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ABSTRACT
This paper presents a real-time face detection algorithm. It
improves state-of-the-art 2D object detection techniques by
additionally evaluating a disparity map, which is estimated
for the face region using a calibrated stereo camera setup.
First, faces are detected in the 2D images with a rapid ob-
ject classifier based on haar-like features. In a second step,
falsely detected faces are removed by analyzing the dispar-
ity map. In the near field of the camera, a classifier is used,
which evaluates the Eigenfaces of the normalized disparity
map. Thereby, the transformation into Eigenspace is learned
off-line using a principal component analysis approach. In the
far field, a much simpler approach determines false-positives
by evaluating the relationship between the size of the face in
the image and its distance to the camera. This novel combina-
tion of algorithms runs in real-time and significantly reduces
the number of false-positives compared to classical 2D face
detection approaches.

Index Terms— Image analysis, object detection, stereo
vision

1. INTRODUCTION

Face detection is often the first step in complex image pro-
cessing applications, like, face recognition, visual surveil-
lance, or human-machine interaction. This explains the high
interest of the research community in this topic. In 2001,
Viola and Jones [1] presented a widely used machine learn-
ing approach for visual object detection, which is capable to
detect faces in images in real-time. It employs a coarse-to-
fine strategy, where a classifier is trained that selects a few
critical haar-like features from a large set and then combines
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Fig. 1. Quality of the disparity maps: (a) left frame of a
stereo image, (b) reconstructed disparity map, (c) correspond-
ing depth-map on a 3D grid, (d) reconstructed 3D head.

increasingly more complex ones in a cascade. These features
are applied to detect faces in the image domain whereby
consecutively smaller image patches become relevant as the
complexity of the features increases. In order to achieve
real-time performance, the core idea is to eliminate non-face
patches at early stages of the cascade, to compute the more
complex features only for the most relevant image patches.
In 2002 Lienhart et al. [2] improved this method by introduc-
ing a novel set of rotated haar-like features, which are more
powerful, but still easy to calculate. In combination with a
superior post optimization procedure based on gentle Ad-
aBoost, they could decrease the false alarm rate significantly
at given hit rates. Followed by an empirical analysis [3] they
also provided an implementation of their method as part of
the OpenCV library.

In contrast to those methods, our approach does not work
on monocular image sequences but processes synchronized
stereo images instead. The approach can be divided into an
off-line training phase and a real-time detection phase. For
each stereo pair of the training images we train two differ-
ent classifiers, one classifier on monocular frontal face im-
ages and one on the disparity maps, which we estimated from
the stereo images. The classifier for monocular images fol-
lows the approach by Lienhart et al. with rotated haar-like fea-
tures, whereas the classifier that works on the disparity maps
is trained by generating Eigenfaces [4] using principal com-
ponent analysis. During real-time detection, we first apply the
classifier that is based on monocular images and allows for a
slightly higher rate of false positives, which is then checked
by the disparity map classifier that eliminates the falsely de-
tected positives. If the image patch containing the face is too
small, we revert to a simpler approach that analyzes the size
of the face in the image in relation to its estimated distance to
the camera.

This paper is not the first to look into the combination of
2D image appearance and 3D depth maps from passive stereo.
Especially, for the application of face recognition the benefit
of additional 3D information has been shown before [5, 6].
Very related to our approach is the work by Wang et al. [7, 8].
They also present a real-time face detection system, which
uses passive stereo and can additionally track and recognize
faces. However, their approach uses a morphological filter in
combination with some heuristics to detect the closest face to
the camera in the depth map. As a result, only one face can be



detected, whereas our multi-stage machine learning approach
can detect multiple faces in the same image.

2. STEREO SETUP AND ALGORITHM

Our stereo setup consists of two cameras with an image reso-
lution of 384×288 pixels and baseline distance of 20 cm. Af-
ter off-line calibration with a calibration pattern [9], we rec-
tify the input images to standard stereo geometry and estimate
a disparity map. Let the left picture be denoted by Il(x, y)
and the right picture by Ir(x, y). We then minimize the func-
tional: E(z(x, y)) =

∫∫
Ω
|Il(x, y)− Ir(x− d(x, y), y)| dS,

where d(x, y) is the disparity at pixel (x, y)>. To find the
minimum, we use a variational approach for disparity map
estimation,which combines powerful tools such as regulariza-
tion, automatic tracing and controlling the convergence of the
iteration process with the help of Monte Carlo-based predic-
tion technique. Though, regularization of the disparity maps
is applied, depth discontinuities are preserved. Recently, a
fast implementation of this approach was presented [10]. Fig-
ure 1 shows an example of a disparity map estimation. As
can be verified by visual examination, the approach generates
a disparity map of high quality.

3. NEAR-FIELD STEREO-ENHANCED FACE
DETECTION

It is known that boosted cascades of simple feature based de-
tectors rapidly achieve high detection performances when ap-
plied to monocular images [1, 2] . However, when applied to
images that contain not only faces but also pictures of faces
or simple face-like line structures, these detectors still show
some false alarms, while on the other hand sometimes reject-
ing actual faces. One reason is that each stage of the cascade
consists of a weak classifier that is based on haar-like fea-
tures. These are well known to be sensitive to edges, bars,
and simple image structures. To overcome these problems,
we employ an additional classifier, that is not based on the
appearance but evaluates the disparity map. First, we trained
a boosted classifier cascade, which uses rotated haar-like fea-
tures as introduced by Lienhart et al. [2]. Using discrete Ad-
aBoost, we trained on a sets of 4700 positive samples (taken
from [11]) and 3300 negative images (office scenes without
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Fig. 2. Results of the PCA on disparity maps: The average
face (on the left side) and the first three Eigenfaces.
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Fig. 3. Excerpt of the receiver operator characteristic (ROC)
for the monocular face detection classifier. At 2% false alarm
rate, our trained classifier achieves a hit rate of 96%.

