
ferent models, we summarize the results in Tab. 5. Us-
ing DPM-VOC for pre-filtering achieves 18.2% AP, which
is below PS-IP-R + PS (19.2% AP) performing better at
high precision (cf. Fig 4(c)). DPM-IP-AR + PS achieves
21.2% AP. By using DPM-LSP-AR which is a better peo-
ple detector we significantly improve the performance to
24.7% AP: localization of torso and head improves by more
than 5% AP, while upper and lower legs improve by 4.4%.
This clearly shows the importance of using a robust peo-
ple detector to improve pose estimation of highly articu-
lated people on multiple scales. Finally, DPM-LSP-AR +
Joint PS+DPM achieves the best result (25.6% AP) outper-
forming other models for all parts. Torso, head and upper
legs benefit most from better torso detection, as our joint
model is able to detect the torso with higher confidence. The
somewhat low overall results are due to a large number of
partially occluded and strongly articulated people seen from
untypical viewpoints. Our results indicate that even the cur-
rently best-performing methods often fail in such cases.

6. Conclusion

In this paper we propose a novel method for automatic
generation of training examples from an arbitrary set of im-
ages. By using a 3D human shape model we generate realis-
tic shape deformations of peoples’ appearance. In addition,
we animate reshaped samples by using a large set of mo-
tion capture data to generate plausible pose variations. We
evaluate our data generation method for articulated people
detection and pose estimation and show that for both tasks
we significantly improve the performance when augment-
ing existing training data with our automatically generated
images. In particular, we achieve very good results on the
challenging “Image Parsing” benchmark using just 100 real
images and a basic pictorial structures model. We also pro-
pose a joint model which integrates the evidence provided
by DPM into the pictorial structures framework and experi-
mentally show that the new model allows to further increase
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Figure 7: Detection results of different body parts on the multi-scale “Leeds Sport Poses” dataset.

Method Torso  Upperlegs Lowerlegs Upperarms Forearms Head Total
DPM-LSP-AR + Joint PS+DPM  40.5 37.5 30.8 18.0 4.3 342  25.6
DPM-LSP-AR 38.9 35.6 29.3 18.0 42 33.6 247
DPM-IP-AR + PS 32.5 31.2 24.9 15.8 3.6 282 212
DPM-VOC + PS 29.9 25.2 20.0 14.2 3.6 274 183
PS-IP-R + PS 29.1 28.7 23.5 14.7 4.0 245 195

Table 5: Average precision (AP) of part estimations by different methods on multi-scale “Leeds Sport Poses™ dataset.

the performance. Finally we propose a new challenge of
joint detection and pose estimation of multiple articulated
people in cluttered sport scenes.
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