Fig. 4. Stereo image pairs and generated disparity maps from
the PCA training set of faces.

faces). This classifier cascade performs as shown in the re-
ceiver operator characteristic (ROC) in Figure 3.

To detect faces in 2D images, we apply the trained classi-
fier on the left image of all stereo pairs and such identify sev-
eral image patches that are potential face candidates. To eval-
uate these candidates in 3D, we perform a second classifica-
tion step on the disparity maps. This PCA classifier is trained
off-line on 30 facial regions, as shown in Fig. 4, which were
cropped out of the normalized disparity maps. The principle
component analysis estimates the probability distribution of
facial disparity maps around their average, as represented by
the so called Eigenfaces (cf. [4] ), which are shown in Fig. 2.
During online detection, we evaluate whether a potential can-
didate, as selected by the 2D classifier, is a veridical face by
projecting its signal into PCA space. Considering the vari-
ances of the learned probability distribution, we calculate the
Mahalanobis distance of the current test signal to the average
face. By choosing a threshold of σ = 3.29 in terms of stan-
dard deviation σ, we accept all face candidates that lie within
the range of ≈ 99, 9 % of all training samples. Face can-
didates that lie above this threshold will be rejected as non-
faces.



Fig. 5. Stereo image pairs and generated disparity maps from
the test set: (a) examples of faces, (b) examples of non-faces,
e.g., only an picture or a sketch of a real face.

4. FAR-FIELD STEREO-ENHANCED FACE
DETECTION

If a face is detected in a small image patch, the face detection
algorithm described above fails because a reliable disparity
map can not be estimated. Therefore, if the patch size of a
face is smaller than 40 × 60 pixels, we revert to a simpler al-
ternative to detect false positives generated by the classifier
for monocular images. For each detected face region, we de-
tect feature points and estimated their disparity to the right
frame with the Kanade-Lucas-Tomasi approach [12]. After-
wards, the median disparity is calculated within the detected
face region, and the corresponding distance to the camera is
calculated with the known calibration data of the cameras.
From the size of the face in the image and the distance, the
actual size of the face in 3D can be determined. The size is
then checked against an interval of sizes for veridical faces,
which is learned from a database of 3D face scans. If the face
size is smaller than 15.78 cm or larger than 24.16 cm, the face
is marked as a false-positive and is dismissed.

5. EXPERIMENTS AND RESULTS

We tested our stereo-enhanced face detector on a large num-
ber of input samples, which were different from the samples
used during training. Thereby, 40 samples contained one or
more faces and 19 images contained some other non-face ob-
ject. Fig. 5 shows a few examples of face and non-face sam-
ples used in the test set. Tab. 1 compares the detection rates
of the monocular detection approach with those obtained with
our stereo-enhanced method. All false-positives could be re-
moved by taking the additional 3D information into account.
The number of true-positives and false-negatives stayed the
same. Figures 6 and 7 illustrate the shortcomings of the clas-
sical monocular approach because it can not distinguish a real
face from a photo print. Our improved detection approach dis-
misses the false detection with the near-field stereo-enhanced
classifier, Fig. 6, and the far-field stereo-enhanced classifier
in Fig. 7. In Tab. 2 timings for the different step of our algo-
rithms are given. For a scene with a single face a frame rate
of 11 fps for the far-field approach and 6 fps for the near-field
approach can be achieved.

40 Faces 19 Non-Faces
FP TP FN FP TN

monocular 7 38 2 5 14
stereo enhanced 0 38 2 0 19

Table 1. Comparison of the detection rates of the monocu-
lar detection approach with our stereo enhanced method. The
two shaded columns show that the number of false-positives
(FP) decreases using our method, and the number of true-
positive (TP) and false-negative (FP) stays the same.

Step FF [msec] NF [msec]
Run monocular detector 27 27
Estimate disparity map - 78
Transform into Eigenspace - 42
Estimate sparse disparity map 63 -
Total 90 147

Table 2. Timings for an Intel R© Core
TM

2 CPU with 2,66 GHz.
The monocular detector must be run once per image, the other
algorithms must be run once per detected face. Here FF and
NF denote far-field and near-field approach, respectively.

6. CONCLUSION AND DISCUSSION

In this paper a widely used monocular face detector based on
a trained haar-feature cascade is extended by an additional
classifier that evaluates the disparity map of a passive stereo
camera. The algorithms runs in real-time and significantly
reduces the the number of false-positives compared to the



Fig. 6. Detecting false positives with the near-field stereo-
enhanced classifier: (a) input image, (b) two detected faces of
the monocular classifier (true positive and one false positive),
(c) calculated optical flow, (d) the stereo-enhanced classifier
dismisses the false positive (σTP = 3.27, σFP = 6.35).

monocular approach. In fact, as our test set is rather small
(40 faces and 19 non-faces samples), all false-positives could
be removed in our experiment. We are still working on the ex-
tension of our training and test set and are planning to make
the data available to the research community.

Currently, the system has the limitations that only frontal
faces are detected. A possible solution is to train both the
monocular and the stereo extension on different face orienta-
tions, resulting in a different detector for each orientation, and
then run all detectors in parallel. This is left for future work.
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